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Abstract Sum-Product Networks (SPNs) are deep tractable probabilistic models
by which several kinds of inference queries can be answered exactly and in a
tractable time. They have been largely used as black box density estimators,
assessed by comparing their likelihood scores on different tasks. In this paper
we explore and exploit the inner representations learned by SPNs. By taking a
closer look at the inner workings of SPNs, we aim to better understand what and
how meaningful the representations they learn are, as in a classic Representation
Learning framework. We firstly propose an interpretation of SPNs as Multi-Layer
Perceptrons, we then devise several criteria to extract representations from SPNs
and finally we empirically evaluate them in several (semi-)supervised tasks showing
they are competitive against classical feature extractors like RBMs, DBNs and
deep probabilistic autoencoders, like MADEs and VAEs.

1 Introduction

Density estimation is the unsupervised task of learning an estimator for a joint
probability distribution over a set of random variables (RVs) from a set of samples.
Such an estimator can be used to do inference—computing the probability of
queries over those RVs. Many machine learning (ML) problems can be reframed as
different kinds of probabilistic inference tasks, e.g., classifying a target RV can be
solved by Most Probable Explanation (MPE) inference [20]. Density estimation
can be thought as one of the most general tasks in ML.

Sum-Product Networks (SPNs) [31] are tractable density estimators compiling
a joint probability distribution into a deep architecture. While for classical density
estimators such as Probabilistic Graphical Models (PGMs) [20], like Markov Net-
works (MNs) and Bayesian Networks (BNs), performing exact inference is generally
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unfeasible—it is exponential in the model treewidth—for SPNs many kinds of
queries like marginal and conditional probabilities are computable in linear time
in the size of the network [31]. This is achievable by the presence of structural
constraints like decomposability and completeness [31, 29], regarding the scope
of the nodes—the RVs appearing in the distributions modeled by those nodes.
SPNs have been successfully employed in several applications, such as computer
vision [13, 27], speech recognition [28], natural language processing [4, 26] and
activity recognition [2]. The task of learning an SPN has been tackled both in the
weight [31, 33, 43] and structure learning scenarios [14, 34, 10, 32, 17].

Up to now, however, SPNs have been evaluated only as black box inference
machines, i.e., only their output—the answer to a probabilistic query—is actually
exploited in the task considered. In this paper we aim to uncover the inner workings
of these probabilistic models by i) extending them towards Representation Learning
(RL) [3] and ii) bridging themselves closer to deep neural models. By leveraging the
learned inner representations of a model, RL approaches aim to disentangle and
uncover different explanatory factors behind the data [3]. Usually, one employs these
embeddings as features in predictive tasks later, e.g., Restricted Boltzmann Machines
(RBMs) [37] have been employed as feature extractors after being unsupervisedly
trained [6, 24], or representations from neural autoencoders—trained to reconstruct
the data—are classically used as highly predictive features [39, 16].

In this work, we investigate how to extract and exploit the representations
learned by SPNs when trained unsupervisedly as density estimators. Specifically,
we try to answer the following questions: Q1) What are the inner representations
learned by SPNs?; Q2) How can representations at different levels of abstraction
be extracted from an SPN? How and why are RL approaches for classical deep
neural models unsuitable for SPNs?; Q3) Are SPN representations competitive
with those extracted from other neural models for predictive tasks?

To do so, we make the following contributions. First, we propose a natural
interpretation of SPNs as sparse, labeled and generative Multi Layer Perceptrons
(MLPs) that are arranged in a graph (Q1). Then, we try to better understand
SPN representations by devising sampling routines in order to visually inspect
their generated samples. Moreover, we visualize what each neuron has learned by
providing a probabilistic formulation of visualizing samples maximizing the neuron
activations in MLPs [11, 40] (Q1). Additionally, since extracting representations at
different levels of abstraction in a layer-wise fashion—as usually done in MLPs [3]—
is inadequate in SPNs, due to the aforementioned structural constraints, we devise
several alternative criteria to build embeddings, like arranging nodes by type or
scope length or aggregating them by scope (Q2). Finally, we demonstrate that
the SPNs embeddings are competitive with other classical feature extractors such
as RBMs, their deep counterparts Deep Belief Networks (DBNs) [35], and deep
probabilistic autoencoders [15, 19] when evaluated on several (semi-)supervised
tasks (Q3).

By answering the aforementioned questions we both provide practitioners with
several routines to effectively exploit any learned SPN as a feature extractor, and
suggest when and why to prefer one routine over another. At the same time, we hope
to attract those in the deep learning community that are not familiar with such
models by highlighting the differences—and advantages—of SPNs w.r.t. classical
neural models for RL. Ultimately, we argue that SPNs are not only expressive and
tractable probabilistic models but also provide rich part-based representations. They
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naturally provide this without the need of being retrained and without requiring
to manually specify an architecture beforehand or imposing an embedding size a
priori, thus classifying as promising candidates for RL.

2 Related Work

The theoretical properties of SPNs have been thoroughly investigated, while their
node interactions and practical interpretability have received little or no atten-
tion. For instance, [9] investigates the representational power of SPNs through a
theoretical analysis that compares deep vs. shallow architectures. Martens and
Medabalimi [25] demonstrate how expressive efficiency in SPNs correlates to their
depth. In [34], SPNs are demonstrated to be estimators equivalent to Arithmetic
Circuits over discrete finite domains. In [29], it was shown that consistency—a
less strict constraint than decomposability—does not lead to exponentially more
compact networks. In [42] it is demonstrated how SPNs are equivalent to bipartite
BNs with Algebric Decision Diagrams modeling their conditional probability tables.

Visualizations provide important tools to assess a model from a qualitatively
perspective, and have proven to be complementary to quantitative analysis. The
most common and simplest technique for (not only deep) generative model is
to visualize sampled instances [22, 15]. Recently, the need to better understand
the successes of deep models more in depth lead to studies focused on particular
architectures, for instance Convolutional Neural Networks in [41] and Recurrent
Neural Networks, even more recently, in [18]. In this paper, we follow the work
in [11] to visualize the feature learned by each neuron from an arbitrary layer as
the input instance maximizing its activation. Extensions of [11] explored how to
impose natural image priors to visualize features from deep models learned on
image data: e.g., in [40]. In [36], on the other hand, the optimization problem is
recast as finding the best image maximizing a class score and computing a saliency
map for a query image sample, given a class. With MPE inference with SPNs we
can efficiently solve an optimization problem similar to [11], effectively showing
that the learned features are part-based representations.

Representation Learning (RL) [3] works have extensively studied how to extract
useful features in unsupervised, semi-supervised and supervised settings from both
deep and shallow models. RBMs have been extensively employed as robust feature
extractors in several studies, both as generative and discriminative models [21, 24].
They also inspired successful autoregressive models like the Neural Autoregressive
Distribution Estimator (NADE) [22]. For all these neural density estimators the
structure is fixed a priori or after a hyperparameter selection for the number of
hidden layers and hidden nodes per layer. With SPNs, efficient structure learning is
possible. Moreover, the extracted representations can be assessed against the learned
structure and vice versa, due to their recursive definition. Masked Autoencoder
Distribution Estimators (MADEs) have been introduced in [15] as the autoencoder
variant of NADEs. Empirically, they have been proven to be highly competitive in
terms of likelihood scores while providing tractable complete evidence inference.
The autoregressive property in MADEs binds inner neurons to be connected only
to other neurons whose direct input respects the order dependencies among RVs,
making them sparsely connected. Differently from SPNs, where each node outputs a
probability, MADEs only do this in the last layer. Similarly to MADEs, variational
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autoencoders (VAEs) [19] are generative autoencoders, but differently from MADEs
they are tailored towards compressing and learning untangled representations
of the data through a variational approach to Bayesian inference. While VAEs
have recently gained momentum as generative models, their inference capabilities,
contrary to SPNs, are limited and restricted to Monte Carlo estimates relying on
the generated samples.

W.r.t. all the above mentioned neural models, one can learn one SPN structure
from data and obtain a highly versatile probabilistic model capable of performing
a wide variety of inference queries efficiently and at the same time providing very
informative feature representations, as we will see in the following sections.

3 Sum-Product Networks

We denote RVs by upper-case letters, e.g., X, and ordered sets of RVs by their
bold variants, e.g., X. We denote a sample for X as x ∼ X, and a single value
from it as xj . We define a set of m samples—a dataset—as {xi}mi=1. Let Q ⊆ X,
then x|Q denotes the marginal sample q ∼ Q, i.e., the restriction of x to Q.

A Sum-Product Network (SPN) S over RVs X is a probabilistic model defined
via a rooted directed acyclic graph (DAG). Let S be the set of all nodes in S and
ch(n) denote the set of children of a node n ∈ S. The DAG structure recursively
defines a distribution Sn for each node n ∈ S. To a leaf node n, i.e., ch(n) = ∅,
is associated a computationally tractable distribution φn , Sn over sc(n) ⊆ X,
where sc(n) denotes the scope of n. 1

An inner node n is either a sum or product node and its scope is recursively
defined as sc(n) =

⋃
c∈ch(n) sc(c). A sum node n outputs a non-negative weighted

sum over its children: Sn =
∑
c∈ch(c) wnc Sc. A product node n outputs a product

over its children: Sn =
∏
c∈ch(c) Sc. The distribution encoded by an SPN S is the

normalized output of its root, and it depends both on the structure of S and its
parameters—the set of sum-weights and the leaf distributions parameters—denoted
as w. Let S⊕ (resp. S⊗) be the set of all sum (resp. product) nodes in S. An
example of SPNs is shown in Figure 1, where the direction of the model edges are
graphically omitted to avoid clutter.

In order to allow for efficient inference, an SPN S is required to be complete,
i.e., ∀n ∈ S⊕, ∀c1, c2 ∈ ch(n) : sc(c1) = sc(c2), and decomposable, i.e., ∀n ∈
S⊗,∀c1, c2 ∈ ch(n), c1 6= c2 : sc(c1) ∩ sc(c2) = ∅ [31, 29]. Moreover, we assume
SPNs to be locally normalized [29]: ∀n ∈ S⊕,

∑
c∈ch(n) wnc = 1. W.l.o.g., we also

assume SPNs to have alternate node types, which we call alternate SPNs, i.e., each
product (resp. sum) node can have as child a sum (resp. product) node [38].

Computing the exact probability of complete evidence x ∼ X consists of a single
bottom-up evaluation of S: each leaf n evaluates φn(x|sc(n)) and subsequently, each
inner node computes the probability Sn(x|sc(n))—or short-hand Sn(x)—before
passing it to its parent, till the root. This computation is guaranteed to be tractable
as long as the network size—|S|, the number of edges in it—is polynomial in |X|.

Even exact marginal inference can be computed in linear time w.r.t. |S| in a
complete and decomposable SPN S [31, 29]: to compute the query p(Q = q),Q ⊂ X,

1 For discrete (resp. continuous) RVs, φn represents a probability mass function (resp. density
function). We will generically refer to both as probability distribution functions (pdfs).
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one evaluates φn for each leaf n by marginalizing RVs in sc(n) not in Q, then
propagating the outputs bottom-up, as before. Consequently, also exact conditionals
are computable in linear time, since p(Q|E) = p(Q,E)/p(E), for Q,E ⊂ X.

Exact MPE inference is hard in general SPNs [30, 7]. However, reasonable ap-
proximations for MPE solutions can be found in linear time in general SPNs [31, 30].
Given an SPN S over RVs X, to find an MPE assignment q∗ = argmaxq∼Q p(E,q)
for some RVs E,Q ⊂ X,E ∩ Q = ∅,E ∪ Q = X, S is transformed into a Max-
Product Network (MPN) M , by replacing each sum node n with a max node
computing maxc∈ch(n) wncMc(x) and each leaf distribution φn with a maximizing

distribution φMn [30]. In a first bottom-up step, one computes M(x|E). A top-down
step traces back the MPE solution for RVs Q. Starting from the root and following
only the max output child of a max node and all the children of a product node,
an induced tree is grown. Taking the argmax over its leaves retrieves the MPE
solution [31].

The structure of SPNs can be effectively learned from data by leveraging the
probabilistic semantics of sum nodes as mixture models over their child distributions
and product nodes being factorizations of independent components [31, 29]. In
particular, a categorical latent RV Hn, having values in {1, . . . , |ch(n)|}, can be
associated to each sum node n. Network weights wnk can be interpreted as the
probabilities of choosing the k-th child branch from sum node n, having taken
the path from the root up to n. Several constraint-based algorithms exploit this
perspective and perform variants of hierarchical co-clustering [14, 34, 10, 38]. To
introduce a decomposable product node, RVs are clustered by some statistical
independence test, while complete sum nodes are introduced by clustering samples
in sub-populations. The first learner adopting such a schema is LearnSPN [14],
which greedily induces tree-shaped SPNs by recursively splitting the data matrix
top down along its axis. For each call on a submatrix, column splits add child
nodes to product nodes, while those on rows extend sum node. RVs are checked for
independency by means of a G-test and a product node is inserted in the network
if the test is passed with threshold ρ. A sum node n is inserted over k child nodes if
a clustering step over the rows produced k different clusters. The weights wnc are
directly estimated as the proportions of samples falling into each cluster c. In this
way, no weight learning step is needed after the network is fully grown. The learning
process stops when the number of samples in a partition falls under a threshold
µ. Then leaves are introduced as univariate distributions whose parameters are
smoothed with a coefficient α. As they are considered to be independent one from
another, a product node is put on top of them.

Here we adopt such a structure learning approach because i) it is simple and
yet effective [14, 38]; ii) it does not require designing or fixing a priori a network
structure; iii) it allows us to automatically determine the size of the representations
we extract from SPNs in Section 7; iv) finally, by performing hierarchical co-
clustering, LearnSPN acts as a recursive data crawler, providing the rich part-based
representations we visualize in Section 6.

While latent RVs associated to sum nodes suggest a natural way to exploit
SPNs as generative models, to the best of our knowledge, they have not been
employed in the literature to sample. We use a simple sampling scheme for SPNs,
effectively adopting it to visually inspect what a network has learned in Section 7.
To generate one sample x from the pdf over X encoded by an SPN S, one traverses
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Fig. 1: Layered representation of SPNs. On the left, an example of a complete and
decomposable SPN over RVs X,Y, Z,W . Leaves are represented as labelled circles
and inner nodes have their scope associated. On the right, two possible layered
representations featuring more (bottom) or less (top) sparse weight connections.

S top-down and induces a tree similarly to MPE inference: at each sum node
n, the child c to follow is randomly chosen with probability proportional to wnc.
Product node children are followed all at once. To draw a sample q from the
conditional distribution p(Q|e), one chooses the sum child branch c proportionally
to wncSc(e), instead. Again, the leaves of the induced tree form a partition over
all X. A complete sample is generated by sampling from these leaf distributions.

4 Interpreting Sum-Product Networks as neural networks

Similarly to Arithmetic Circuits (ACs) [8, 34], SPNs are computational graphs in
which the operations computed to evaluate a pdf are rearranged into an efficient
data structure. Differently from ACs, the latent RVs semantics in SPNs allows
for direct structure learning [5]. SPNs and ACs are not classical PGMs. Edges in
SPNs deterministically determine the evaluation of the nodes in the DAG, which
represent computational units, while in PGMs nodes represents RVs and edges the
statistical dependencies among them.

As computational graphs, SPNs can be seen as feedforward deep neural networks
(DNNs) in which hidden neurons can only compute sum and products and input
neurons are pdfs. We argue that the peculiarity of SPNs as DNNs lies in them
being a) labelled, b) constrained and c) retaining a fully probabilistic semantics.
The scope function labels each network node by a set of RVs, enabling a direct
encoding of the input space [3]. The DAG constrained topology, due to completeness
and decomposability of scopes, determines sparse and local connections, similar to
convolutional networks. Moreover, like RBMs, but differently from deep estimators
like NADEs and MADEs [15], each neuron activation, i.e., Sn(x), is still a valid
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probability value by definition. These properties suggest each hidden neuron to act
as probabilistic part-based feature extractor, which we investigate in Section 6.

We propose an interpretation of SPNs as sparse Multi Layer Perceptrons (MLPs)
whose layers are arranged in a DAG. A classic sequential MLP consists of an input
layer, a series of hidden layers and an output layer. A hidden layer of s neurons
is a function of its input x ∈ Rr: h(x) = σ(Wx + b), with σ being a nonlinear
activation, e.g., ReLU [3], and W ∈ Rs×r a linear transformation with bias b ∈ Rs.

To reframe an SPN as an MLP one first has to group nodes into layers containing
nodes of the same type. Each layer can receive input connections from multiple
layers (including the input layer), and whose adjacent input and output layers are
made up of nodes of a different type. Moreover, one layer can feed multiple layers
with its output. These layers lend themselves to be arranged in a DAG based on
their multiple input and output connections.

The input layer still computes the pdfs of the leaf distributions. The out-
put of each hidden layer, based on its type, can be computed as follows. Let
S(x) ∈ Rs denote the output of a generic SPN hidden layer with s nodes:
S(x) = 〈S1(x), . . . , Ss(x)〉. A sum layer receiving r input nodes would output
S(x) = log(Wx) where W ∈ Rs×r+ is the weight matrix defining the sparse con-
nections: W(ij) = wij if there is an edge between nodes i and j, and 0 otherwise.
For locally normalized SPNs, we want W · 1r = 1s. A product layer, instead,
would compute S(x) = exp(Px), with P ∈ {0, 1}s×r being a sparse connection
matrix: P(ij) = 1 if there is an edge between nodes i and j, 0 otherwise. In this
reparameterization exp and log functions act as non-linear functions σ and the
signals between layers switch from the domains of probabilities to log-probabilities
and vice versa. The absence of a bias term b is due to dealing with normalized
probabilities.

Grouping all nodes at a certain depth in a single layer leads to sequential DAGs
with very sparse weight matrices. On the other hand, grouping only sibling nodes in
a layer increases the number of layers in the DAG arrangement. In general, grouping
nodes into layers in the DAG is somehow arbitrary : one can always break them up
or merge them together to reduce or enhance sparsity on the matrices W and P. In
Figure 1 the same tree-shaped SPN is rearranged into a more sequential architecture.
The advantages such a reparameterization offers are: i) better understanding SPNs
as DNNs, highlighting the role of nonlinearities in SPNs; ii) allowing for efficient
GPU implementations; 2 iii) paving the way to structure learning as constrained
optimization—learning the sparse P and W indeed determines the DAG of S; and
iv) questioning what are the representations learned from an SPN and how to
extract them from it like for classic MLPs.

5 Extracting Representations from SPNs

A new feature representation for a set of samples—usually called embedding when
it is continuous and dense—is a transformation of such a set to a new geometric
space. The main aim of Representation Learning (RL) approaches is to extract
meaningful feature representations, such that they can better explain the latent
factors underlying the data or be effectively reused in other predictive tasks [3]. In

2 As done in our code, available at https://github.com/arranger1044/spyn-repr.

https://github.com/arranger1044/spyn-repr
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this section, we discuss how to employ SPNs for RL, following our interpretation of
SPNs as peculiar DNNs, and how classical depth-based feature extraction criteria
are unsatisfactory for SPNs. Furthermore, looking at SPNs under a RL lens can
help better understanding them as probabilistic models, as well.

For deep architectures, it is common practice to employ the top hidden layer
activations as the learned representations [3, 40]. The rationale behind this layer-
wise extraction criterion is that such representations are arranged in a hierarchy of
abstractions at different levels of granularity, correlated with the depth of a layer,
with the top layers providing the most complex and meaningful features [11, 41, 40].
We are looking for an analogous and reasonable criterion to filter node activations
in SPNs. Unfortunately, employing the MLP reparameterization introduced in
Section 4 does not guarantee that the layer-wise or depth-wise criteria would
produce representations at different levels of abstraction in SPNs. We actually
deem them inadequate, due to the peculiar constrained structure in SPNs.

As a first motivation, consider that the top layers in an SPN would comprise
significant fewer nodes w.r.t. lower layers. Second, the choice of any other layer
in the DAG would be somehow arbitrary. Even the depth of a layer seems an
unsatisfactory criterion, since nodes with very different scopes, hence encoding
parts of the input space at very different granularities, may still share the same
depth. To confirm these claims, we visualize the network topology of the SPN
models employed in our experiments (see Section 7) w.r.t. the scope information
associated to their nodes. Let S be an SPN over RVs X. We define the scope length
of a node n ∈ S as |sc(n)|. The scope length of S is |X|. We plot the scope lengths
in Figure 2. A long tail effect is visible: 80% or more of the nodes in each model
have a scope length of 1 to 3. Additionally, top layers indeed comprise very few
nodes—as expected on tree-shaped SPNs as learned by LearnSPN-like algorithms.
Furthermore, nodes at the same depth level can show a high variance of scope
lengths. These visualizations support the inadequacy of extracting representations
from SPNs by collecting activations by depth.

Therefore, we start investigate alternative criteria to extract embeddings from
an SPN. The simplest would be by collecting all inner nodes outputs—the longest
embedding for a given SPN (excluding the overabundant leaves). Nevertheless, even
this heuristic is somehow still unsatisfactory: i) it treats all neurons equally, despite
their different roles in the network, and ii) embeddings of such a size can easily
suffer from the curse of dimensionality when employed as features in predictive
tasks. Therefore, we propose several additional criteria to filter nodes from this
full embedding, to better understand the influence of the network topology over
the extracted representations and also to investigate an effective way to reduce the
size of an embedding.

We first devise filtering activations by node type (i), to assess the role of sum
versus product nodes as feature extractors. Then, we argue that a hierarchy of
representations at different levels of abstractions for SPNs can be captured by
how the scope information decomposes along the network structure. We therefore
correlate the complexity of a representation learned by a node to its scope length,
creating embeddings by filtering nodes having comparable scope lengths (ii). We
further investigate how the scope information correlates to the level of abstraction
of the representations by aggregating activations from nodes sharing the same
scope information (iii) by leveraging the recursive definition of SPNs. Figure 3
depicts all the different embeddings we propose to extract from one SPN.
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Fig. 2: Scope length distributions. Scope length distributions for SPN-III models on
REC (Figs. 2a), CON (Figs. 2b), BMN (Figs. 2c) (cf. Section 7 for model and dataset
details). as a histogram of their possible values (from 1 to |X|) against the number
of nodes having that scope length and belonging to a certain depth. A long tail
distribution for number of nodes w.r.t. scope lengths is visible (top). Very different
scope lengths are grouped at the same layer depth (bottom, a bar indicates there
is at least one node of the corresponding scope length at that depth).

Before proceeding with an empirical evaluation of how meaningful the proposed
embedding extraction criteria are, we try to gain a deeper understanding of what
the representations learned by SPNs are, by leveraging visualization techniques.

6 Visualizing SPN representations

To investigate the hypothesis of SPNs learning a hierarchy of part-based represen-
tations, we visualize the representations learned by single neurons in the network.
We do this by exploiting both the direct encoding to the input space that the scope
function provides, and the ability of SPNs to perform MPE inference efficiently
(even though approximately).

For DNNs, one generally assumes the feature learned by the i-th neuron in the
j-th layer to be approximated by the representation in the input space x∗ ∼ X
maximizing its activation hji [11, 40]. To obtain such a representation, one can
compute the bounded norm solution of the following non-convex problem:

x∗ = argmax
x,||x||=γ

hij(x;Θ), (1)

solvable through stochastic gradient descent after fixing the network parameters Θ,
even though it is only feasible for a limited number of layers and not guaranteed
to converge [11].

SPNs lend themselves to an analogous problem formulation whose solution
can be found without expensive iterative optimization. Since in an SPN S each
inner node n recursively defines a probabilistic distribution over its scope sc(n),
maximizing its activation reduces to find its MPE assignment over its scope—the
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Fig. 3: Extracting embeddings with SPNs. By feeding the SPN S in (a) a sample
xi, one evaluates it and collects its node activations (b). We devise several filtering
criteria to build embeddings: collecting all inner node activations (e); filtering by
node type, obtaining sum (f) and product only embeddings (g); filtering nodes by
Small (|sc(n)| = 2) (h), Medium (|sc(n)| = 4) (i) and Large (|sc(n)| = 6) (j) scope
lengths; by aggregating all nodes by similar scopes (k) as represented by the red
sum nodes introduced in (c) and evaluated in (d), or only inner nodes (l).

mode of the distribution Sn. Hence, one can reframe the problem in Equation 1 as:

x∗|sc(n) = argmax
x

Sn(x|sc(n);w). (2)

This suggests that even the scope alone conveys semantics about the learned
representations. Indeed, for image samples the visualization of the scope of each
node corresponds to a shape against a background. The meaningfulness of such
representations therefore correlates to the scope arrangement in the network.

To verify the validity of the scope length heuristics as a proxy for the abstraction
level of a representation, we inspect the representations of nodes in Figure 4. There,
visualizations for the representations learned have been selected by inspecting the
scope length distributions of the considered model (see Figure 2), devising ranges
for (S)mall, (M)edium and (L)arge scope lengths (see Section 7.3) for the largest
SPN models we learned in Section 7. From there, we randomly extracted 9 neurons
for each scope length range. 3

3 The randomness of the selection is visible in Figure 4 for the mid level representations for
CAL—two nodes not only share the same scope but the same most activating input image as
well. This might happen if a sum node and one of its maximising children are both chosen.
Clearly, this highly structured part-based hierarchy cannot be equally visualized on smaller
networks, e.g. SPN-I model on CAL (see Section 7).
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(a)

(b)

(c)

Fig. 4: Representations visualization. Visualization of representations of nodes
sharing a similar scope length of increasing size ranges: small, medium and large
(columns 1 to 3). For each scope range, representations are extracted from SPN-III
models, according to Eq. 2, on OCR (a), CAL (b) and BMN (c) from 9 randomly
selected nodes. For each node n, pixels corresponding to variables in sc(n) are
colored black (resp. white) when their MPE assignment is 1 (resp. 0); pixels
corresponding to variables not belonging to sc(n) are colored red, highlighting how
recognizable per se are the shapes induced by scopes. Column 4 shows the training
images nearest to those in column 3.

Even if spatial autocorrelation is not taken into account while learning the
structure of the SPN considered (see Section 7), node scopes naturally capture
recognizable part shapes. Clearly, this is not the case for higher-level features, i.e.,
features associated to scope lengths covering almost all the image.

The compositionality of the learned representations is evident through the
different levels of the hierarchy: the longer the scope the higher the level of
abstraction. The visualized features indeed resemble part-based filters at different
levels of complexity: from pixel blobs to shape contours, to full shapes comprising
background parts. We can therefore confirm the role of SPN nodes as probabilistic
part-based filters. Lastly, by comparing the higher-level features extracted to the
nearest training images one can inspect if they are their exact reconstructions. This
is not the case for the features in Figure 4, even though they appear to be very
specialized filters. We evaluate how this relates to the predictive performances of
these representations in Section 7.

7 Representation Learning with SPNs

Here we empirically evaluate SPNs as feature extractors in a classical RL framework.
We exploit embeddings extracted by different filtering criteria—leading to different
feature sets—to train a classifier to predict unseen target RVs. We use the accuracy
of such a classifier as a proxy measure to assess the usefulness and effectiveness
of these representations [3]. We point out how we are not interested in achieving
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Table 1: Datasets statistics: classes (c), dimensions (n) and samples number (m).

c n m c n m

REC 2 784 (28 × 28) 1000/200/50000 CAL 101 784 (28 × 28) 4100/2264/2307
CON 2 784 (28 × 28) 6666/1334/50000 BMN 10 784 (28 × 28) 50000/10000/10000
OCR 26 128 (16 × 8) 32152/10000/10000

state-of-the-art accuracy scores on the dataset employed. Instead, our aim is to
investigate how competitively the embeddings filtered by the proposed criteria rank
when compared against themselves and the ones extracted by commonly employed
generative models for RL like RBMs [37], DBNs [35], MADEs [15], and recently
introduced VAEs [19].

7.1 Experimental setting

We employ five standard image classification benchmarks for evaluating DNNs
on disentangling many factors of variations [23]: Rectangles (REC) [23], Convex
(CON) [23], OCR Letters (OCR) [22], Caltech-101 Silhouettes (CAL) [24] and a
binarized version of MNIST (BMN) [23]. We preprocessed them as in their original
works and report their statistics in Table 1. Image samples are shown in Figure 5.
Each dataset is a collection {xi ∼ X, yi ∼ Y }mi=1 comprising samples in the original
feature space X and labeled by RV Y . We learn all our reference models on the X
alone—in an unsupervised and generative way—discarding the class information Y .

As competitors, we employ RBMs as they have been extensively proven to be
solid feature extractors [21, 24]; their deep version, DBNs [35], to measure the
influence of latent RVs layered in a hierarchy as for SPNs; MADEs [15] as generative
models that are also autoencoders—thus innately suited for RL—which, similarly to
SPNs, exhibit a constrained and labeled structure, as imposed by the autoregressive
property; and lastly VAEs [19] as autoencoders trained to be generative models.
For a fair comparison, and to avoid numerical issues, we collect embeddings in the
log domain for all models dealing with probabilities. We also want to learn networks
with different model capacities in order to analyze how different structures, learned
by the same algorithm, affect the usefulness of differently sized embeddings.

We learn RBMs having 500, 1000 and 5000 hidden units—providing embeddings
of respective sizes—denoting them as RBM-5h, RBM-1k and RBM-5k. To generate
embeddings, we evaluate the conditional probabilities of the hidden units given each
sample. We train them using the Persistent Constrastive Divergence algorithm [24].
We select the learning hyperparameters by a grid search looking for the learning rate
in {0.1, 0.01}, the batch size in {20, 100} and the number of epochs in {10, 20, 30}
by comparing the best validation set pseudo-log-likelihoods.

For MADEs (resp. DBNs) we build architectures comprising 500 and 1000
hidden units up to 3 hidden layers, and we denote them as MADE-5h and MADE-
1k (resp. DBN-5h and DBN-1k). For both DBN and MADE models, we extract
embedding by concatenating all the activations of all the nodes from all the layers,
obtaining embeddings of sizes 3000 and 4500, respectively.

Similarly, for VAEs we stack up to three levels in the encoder comprising 500
or 1000 units each, denoting them as VAE-5h and VAE-1k, but investigate different
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compression factors {0.7, 0.8, 0.9} for the bottleneck layer. Again, we experimented
with extracting representations from the bottleneck layer alone or by concatenating
all the layers of the encoder, ultimately finding the latter to provide far more
accurate predictions.

For MADEs we employ the ADADELTA method to schedule learning rates
with decay rate 0.95; we set to 30 the max number of worsening iterations on
the validation and a batch size of 100. We initialize weights by SVD. Other
hyperparameters are selected by a grid search guided by the best validation set
log-likelihoods. We look for gradient dumping coefficients in {10−5, 10−7, 10−9}; we
either set no mask cycling, and we set their maximum number to 300, or we cycle
over 32 random masks; we investigate both ReLus and softplus as nonlinearities.

We select the DBNs hyperparameters by performing a grid search for the
learning rate in {0.1, 0.01}, the batch size in {20, 100} and the epoch numbers in
{10, 20, 30}. For VAEs we employed the ADAM method as an optimizer, running
it up to 1000 epochs with a patience of 50, performing a grid search for batch size
{20, 100, 256} and learning rate in {0.01, 0.001} and setting β1 = 0.9, β2 = 0.999
and no decay. We investigate both ReLus and softplus as nonlinearities.

Differently from RBMs, DBNs, MADEs and VAEs, we can directly learn the
structure of our SPN models from data (see Section 3). However, we do not have
a direct way to control embedding sizes except for regularizing the structure
learning phase. We employ LearnSPN-b [38], a variant of LearnSPN, as a structure
learner. With the aim of slowing down the greedy hierarchical co-clustering process,
LearnSPN-b always splits samples and RVs into two clusters, thus achieving deeper
and more compact structures [38]. For each dataset we learn three differently
regularized architectures by early stopping, varying paramater µ ∈ {500, 100, 50},
and denote them as SPN-I, SPN-II and SPN-III models respectively. For all models
we fix the pairwise statistical independence test threshold ρ always to 20 except
for OCR, for which it is 15. We then perform a grid search to select the best
leaf distribution smoothing factor α ∈ {0.1, 0.2, 0.5, 1.0, 2.0}. Table 2 reports the
learned SPN structural statistics.

At first, we peek at the effect of different model capacities over the representa-
tions learned by all models by employing them as generative models and visually
inspecting samples generated from them. For SPNs we employ the sampling scheme
we introduced in Section 3. We check if models have learned representations just
able to reconstruct the training set [22, 15], by comparing samples against the
nearest, in the sense of the Euclidean distance, training samples. Samples from
our least regularized SPN, SPN-III, are compared against those from DBN-1k and
MADE-1k models in Figure 5. The presence of noise is evident for all models and
datasets, with REC and CON being the hardest datasets. DBN-1k generated images
are generally more recognizable, however they are very close to their training coun-
terparts. This might suggest a form of overfitting for DBN models. The proximity
of the generated samples w.r.t. training images is even more prominent for VAE-1k
models, but expected in this case, as they are trained to explicitly reconstruct
their inputs. Additionally, we note how SPN-III struggles to capture some straight
lines on REC, differently from DBN-1k, hinting at SPNs not modeling some spatial
correlations in the data. The extent to which these conjectures will affect the
predictive power of the extracted embeddings is investigated in Sections 7.2, 7.3,
7.4 and 7.5.
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Table 2: Structural statistics for the SPN reference architectures on REC, CON,
OCR, CAL and BMN datasets, like number of nodes by type (sum, product, leaf),
of unique scopes and the number of nodes for certain scope lengths, since they
correspond to the sizes of the embeddings as filtered in Section 7.3.

µ depth edges sum prod leaves unique scope length
nodes nodes scopes S M L

REC
SPN-I 500 5 2240 5 10 2226 789 3 6 6
SPN-II 100 15 8145 163 327 7656 946 108 354 28
SPN-III 50 15 9424 265 531 8629 1045 231 537 28

CON
SPN-I 500 7 13019 13 33 12974 797 6 0 40
SPN-II 100 15 50396 308 627 49462 1083 573 90 272
SPN-III 50 17 81330 1872 3755 75704 2439 3849 1302 476

OCR
SPN-I 500 17 7848 64 163 7622 191 18 42 167
SPN-II 100 23 35502 1972 4005 29526 1537 3465 2033 479
SPN-III 50 23 48548 4069 8200 36280 2159 8844 2940 485

CAL
SPN-I 500 9 8102 10 22 8071 794 3 0 29
SPN-II 100 17 32267 206 415 31647 987 387 63 171
SPN-III 50 19 53121 1821 3645 47656 2340 3777 1434 255

BMN
SPN-I 500 19 47215 184 370 46662 967 99 33 422
SPN-II 100 25 168424 5493 10990 151942 4487 10049 5034 1400
SPN-III 50 27 198573 10472 6172 20948 6172 21992 8031 1397

SPN-III MADE-1k DBN-1k VAE-1k

R
E
C

C
O
N

O
C
R

C
A
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Fig. 5: Sampling. Seven samples from SPN-III (1st col), MADE-1k (2nd col), DBN-1k
(3rd col), and VAE-1k (4th col) models on the first row, and their nearest neighbor
images in the training set on the row below for REC, CON, OCR, CAL, and BMN.

7.2 Supervised representation learning with SPNs

Generally, we are interested in representing a sample xi ∼ X as an embedding ei

in a new d-dimensional space EX ⊆ Rd through a transformation fθ provided by
some model θ, i.e., fθ(x

i) = ei. For an SPN S, fS clearly is determined by the
structure and parameters of S. Specifically, let N = {nj}dj=1 ⊆ S be a set of nodes

in S, filtered by a certain criterion. We build ei by collecting the activations of
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Table 3: Test set accuracy scores for full embeddings extracted with different SPN,
RBM, DBN, MADE and VAE models, compared to the baseline LR model on all
datasets. Bold values denote significantly better scores than all the others for a
dataset.

SPN RBM DBN MADE VAE
data LR I II III 5h 1k 5k 5h 1k 5h 1k 5h 1k

REC 69.28 77.31 97.77 97.66 94.22 96.10 96.36 94.47 95.46 82.38 86.60 95.80 96.57
CON 53.48 67.48 78.31 84.69 67.55 75.37 79.15 81.12 81.61 71.96 76.90 79.45 78.89
OCR 75.58 82.60 89.95 89.94 86.07 87.96 88.76 87.48 88.21 84.40 84.18 86.38 86.89
CAL 62.67 59.17 65.19 66.62 67.36 68.88 67.71 69.53 69.60 61.94 64.76 64.62 64.67
BMN 90.62 95.15 97.66 97.59 96.09 96.80 97.47 97.06 97.51 94.10 95.18 96.98 97.10

nodes in N, i.e., eij = Snj (xi). Therefore an embedding is the collection of the
features expressed by a set of neurons, which could be potentially be visualized
individually as showed in Section 6, by leveraging the fact that they are indeed
probabilities.

In all experiments we train a linear classifier to predict Y from the embeddings
extracted by our SPN and competitor models. The rationale here is to inspect
if the new geometric space EX has disentangled the input space enough to let
a linear separator easily discriminate the classes in Y [3]. We employ a logistic
regressor with an L2 regularizer in a one-versus-rest setting. We determine the
L2 regularization coefficient C for each experiment in {0.0001, 0.001, 0.01, 0.1, 1.0}.
As the simplest baseline, denoted as LR, we apply such a classifier directly on the
original feature space X. To test the statistical significance of the differences for
the accuracies reported in Tables 3, 4, 5 and 6, we applied a paired signed rank
Wilcoxon test, using a p-value of 0.05 for each possible pair of competitors. A result
is rendered in bold if it is statistically better than all other non-bold results for a
certain experimental setting. 4

We are firstly interested in evaluating full embeddings comprising all nodes in
a network, as the initial, simplest and uninformative attempt at measuring the
predictive power of probability activations in SPN. Clearly, considering leaf node
activations would result in too large embedding sizes (see Table 2 and Section 4).
Therefore, as the first filtering criterion, we consider full embeddings comprising
only inner nodes in S, i.e., N = S⊕ ∪ S⊗. We devise a way to efficiently include the
contribution of leaf nodes in Section 7.4. More generally, larger embedding sizes,
even if it would definitely help a linear classifier better discriminate classes, could
also let it suffer from the curse of dimensionality.

Test accuracy scores for all datasets, for LR, SPN, RBM, DBN, MADE and VAE
models are reported in Table 3. Some datasets are inherently harder than others:
if the LR baseline scores 90.6% of accuracy on the 10 classes of BMN—indicating
the original feature representations to be disentangled enough—on the binary
CON dataset it scores only 53.5%. All embeddings perform better than the LR
baseline, proving their effectiveness in disentangling factors of variations, the only
exceptions being SPN-I and MADE-5h models on CAL. However, while the latter
embeddings comprise 500 values, the former only 32 (see Table 2), therefore acting

4 Two or more results for a single experimental setting are in bold if they were not deemed
to be statistically different, and all of them are significantly better than all the rest.
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as a remarkable compressor for the original 784-dimensional space. Generally, there
is a constant improvement by adopting less regularized SPN models, even if the
accuracy difference between SPN-II and SPN-III models can be negligible at times.

On all datasets, with the exception of CAL, accuracies of SPN embeddings
are better or competitive w.r.t. all other models. While additional hidden layers
in DBNs make them slightly better than RBMs, the same is not true for MADE
models, which underperform on almost all datasets. Remarkably, with the exception
of REC, VAEs also underperform w.r.t. RBMs and DBNs.

It is remarkable how effective SPN embeddings are, considering the simple and
greedy way in which both the network structures and parameters are unsupervisedly
learned. The best accuracy on REC, 97.77% held by SPN-II is very close to the
best score achieved by a fully supervised learner in [23]: 97.85% by an SVM.
On CON, SPN-III scores a significantly higher accuracy than the best supervised
model in [23]: 84.69% versus the 81.59% achieved by stacked autoencoders. This
proves the practical utility of SPNs trained as generative models when plugged
into predictive tasks: one obtains an expressive and tractable density estimator
and, at the same time and without retraining it, can effectively extract effectively
competitive features from it. It is worth asking if this performance gain is due
to better modeling the data distributions. The answer is negative, since MADE
log-likelihoods are higher that SPN ones. 5 We argue the effectiveness of SPN
embeddings lies in the hierarchical part-based representations they provide, which
are confirmed by the visual inspection of our models, as provided in Section 6. The
positive effect of dealing with part-based representations in predictive tasks has
been, indeed confirmed more than once in the literature, e.g. in [1, 12]. This, in turn,
relates to how SPNs are learned by LearnSPN-like algorithms: while performing
a form of hierarchical co-clustering over the data matrix, they implicitly discover
meaningful ways to discriminate among data at different levels of granularity.

7.3 Filtering embeddings by node type and scope length

It worth looking for the nodes in an SPN most responsible for the surprisingly high
accuracy scores obtained in Section 7.2. We do this as a means to reduce the size
of SPN embeddings—as simply collecting all node activations is an unsatisfactory
criterion easily suffering from the curse of dimensionality—and also to assess the
importance of the representations at different levels of abstraction, confirming the
scope length heuristics we propose. Note that selecting only a subset of nodes of
the network as feature extractors is not the same as having a network composed
only by those nodes—the contributions of the nodes filtered out are still present,
even if indirectly, in the output activations of the collected nodes.

We apply the following filtering criteria to the inner node embeddings extracted
previously. At first, we filter them by node type, to evaluate whether there is a
pattern in sum (N = S⊕) versus product node embeddings (N = S⊗). Orthogonally,
we filter nodes w.r.t. their scope length according to the heuristics about the
hierarchy of abstractions as presented in Section 4. Based on the visualization
on the scope length distributions provided there, we define (S)mall scope lengths,

5 The trained RBM and DBN models do not allow to compute comparable log-likelihoods
and comparing pseudo-log-likelihoods is not immediate.
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Table 4: Test set accuracy scores for the embeddings filtered by node type (columns
2-7) and for SPN-III embeddings filtered by Small , Medium and Large scope lengths
(columns 8-10). Bold values denote significantly better scores than all the others.
N indicates a better score than competitor embeddings with greater or equal size.
O indicates worse scores than competitor embeddings with smaller or equal size.
The last columns report the accuracies for the SPN-III embeddings filtered by the
scope length ranges S, M, L.

SPN-I SPN-II SPN-III SPN-III
dataset sum prod sum prod sum prod S M L

REC 72.46 62.25 98.03N 97.06N 98.00N 97.04N 88.73 98.45N 93.91
CON 62.36 64.03 77.13N 76.07N 83.59N 82.06N 70.51O 77.18 83.32N

OCR 74.19 81.58 89.73N 88.78N 90.02N 89.32 87.22O 89.29N 88.19N

CAL 38.19 56.95 62.64 64.80 66.58O 66.40O 63.37O 66.23O 66.10
BMN 93.50 94.75 97.67 96.90O 97.80 97.20O 96.02O 97.42O 97.38

comprising 2 to 3 RVs; scopes of (M)edium length containing up to 100 RVs for
all datasets, except for OCR where it is 50; and lastly, (L)arge length embeddings
including all remaining lengths. We filter in this way only to embeddings from
SPN-III models, as their scope length distributions have shown the highest variance.

Test accuracy results for the five filtering criteria are reported in Table 4. For
SPNs with fewer nodes, the product nodes seem to contribute the most to the
scored performance. On the other hand, when the model capacity is enough, e.g.,
with SPN-III models, sum nodes act as efficient compressors, greatly reducing the
embedding size (cf. Table 2) and preserving the accuracy achieved by the full
embeddings, or even improving it. This behavior is similar to what happens to max
pooling in convolutional neural architectures, even though here we have aggregations
by weighted averages as we are dealing with mixtures of valid probabilities. More
generally, a holistic effect can be observed, sum and product nodes perform better
together than when considered separately, even if slightly, and even when the size
of a full embedding could suffer from the curse of dimensionality.

As reported in Table 4, embeddings from the smallest scope lengths are always
the less accurate than both the full version and the ones filtered from longer scope
lengths. Even if they are the embeddings with the largest size (cf. Table 2), the
meaningfulness of the extracted features is minimal, as conjectured in Section 4.
However, also the contribution of the higher-level features is less prominent. This
confirms the intuition we had through the filter visualizations in Section 6: high
level features in our reference models may be too specialized. As a result, in general,
selecting only mid-level features proved itself to be a meaningful way to extract
compressed, but still accurate, embeddings.

Filtered SPN embeddings are smaller than the RBM, DBN, MADE and VAE
counterparts while their accuracies are comparable or better on three datasets out
of five. The filtering process also improves the scores reported in Section 7.2 against
fully-supervised models: e.g., the 97.80% accuracy on BMN achieved by the sum
nodes of SPN-III, or the 98.45% scored by M scope length embeddings on REC.
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7.4 Filtering embeddings by aggregating scopes

We now tackle embedding extraction by aggregating more node activations in a
single feature. Again, we strive for shorter embeddings and, at the same time, we
investigate if the leaves do play a negligible role as feature extractors. We propose
to build embeddings by averaging node outputs having the same scope, leveraging
the idea that all the nodes sharing the same scope are extracting different features
for a single, shared, latent factor. Thus computing for each possible scope j in S: 6

eij =
1

|{n|n ∈ S, sc(n) = j}|
∑

n∈{n|n∈S,sc(n)=j}

Sn(xi). (3)

The question concerning which nodes to consider for each aggregation can be
answered in different ways. Constructing embeddings according to Eq. 3 requires
collect the output of a fictitious complete sum node computing a uniform mixture
over all nodes sharing the same scope (cf. Figure 3 (c)). Hence, we decide to
aggregate only sum node outputs, since product nodes already contribute to their
sum node parent feature extractions. As an alternative, we propose to aggregate
always by scope both sum nodes and leaf nodes as well. In this way we can verify if
the additional information they provide can be of some use (cf. Figure 3 (l)). Such
a scope aggregation criterion is derived from the recursive definition of SPNs: as a
sub-network rooted at a certain node is a valid probabilistic model over the RVs in
that node scope, it is meaningful to look at the features extracted for each possible
scope—or resolution—in the network.

As one can see in Table 5, leaf addition helps models with lower capacity like
SPN-I, scoring the best accuracy for them on CAL. As the model capacity increases,
however, the contribution of leaves becomes marginal or even zero. Generally,
aggregated embeddings are comparably accurate w.r.t. the best corresponding sum
embeddings, while being smaller. This empirically confirms the utility of scope
aggregations as a heuristic to extract compact embeddings from an SPN.

As a general guideline, one would seek embeddings that are as compact and
as informative as possible. We summarize the general findings from our extensive
experimental suite. Sum node activations alone act as sufficient compressors for less
regularized models, and as such they shall be preferred over products. Mid-level
representations—embeddings belonging to nodes with medium scope lengths—are
enough to preserve a good accuracy while reducing the embedding size. Contrary
to classical deep models, only high-level representations are somehow slightly less
informative, even if they provide the best compression. Scope aggregations prove to
be a very effective size reduction heuristic, leveraging the recursive nature of SPNs
as feature extractors, while deriving good predictive performances. Ultimately, our
recommendation would be to first look at scope aggregations with SPNs, as they
provide the best trade-off concerning embedding size and informative power.

7.5 Semi-supervised representation learning

Up to now, we empirically demonstrated the meaningfulness and effectiveness of
SPNs representations when plugged into supervised tasks. In real world scenarios,

6 Sn(xi) values are in the exp domain and finally eij is projected in the log domain.
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Table 5: Test accuracies for the embeddings extracted by aggregating node outputs
with the same scope, when leaves are not counted (no-leaves) and when they are
considered (leaves). Bold values denote significantly better scores than all the others.
N indicates a better score than competitor embeddings with greater or equal size.
O indicates worse scores than competitor embeddings with smaller or equal size.

SPN-I SPN-II SPN-III
dataset no-leaves leaves no-leaves leaves no-leaves leaves

REC 72.47 75.92O 97.94N 97.99N 97.94N 98.02N

CON 62.35 66.49O 77.21N 78.05 83.52N 83.84N

OCR 74.32 81.85 89.71N 89.68N 89.90N 89.91N

CAL 38.10 63.19O 62.59 62.76O 66.49O 66.58O

BMN 93.51 94.83O 97.64N 97.62N 97.80 97.80

however, it is more likely that only a portion of the samples are labeled. Here we
investigate whether in such a semi-supervised learning scenario these representations
are still exploitable. Formally, we consider a set of samples {xi}mi=1 for which only
a reduced set of l < m labels {yj}j∈L, L ⊂ {i}mi=1, |L| = l is available. From our
perspective on density estimation, nothing really changes—we will still exploit the
same representation extracted on the RVs X—hence reusing the same embeddings
previously generated with our reference models.

We employ the label spreading algorithm [44] as the base classifier over all
representations from all our models. In a nutshell, yj from labeled samples are
spread to the unlabeled samples that are closer in the embedding space. In particular,
we adopt a k-nearest neighbor approach (k = 7) to classify samples. We set the
clamping factor to 0.2 and used up to 30 iterates to let the label propagation process
converge. The meaningfulness of the extracted representations in this scenario is
still measured by the scored accuracy, however, it will now be more correlated to
the ability of the new geometric space to facilitate label spreading by proximity.

To thoroughly evaluate the meaningfulness of all embedding spaces, we repeat
the classification experiment by varying the number of available labels. As a
common scheme over the datasets, we run a learning task allowing 1, 10, 60, 100
and 600 labeled training samples per class. In the end, we evaluate the following
learning regime: 2, 20, 120, 200, 600 labeled samples for REC and CON; 26, 260,
1560, 2600, 7800 samples for OCR; 101, 505, 1010 samples for CAL; and 10, 100,
600, 1000, 3000 labeled samples for BMN. We repeat each experiment ten times.

We employ embeddings from the RBM-5k, DBN-1k, MADE-1k and VAE-1k
models as competitors, as they achieved the highest accuracies in the supervised
setting. We use embeddings from SPN-III models comprising sum nodes, large scope
lengths or scope aggregations without leaves since they provide a good compromise
between size and accuracy, as seen in Section 7.4. Lastly, as a baseline we run label
spreading over the original feature space X, denoting it as LP.

As reported in Table 6, SPNs embeddings provide a significant improvement
over the baseline LP leveraging the original features, going from random guessing
(50.73%) to 65.63% by only using 2 labeled samples on the REC dataset. Compared
to all other embeddings, the SPN ones are very competitive, generally providing
significantly better accuracy scores when labels are very scarce. In particular,
they are competitive or statistically comparable to the second best ones—DBN-1k
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Table 6: Mean and standard deviation (over ten runs) of test accuracies for semi-
supervised learning experiments with label propagation on embeddings extracted
from the sum nodes of SPN-III (sum), from its nodes with large scopes (L) or
from scope aggregations (aggr) compared against the baseline LP and embeddings
extracted from RBM-5k, DBN-1k, MADE-1k and VAE-1k models on all datasets and
for a different number of available labels (l). Bold values denote significantly better
scores than all the others for a dataset and a certain number of labeled examples.

SPN-III RBM DBN MADE VAE
l LP sum L aggr 5k 1k 1k 1k

R
E
C

2 50.73±3.7 65.17±12.2 61.51±10.0 65.53±11.7 53.19±2.9 56.75±6.6 51.76±4.4 54.99±9.5

20 63.18±8.1 79.16±4.5 80.77±3.9 78.73±4.3 66.87±5.6 77.92±4.6 58.78±2.8 65.27±4.4

120 81.25±6.2 88.89±2.2 90.97±1.0 88.95±2.2 84.46±2.7 90.34±2.3 68.56±3.5 79.23±3.7

200 84.95±5.5 90.38±1.2 91.77±1.7 90.51±1.2 86.90±5.4 92.62±1.1 70.97±2.3 83.20±3.1

600 85.89±6.2 87.83±0.9 92.45±0.9 87.68±1.0 88.09±4.6 93.36±0.6 71.83±3.9 81.97±2.9

C
O
N

2 49.83±0.5 48.66±1.5 49.11±1.0 48.63±1.4 49.58±0.4 48.97±1.1 49.26±0.7 49.43±1.5

20 49.82±0.5 51.10±0.9 50.51±0.7 51.11±0.9 49.92±0.4 50.18±0.6 50.43±0.6 50.37±1.2

120 49.82±0.3 52.99±1.1 52.09±0.7 53.02±1.2 49.91±0.3 50.29±0.4 51.16±0.6 50.88±0.9

200 49.86±0.2 53.54±1.0 52.47±0.9 53.55±1.0 49.96±0.3 50.38±0.5 51.35±0.8 51.15±0.8

600 49.84±0.2 54.73±0.5 53.58±0.6 54.75±0.5 50.03±0.2 50.25±0.2 51.92±0.5 52.30±0.9

O
C
R

26 29.51±4.1 40.69±3.4 41.00±3.6 41.23±3.0 38.74±4.4 37.70±3.5 20.69±3.3 36.08±3.4

260 50.29±1.3 65.45±1.9 66.61±1.5 66.06±1.8 62.67±1.6 63.48±1.5 37.22±1.3 61.10±1.2

1560 62.75±0.9 76.29±0.4 76.97±0.3 76.27±0.4 73.61±0.3 74.67±0.3 52.37±0.9 72.32±0.3

2600 65.19±0.4 78.50±0.4 79.24±0.2 78.86±0.3 75.94±0.4 76.98±0.4 56.20±0.8 74.74±0.3

7800 69.10±0.4 81.93±0.3 82.48±0.3 82.15±0.4 79.54±0.1 80.14±0.3 62.65±0.2 78.95±0.4

C
A
L

101 33.94±4.6 37.21±9.5 39.71±3.6 37.50±3.6 28.84±3.7 36.06±3.4 37.67±4.0 36.79±5.0

505 50.19±0.6 51.43±1.0 52.09±0.8 51.40±1.0 44.48±1.1 51.69±0.7 52.39±0.7 53.47±1.4

1010 51.46±0.7 54.56±0.4 54.69±0.6 54.38±0.5 46.58±0.9 53.06±0.7 53.76±0.7 56.03±0.6

B
M
N

10 47.43±8.6 61.70±9.5 58.76±9.1 60.43±8.4 59.46±10.8 61.71±9.7 48.22±10.2 54.30±10.6

100 79.27±4.1 89.98±1.3 87.86±1.2 88.90±1.1 88.98±2.0 90.68±1.0 82.92±2.7 91.04±2.4

600 90.31±0.6 94.36±0.2 93.37±0.3 93.65±0.3 94.04±0.4 94.45±0.1 89.68±0.8 94.93±0.4

1000 91.15±0.5 94.72±0.2 93.96±0.3 94.14±0.3 94.32±0.3 94.81±0.2 90.44±0.6 95.29±0.3

3000 92.29±0.2 95.21±0.1 94.73±0.1 94.75±0.1 94.86±0.1 95.11±0.1 91.57±0.3 95.85±0.1

representations. Only on BMN, does VAE-1k achieve a higher accuracy when enough
labels are provided. Compared to the result in the supervised case, we can argue
that the manifold learned by VAEs on BMN is potentially smoother, even if less
separable class-wise. While this is somehow expected by VAEs, since they are
trained to optimize a loss tailored towards such latent representations, the fact
that the generatively learned SPNs generally achieve similar performance on BMN
and even perform slightly better with on very few labels is quite remarkable.

The CON dataset has proved to be hard for all methods, with no improvements
from random guessing, with the exception of SPN embeddings, which are the only
one yielding a slight accuracy improvement to 54.75%. Concerning the filtering or
aggregation criterion employed, all demonstrate the ability to create a meaningful
geometric space in which distances implicitly favor classification, even if class
information was unavailable when the density estimators were learned. How well
same-class samples are reachable by proximity is visible in Figure 6. For instance,
on REC the two red and blue classes are represented by two giant “well connected”
components in the case of SPN-III, while for DBN-1k they are more fragmented,
thus explaining why SPN embedded spaces require a fewer number of labeled
examples to perform classification more accurately.



Visualizing and understanding Sum-Product Networks 21

REC OCR BMN

o
ri
g
in
a
l

S
P
N

M
A
D
E

1
k

D
B
N

1
k

V
A
E

1
k

Fig. 6: t-SNE plots. The 2-d t-SNE plots of the SPN-III Large scope embeddings
against those from MADE-1k, DBN-1k, VAE-1k and the original data for REC (left),
CON (center) and BMN (right). Colors indicate samples from different classes.
Miniatures represent image samples.

7.6 Experimental wrap-up

In this Section, through our extensive set of experiments on (semi-)supervised
tasks we definitely confirmed the usefulness of SPNs as tools for RL—embeddings
extracted from SPNs have been proven to be competitive against those from RBMs,
DBNs, MADEs and VAEs. The main advantage these tractable probabilistic models
provide, w.r.t. all other competitors, is that, at the end of the day, one can still
exploit the same model to perform exact inference for a wide range of queries,
along employing it to extract informative feature representations.

Concerning the reason of the effectiveness of these representations when em-
ployed in predictive tasks, again, one has to look at how SPNs are learned: structure
learning as performing a form of hierarchical co-clustering (see Section 3). It is
definitely interesting evaluating how different structure learning algorithms could
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lead to different representations and how well these would perform in predictive
tasks.

8 Conclusions

In this work we investigated how the internal representations learned by SPNs can be
understood, extracted and exploited. We did that through visualization techniques
exploiting the peculiarity of inference and structure in SPNs. We interpreted them
as peculiar MLPs and extended their use to RL. For this purpose, we devised
several embedding extraction schemes, after noting how classical layer or depth-wise
criteria for SPNs are inadequate, evaluating their meaningfulness in a series of
(semi-)supervised classification task. Concerning Q1 and Q2, we confirmed the
meaningfulness of a scope length heuristics to correlate a node feature abstraction
level both visually and experimentally. We investigated the impact of the learned
structure on network inference and on the learned representations. Sum embeddings
have been demonstrated to provide the best size versus accuracy compromise, as
well as scope aggregations. Concerning Q3, the embedding extracted from SPNs
have been proven to be competitive against those from solid feature extractors such
as RBMs, DBNs, MADEs and VAEs. All in all, we provided a better understanding
of the inner workings of SPNs by uncovering what are their learned representations,
and how to effectively exploit them. As a result, we also provided alternative
ways—to the classical log-likelihood comparison—to assess the value of a learned
SPN by visualizing and exploiting its inner representations.
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