1608.08266v1 [cs.LG] 29 Aug 2016

arXiv

Visualizing and Understanding Sum-Product Networks

Antonio Vergari - Nicola Di Mauro -
Floriana Esposito

Abstract Sum-Product Networks (SPNs) are recently introduced deep tractable
probabilistic models by which several kinds of inference queries can be answered
exactly and in a tractable time. The rising interest around them is due to their
peculiar structural properties and their impressive performances in several applica-
tion fields. Up to now, they have been largely used as black box density estimators,
assessed only by comparing their likelihood scores on different probabilistic infer-
ence tasks. In this paper we explore and exploit the inner representations learned
by SPNs, i.e. new representations for the input data that can be extracted from
these deep architectures. We do this with a threefold aim: first we want to get
a better understanding of the inner workings of SPNs, for instance, by looking
at how inference and their learned representations are affected by the network
structural properties; secondly, we seek additional ways to evaluate one SPN model
and compare it against other probabilistic models, providing diagnostic tools to
practitioners; lastly, we want to empirically evaluate how good and meaningful the
extracted representations are, as in a classic Representation Learning framework.
In order to do so we revise their interpretation as deep neural networks and we
propose to exploit several visualization techniques on their node activations and
network outputs under different types of inference queries. To investigate these
models as feature extractors, we plug some SPNs, learned in a greedy unsupervised
fashion on image datasets, in supervised classification learning tasks. We extract
several embedding types from node activations by filtering nodes by their type,
by their associated feature abstraction level and by their scope. In a thorough
empirical comparison we prove them to be competitive against those generated
from popular feature extractors as Restricted Boltzmann Machines. Finally, we
investigate embeddings generated from random probabilistic marginal queries as
means to compare other tractable probabilistic models on a common ground,
extending our experiments to Mixtures of Trees.

Antonio Vergari - Nicola Di Mauro - Floriana Esposito
Department of Computer Science

University of Bari

Bari, Italy

E-mail: firstname.lastname@uniba.it

2 Antonio Vergari et al.

1 Introduction

Density estimation is the unsupervised task of learning an estimator for a joint
probability distribution over a set of random variables (RVs) that are assumed to
have generated a given set of observed samples. Once such an estimator is learned,
one can use it to do inference, that is computing the probability of queries about
certain states of all or a portion of the RVs considered. Many machine learning
problems can be reframed as different kinds of inference tasks on a given probability
distribution estimator; for instance, the classification of a target RV can be solved
by Most Probable Explanation (MPE) inference [I8]. If one were able to learn
an estimator as a very good approximation of the underlying joint probability
distribution, performing inference on such a model would lead to good approximate
solutions in all tasks solvable by doing inference. From this perspective, learning
a density estimator from data could be thought as one of the most general task
in machine learning. Therefore, accurately estimating complex distributions from
data and efficiently querying them are the required qualities for a good density
estimator.

Sum-Product Networks (SPNs) [36] are recent tractable density estimators
compiling a joint probability distribution into a deep architecture. For classical
density estimators such as Probabilistic Graphical Models (PGMs) [I§], e.g. Markov
Networks (MNs) and Bayesian Networks (BNs), ezact inference is exponential in
the model treewidth and even approximate inference routines can result infeasi-
ble in practice [41]. On the other hand, exact complete evidence, marginal and
conditional queries on an SPN are computable in linear time in the size of the
network [36]. This is achievable if some easy-to-satisfy structural constraints like
decomposability and completeness are guaranteed [36}, [34]. The presence of such con-
straints, concerning the scopes of the network inner nodes, i.e. the RVs comparing
in the distributions modeled by those nodes, differentiate SPNs from other kinds
of probabilistic deep neural networks. SPNs have been successfully employed as
density estimators in several applications ranging from computer vision [I5} [30], to
speech recognition [33] 9], natural language processing [7] activity recognition [3] 2]
and fault localization [28]. The task of learning an SPN has been tackled both in
the weight [36] B8] 53] and structure learning scenarios [16}, [40} [13] [37], that is when
a network structure is already available or has to be learned from data together
with the model parameters. In both cases they have always been evaluated and
directly compared to other probabilistic models on their likelihood scores only,
even when they have been trained directly as discriminative models [15] [I]. All in
all, SPNs have been learned and exploited as black box density estimators.

In this paper we investigate how to extract and exploit the inner representations
learned by SPNs, i.e. the new data representations (features) that are automatically
learned by an SPN as they are trained as density estimators in an unsupervised
fashion. Jointly learning useful and exploitable representations for the input data
while training a model for a certain task is the focus of Representation Learning
(RL) [4, 5]. RL has been vastly approached in the literature for deep architectures
in unsupervised, semisupervised and supervised settings [5]. Recent works heavily
exploited visualization techniques on specific architectures like convolutional [52]
or recurrent [I7] models to investigate these model inner representations. However,
SPNs differ from classical deep architectures in a number of ways and their peculiar
network structure poses some challenges in determining which features to extract.

Visualizing and Understanding Sum-Product Networks 3

To the best of our knowledge, SPNs have never been employed as feature extractors,
nor much attention has been given on leveraging their learned representations.
Our objective is threefold. In the first place we aim at getting a better
understanding of the inner workings of SPNs by looking at their structural
properties and at the features that can be extracted from these models (O1).
Secondly, we want to empirically evaluate the usefulness and meaningfulness
of such representations by plugging them in different supervised tasks (02).
Lastly, we want to devise alternative ways to assess a learned SPN value
and to compare it to different probabilistic models, giving practitioners tools
and procedures to evaluate and diagnose learned SPNs (03). More concretely,
throughout the paper we will try to answer the following research questions:

Q1 how are SPNs different from other neural architectures from a RL perspective?
(01)

Q2 how can representations at different levels of abstractions be extracted from
an SPN? (O1, 03)

Q3 how does the network structure and structure learning impact the extracted
representations? (01, 02 0O3)

Q4 are the features extracted from SPNs competitive against those extracted from
other popular feature extractors? (02)

Q5 how do SPN representations filtered by node type, scope and scope length
perform? (0O2)

Q6 how can the learned representations be evaluated against other tractable
probabilistic models? (02, O3)

We first review SPNs and revise their interpretation as feedforward neural
networks (Q1), arguing for a scope-wise criterion to extract features with different
complexities (Q2). To properly evaluate experimentally our claims we learn the
structure of different SPNs as density estimators at three different model capacities
on five benchmark image datasets (15 models total). To assess a network quality
and investigate its structural properties we propose to exploit several visualization
techniques on our reference models (Q2, Q3). In particular: evaluating them as
generative models, we visualize their generated samples and we look into the
features learned by each inner node. We note how this can be done by the means
of MPE inference thanks to the direct encoding provided by node scopes. To get
a deeper understanding of the node activations and roles, we visualize them as
aggregates in the input space under complete evidence and marginal inference.

After that, we employ our reference models to extract features to be employed
in a supervised classification task. The underlying assumption is to determine
the value of an embedding, i.e. the representation of an input instance as a real
valued vector, by the means of a proxy measure, i.e. the accuracy in predicting the
values of a previously unseen target RV. In an extensive comparison we empirically
demonstrate SPN embeddings to be quite competitive against those extracted from
Restricted Boltzmann Machines (RBMs) [44]. RBMs are one of the most popular
neural architectures for RL. They are highly expressive, yet intractable, density
estimators, whose hidden unit outputs are used as feature extractors in several
domains [19, 25] (Q4). Moreover, we propose to filter the embeddings extracted
from SPNs by different criteria such as the associated node type, its scope and its
scope length (i.e., the number of RVs in it). Not only we are looking at more compact
representations, but also we are investigating each feature meaningfulness under

4 Antonio Vergari et al.

a RL lens (Q1, Q4, Q5). Lastly, we study the relevance of the representations
encoded in our reference networks, learned by a structure learning algorithm,
against the ones generated by evaluating several random marginal queries. We note
how this approach can be applied to other tractable probabilistic models and we
extend this evaluation to the Mixtures of Trees (MT) [27], proving the efficacy of
SPNs as feature extractors in this setting as well (Q3, Q6).

The paper is organized as follows: in Section [2] we introduce and discuss SPN
both as tractable density estimators and deep architectures; we describe our
experimental setting and present our reference models in Section |§| and then we
employ them to visualize the learned representations and to assess their structural
properties in Section [5] Section [f] is about employing SPNs for RL. It contains the
experimental evaluations of several kinds of embedding sets extracted from the
reference models under different filtering criteria, and compared against RBM and
MT models. A brief discussion on related approaches and state-of-the-art algorithms
for SPNs is presented in Section [7] A wrap-up of all the derived conclusions is
provided in the last Section .

1.1 Notation

In this paper, we are using the following notation. RVs are denoted as capital letters,
e.g. X,Y, while (ordered) sets of RVs by bold capital letters, e.g. X = {X1,..., Xn},
and their cardinality is expressed as |X| = n. Complete evidence, also called a
sample, configuration or instance, for X, is denoted as x, or more explicitly x ~ X;
a single value from it is represented as x; with the optional j index referring to
the j-th RV, X;. We define a set of observed samples (dataset) as the collection
{x*}™ | using superscripts to denote each sample. Consider a subset of the RVs
Q C X, we refer to sample q ~ Q as the restriction of a sample on X, denoted as
X|q, to focus only on the values filtered by Q. A probability distribution over X
is denoted as px or simply p when this notation is not ambiguous. p(Q) denotes
computing the marginals over a set of RVs Q C X while p(x) denotes the evaluation
of p corresponding to the single sample x.

2 Sum-Product Networks

An SPN is a rooted weighted Directed Acyclic Graph (DAG) representing a
computational graph encoding a distribution function over a set of RVs X in
which the computational units output only weighted sums and products. Each
sub-network rooted in a node of the graph is still an SPN encoding a restriction of
the original distribution, defined over a subset of its RVs. An SPN can be more
formally defined as follows.

Definition 1 (Sum-Product Network) A Sum-Product Network (SPN) S over
RVs X is a rooted weighted DAG (network) consisting of distribution leaves (network
inputs), sum and product nodes (inner nodes). Let ch(n) be the set of all the child
(input) nodes of a node n and pa(n) the set of all its parent (output) nodes. A
leaf n defines a tractable, possibly unnormalized, distribution ¢, over some RVs

Visualizing and Understanding Sum-Product Networks 5

in X. A nonnegative weight wy. is associated to each edge linking a sum node n
to ¢ € ch(n). We indicate with w the set of all weights in the network S (network
parameters). S, denotes the sub-network rooted at node n and parametrized by
wp, comprising all descendant nodes of n, recursively defined as the children of n
and their descendants.

‘We now present the concept of scope of a node as the labeling function induced
by the network structure that associates each node with a subset of the RVs
comparing in the distribution encoded in the network.

Definition 2 (Scope) Let S be an SPN over RVs X. The scope of a node n in S is
denoted as sc(n) C X. The scope of a leaf node n is defined as the set of RVs over
which ¢y, is defined. The scope of an inner node n is defined as sc(n) = Ucech(n) sc(c).
The scope of S is the scope of its root, i.e. X.

The DAG structure in an SPN determines the evaluation order of the computational
nodes in the network. Given a configuration for the inputs of the network, after
all inner nodes have been evaluated, the root node outputs the evaluation of the
encoded distribution at the given input configuration.

Definition 3 (SPN evaluation) Let S be an SPN over RVs X with parameters
w and S, be the sub-network rooted at node n. For each x ~ X, Sn(X|sc(n)) and
Sn(x) are the same notation to indicate the output value of node n after X = x is
observed as the network input. Then, Sy (x) can be computed as follows:

dn(sc(n) = Xjse(n)), if n is a leaf node
Sn(x) = § Dcech(n) WneSe(x) if n is a sum node (1)
Hcech(n) Se(x) if n is a product node.

The value of the whole network, i.e. S(x), corresponds to the value of its root.

If a network S is wvalid, evaluating it corresponds to evaluate a joint unnormal-
ized probability distribution px. That is, Vx, S(x)/Z = p(X = x), where Z is the
normalizing partition function defined as Z = >~ ¢ S(x). This actually is possible
since a complete and decomposable SPN correctly compiles the extended network
polynomial encoding the distribution px [34]. To satisfy validity, it is sufficient for
a network to be complete and decomposable [11], [36].

Definition 4 (Completeness, decomposability and validity) Let S be an SPN
and let Sg (resp. Sg) be the set of all sum (resp. product) nodes in S.

1. S is complete iff Vn € Sg,Vei,ca € ch(n) : sc(c1) = sc(c2).
2. S is decomposable iff ¥n € Sg,Ve1,c2 € ch(n),c1 # ¢z : sc(e1) Nsc(ez) = 0.
3. If S is complete and decomposable, then it is valid.

If it holds that Vn € Sg, Zcéch(n) wne = 1 and all leaves compute normal-
ized distributions, then S will compute the exact, normalized distribution p, i.e.
Vx, S(x) = p(X = x). Such a network is called a locally normalized SPN. An unnor-
malized SPN can always be turned in a locally normalized SPN encoding the same
distribution, in time linear to its size [34]. For the rest of the paper, when we will
refer to SPNs we will assume them to be complete and decomposable, hence valid,
and locally normalized, if not stated otherwise. Without loss of generality, we will
also assume each network to have alternate inner node types, i.e. each product
(resp. sum) node to be the network root or the child of a sum (resp. product) node.

6 Antonio Vergari et al.

2.1 Inference

Complete evidence inference consists of a single bottom-up (feedforward) evaluation
of the network and proceeds according to Eq. [I} Therefore, it is guaranteed to be
tractable as long as the network size is polynomial in |X].

Exact marginal inference can be computed with the same time complexity if the
validity property holds [36]: the network can be evaluated in a similar fashion as
for the complete evidence case. To compute a marginal query like p(Q = q),Q C X,
one has to evaluate each leaf n as:

Sn(q) — {p(sc(n) = q\sc(n)) if sc(n).g Q (2)

1 otherwise

and then propagate the outputs as before. This mechanism highlights the recursive
probabilistic interpretation of SPNs, in that each sub-network modeling a probabil-
ity distribution over its own scope, shall output 1 as the probability of marginalizing
over all the RVs that scope. As a consequence, even conditional probability queries
are also computable in tractable time, since p(Q|E) = p(Q, E)/p(E), for Q,E C X.
In addition to that, setting all leaf outputs to 1 equals to compute the partition
function Z (whose value, for an unnormalized SPN, will differ from 1).

An approximation of MPE inference and the computation of an MPE assignment
can be answered in linear time as well [29] [32]. Even if this does not correspond to
the exact MPE solution as reported in [36], the algorithm proposed to compute it
has been empirically proven to be a reasonable approximation [29]. We will now
review the original algorithm proposed in [36] to find the MPE assignment for a
set of RVs, as it will be the one employed for the filter visualizations in Section
Given an SPN S over X, to find an MPE assignment:

q" = argmaxp(E, q) (3)
q~Q

for some RVs EEQ C X, ENQ =0, EUuQ = X, S is transformed into a Max-
Product Network (MPN) M. M is built by substituting each n € Sg, for a max
node computing maxX,ecch(n) WneMn instead. Then M is evaluated bottom-up after
setting all leaves n, sc(n) C Q, to output 1. A Viterbi-like top-down traversal
traces back the MPE assignment for each RV in Q. By starting from the root
and following only the max output child branch of a max node and all the child
branches of a product node [35], each instance determines a tree path whose leaves
MPE assignments union forms the query answer [11].

2.2 Learning

A brief review of weight and structure learning algorithms is provided in Section [7]
Here we focus on structure learning only and introduce a structure learning approach
that is shared among many state-of-the-art algorithms. It also constitutes the base
of the one that we employed to learn the reference models we will use later on. We
are greatly interested in learning the structure of SPNs because, from a RL point
of view, defining the nodes and their topology bears a greater representational bias
towards the features that can be extracted than learning the weights only on a

Visualizing and Understanding Sum-Product Networks 7

fixed structure. Consequently, an empirical analysis of the extracted representations
could potentially shed a light on the meaningfulness of structure learned by a
particular algorithm. It could also offer a novel way to compare different structure
learners. We will investigate this aspect in more detail in Section where we will
generate representations from random query evaluations of an SPN, comparing
them with the representations built from recording all the structure nodes outputs.

Validity is not only the key for exact and tractable inference, but also an enabler
for constraint based structure learning algorithms. The common factor of many of
them is to apply a form of hierarchical co-clustering [16], 40, [13], [T, 47] exploiting
the scope constraints of completeness and decomposability. To introduce a product
node over children with disjoint scopes, RVs are split by some independence test,
while sum nodes are created when samples over the same RVs are clustered by
some similarity criterion.

The first learner to adopt such a schema is one of the most simple, yet effective,
approaches still employed, LearnSPN [I6]. LearnSPN learns treed SPNs, i.e. networks
in which for each node n has only one parent node, i.e. |pa(n)| = 1. By recursively
partitioning the observed data matrix (samples x RVs), it grows the network
top-down in a very greedy fashion. RVs are checked for independency by means of
a G-test and a product node is inserted in the network if the test is passed with
threshold p. A variant of EM is employed to cluster rows together with A\ as the
penalty parameter governing the cluster number. A sum node n is inserted over
k child nodes if the clustering produced k different clusters. The weights wnc are
directly estimated as the proportions of samples falling into each cluster c. In this
way, no weight learning step is needed after the network is fully grown. The learning
process stops when the number of samples in a partition falls under a threshold
m. Then leaves are introduced as univariate distributions whose parameters are
smoothed with a coefficient «. As they are considered to be independent one from
another, a product node is put on top of them.

3 Sum-Product Networks Interpretations

LearnSPN never computes the likelihood of the model it is building directly, instead
it keeps on adding sum and product nodes exploiting their probabilistic semantics.
The natural probabilistic interpretation for sum nodes in a valid network is that of
probabilistic mixtures over their children distributions whose coefficients are the
children weights. Following from this, a categorical latent RV Hy, having values in
{1,...,|ch(n)|}, can be associated to each sum node n. The network weights w,,; can
also be interpreted as the probabilities p(Hy = k|r(n)), i.e. the chance of choosing
the k-th child branch from node n, having already taken the path w(n) from the root
up to n. Analogously, since product nodes are evaluated as product of probability
values, they identify factorizations over independent distributions [35], [34].
Similarly to Arithmetic Circuits (ACs) [I1], to which they are equivalent for
finite domains [40], SPNs are data structures efficiently representing the output
of a knowledge compilation process. In such a process, the operations required to
evaluate a probability distribution p are rearranged into the computational graph
constituting the network structure. However, even if the class of distributions both
SPNs and ACs encode is the same for discrete RVs with finite states, it’s the latent
RVs semantics in SPNs that allows for direct structure learning schemes, like the

8 Antonio Vergari et al.

one employed in LearnSPN. In such a structure learning algorithm, the compilation
process is implicit.

Strictly speaking, SPNs, like ACs, are not PGMs, even if they are often called
this way in the literature. In a classic PGM, edges represent a joint distribution
decomposition into conditional independence relationships and nodes stand for RVs.
On the other hand, in an SPN, edges deterministically determine the evaluation
order of the network nodes, which, in turn, represent computational units performing
computations. They are still probabilistic density estimators in that they can answer
probabilistic inference queries over the joint distribution they encode by accepting
different input configurations. They are generative models as well, since one can
sample from the encoded distribution, a task not immediate for ACs if one ignored
the SPN constructive equivalence proposed in [40].

3.1 SPNs as MLPs

SPNs can also be interpreted as a particular kind of feedforward deep Neural
Networks (NNs) with nonnegative parameters w, where the leaf distributions
are input neurons whereas sum and product nodes are the hidden neurons, as
noted in [30]. We argue that the peculiarity of SPNs as deep architectures lies in
them being labelled, constrained and fully probabilistic NNs. They are labelled
networks since the presence of the scope function associating RV sets to all nodes
in the network. This peculiar feature is the key that enables a direct encoding of
a neuron to a portion of the input space [5]. Based on this observation we will
be able to visualize the neuron computations and their filter representation in
the input space easily in Section [f] SPNs are constrained architectures in that
the scope labels in a valid architecture are subjected to the completeness and
decomposability constraints. From this it follows that a dense, i.e. fully connected
feedforward architecture is hardly suitable for SPNs. Instead, scope constraint call
for sparsity in their connections. Moreover, the decomposition of the scopes hints
to each hidden neuron to be a probabilistic part-based feature extractor. We
will investigate this hypothesis in Section [5.3| when we will try to visualize the
representation associated to each inner node. Lastly, they are fully-probabilistic,
because each neuron in an valid SPN still models a correct distribution over its
scope. This differs from other neural density estimators like NADEs [22] and other
autoregressive architectures, in which only the output neurons correctly compute
probability values. This recursive structural property will help us formulate an
experiment assessing the meaningfulness of the network topology as learned by
a structure learner in Section Even if explicitly stating these properties help
in correctly classify SPNs as deep NNs, it provides little help in building them as
NNs or in determining how to extract useful representations from them. We will
now show how to reframe explicitly an SPN as a feedforward NN, showing how
their structural peculiarities will impose novel representation extraction schemes
and pose new questions.

In [35] SPNs are suggested to be a form of probabilistic Convolutional Neural
Networks (CNNs) [23]. In such a CNN, product nodes would stand for the network
filters with the role of average-pooling assigned to sum nodes and max-pooling to
the max nodes in the corresponding MPN. However, this statement is somehow
misleading, because, while the connections among the hidden neurons are indeed

Visualizing and Understanding Sum-Product Networks 9

U1

\

AL

..
a

7
N
i

I VAR

XYZWK

Fig. 1: An example of an SPN on the left on RVs X,Y, Z, W whose leaves are
represented as labelled circles and whose inner nodes have their scope associated.
On the right two possible layered representations.

sparse, they do not necessarily share a locality principle. Even tied weights cannot
be immediately plugged into SPNs, differently from ACs. In addition to this, if
SPNs were a probabilistic reparametrization of a CNN architecture, they would
show some form of translation invariance. As we will show empirically in Section 5]
this is not the case.

Instead, we propose a more immediate interpretation of SPNs as sparse proba-
bilistic Multi Layer Perceptrons (MLPs) whose layers are rearranged in a DAG. A
classic MLLP consists of an input layer, a sequence of hidden layers and an output
layer, each comprised by a certain number of neurons [6]. The output layer is
usually determined with respect to the learning task, e.g. a linear classifier or a
linear regressor are common choices [6, B]. A usual MLP hidden layer of s neurons
takes the form of a function of the input x € R": h(x) = ¢(Wx + b) where o
is a nonlinear activation function (e.g. sigmoid, reLU), and W € R**" is linear
transformation with bias term b.

To reframe an SPN as an MLP one first has to rearrange the nodes into layers
containing nodes of the same type, and whose adjacent input and output layers
are made up of nodes of different types. The input layer of the SPN would be the
input layer of the MLP. For each other layer, based on its type, its output can be
computed as follows. Let S(x) € R® denote the output function of a generic layer,
ie. S(x) = (S1(x),...,8s(x)). If such a layer is a sum layer whose input layers
comprise r nodes, its output can be computed as S(x) = log(Wx) where W € RY*"

10 Antonio Vergari et al.

is the parameter matrix defining the sparse connections:

(4)

wg; if there is an edge between nodes i and j
Wi =

0 otherwise

and x € [0,1]" representing the input probability values coming from the input
nodes.

Similarly, if the layer were a product layer we would have that it would compute
S(x) = exp(Px), with P € {0,1}°*" being a sparse connection matrix defined as:

(5)

P — 1 if there is an edge between nodes i and j
(@) 0 otherwise

and x € R" representing the input probabilities in the log domain.

In this formulation the exponential and log functions act as nonlinearities and
the input and output signals switch from the log to the exponential domain from
one layer type to the other. One can assume the input layer output to be in the
log (resp. exponential) domain if its adjacent layers are product (resp. sum) layers.
Without loss of generality one can assume the last layer, comprising only the root
node, to output always log probabilities.

The absence of a bias term b in the linear transformation is coherent with the
common interpretation of probabilities: a mixture with all zero components sums
to zero and a product of all 1 probabilities shall be 1.

With treed SPNs this representation leads to sequential architectures with
very sparse weight matrices, in which each hidden layer receives connections from
another hidden layer only and possibly from the input layer. More generally, the
layers lend themselves to be arranged in a DAG structure based on their multiple
input and output connections. Determining the number of layers in the DAG is
somehow arbitrary, since choosing which node to assign a layer is only partially
constrained by the node depth. Indeed, one can always break them up or merge
them together to reduce or enhance the weight matrices W and P sparsity. In
Figure [1| the same treed SPN is rearranged into a more sequential architecture first
and as a less sparse DAG last for instance.

Such a representation offers a series of advantages. The first one is the ability
to leverage efficient matrix computation and GPU computation libraries while
computing S(x). Another one is the possibility to design structure learning algo-
rithms as constrained optimization problems looking for P and W as those matrices
encode the presence of an edge between two nodes for each nonzero entry.

Despite these algorithmic advantages, this kind of layered representation does
not provide clues about which neurons to use as feature extractors in a representa-
tion learning framework. It neither clearly induces a hierarchy of representations at
different levels of abstraction. For deep architecture it is common practice to reuse
the top hidden layer (penultimate layer) outputs as the learned representations in
other tasks on the same domain, while the ones coming from the lower layers can
be employed in transfer learning schemes [5l, 49]. The rationale behind this is that
the learned representations are arranged in a hierarchy of different abstractions
induced by the stacked layers, with the top layers extracting the most complex
features. Visualizations of the learned representations as image filters have proven
this conjecture empirically in several works [14] [52].

Visualizing and Understanding Sum-Product Networks 11

For the inadequacy of extracting representations layer-wise from an SPN we
present several motivations. First of all, in a layered SPN, the top layer comprises
a single node, the root, and the choice of any other single layer in the DAG of
layers structure would be somehow arbitrary. Even the depth of a layer, defined
as the length of the shortest path from the root to a node in the layer, seems an
unsatisfactory criterion, since in the same layers there can be nodes computing
distributions over very different scopes. Moreover, following the structural measures
like the number of parameters as reported in [47] we believe that in SPNs built
by LearnSPN-like algorithms the largest number of nodes is concentrated near the
lower layers. We will investigate all these conjectures empirically on by inspecting
our reference model structure topologies in Section [B}

Moved by these considerations, we start investigating how to extract repre-
sentations from an SPN by collecting all nodes outputs. We then propose several
filters on the nodes as alternative means to retrieve non layer-wise representations.
We filter them by node type, and we aggregate them by scope. In addition to that,
we suggest that a hierarchy of representations at different levels of abstractions for
SPNs can be captured by exploiting the neurons as part-based feature extractors.
Therefore, we correlate the complexity of a representation extracted by a node to
the number of RVs in its scope, which we define as scope length.

Definition 5 (Scope length of a node) Let S be an SPN over RVs X. The scope
length of a node n in S is defined as |sc(n)|. The scope length of S is |X].

As a practical argument, we note that if a scope determines a direct encoding to
the input space, scopes of similar lengths would be associated to portions of the
input space with similar sizes. At the same time, this scope length criterion also
suggests the layer-wise representations to be not meaningful for SPNs: the nodes
in same a layer could have different scope lengths, possibly representing both high
and low level features.

In this Section we have started to tackle questions Q1 and Q2. We reframed
an SPN as a deep feedforward architecture made up by classic MLPs with a simple
parametrization. However, since this architecture can be arranged in a DAG of
layers quite arbitrary, the usual correlation between the depth of a layer and the
abstraction level of the feature it extracts seems less motivated. We suggest to
employ the scope information, e.g. the set of RVs associated to a node and its
cardinality, as a criterion to derive features at different grains of abstractions.
We will confirm these conjectures empirically in Section [5.3] by visualizing and
comparing the representations at different scope lengths.

4 Experimental setup

In this section we define the experimental settings under which we learned the SPN
models that we will employ as references for the visualizations and the feature
extraction we will present in the following sections. In this phase, we learn both
their structure and parameters in an unsupervised way, i.e. discarding the class
information provided by each dataset.

12 Antonio Vergari et al.

Table 1: Structural statistics for the SPN reference architectures on REC, CON,
OCR, CAL and BMN datasets.

m depth edges sum prod leaves unique scope length

nodes nodes scopes S M L

SPN-I 500 5 2240 5 10 2226 789 3 6 6

REC SPN-1I 100 15 8145 163 327 7656 946 108 354 28
SPN-IITI 50 15 9424 265 531 8629 1045 231 537 28
SPN-I 500 7 13019 13 33 12974 797 6 0 40

CON SPN-IlI 100 15 50396 308 627 49462 1083 573 90 272
SPN-III 50 17 81330 1872 3755 75704 2439 3849 1302 476
SPN-I 500 17 7848 64 163 7622 191 18 42 167
OCR SPN-II 100 23 35502 1972 4005 29526 1537 3465 2033 479
SPN-IIT 50 23 48548 4069 8200 36280 2159 8844 2940 485
SPN-I 500 9 8102 10 22 8071 794 3 0 29

CAL SPN-II 100 17 32267 206 415 31647 987 387 63 171
SPN-III 50 19 53121 1821 3645 47656 2340 3777 1434 255

SPN-1 500 19 47215 184 370 46662 967 99 33 422
BMN SPN-1I 100 25 168424 5493 10990 151942 4487 10049 5034 1400
SPN-III 50 27 198573 10472 6172 20948 6172 21992 8031 1397

4.1 Datasets

We conduct our experiments on five standard benchmark image datasets: Rectangles
(REC), Convex (CON), OCR Letters (OCR), Caltech-101 Silhouettes (CAL) and a
binarized version of MNIST (BMN). REC has been created in [2I] as a dataset of
28 x 28 binary pixel images representing wide and tall rectangle shapes; we reserved
a portion of the training samples for validation, ending up with a 1000, 200 and
50000 samples splits for train, validation and test respectively. CON is made up
by 28 x 28 binary pixel images depicting convex or concave full shapes [2I]. Again
we employ some training samples for validation: we split it into 6666, 1334 and
50000 samples for train, validation and test respectively. OCR comprises 16 x 8
binary pixels images of handwritten letters from 10 classes, split into 32152, 10000,
10000 for training, validation and testing as in [20]. CAL contains objects outlines
represented in 28 x 28 binary pixel images and divided into 101 classes. They
are split into 4100 examples for training set, 2264 for validation, and 2307 for
test [25]. For BMN we used the splits provided in [21], consisting of 28 x 28 pixel
images of handwritten digits (from 0 to 9), divided into 50000, 10000 and 10000
portions. Then we binarized them ourselvesﬁl by setting a pixel to 1 with probability
proportional to its intensity as in [42]. Samples from all datasets are visible in
Figure 4]

Even if these low resolution image datasets could be considered less hard for
modern deep architectures, they still pose quite a few challenges for current SPN
structure learning algorithms. First, the relatively high number of features and
instances can likely fool the statistical independence tests employed during learning.
Second, spatial ordering and autocorrelation among pixels are not taken into
account in any way. Third, the high instance and feature numbers can potentially

1 We didn’t employ the one available in [22] since it lacks the class information.

Visualizing and Understanding Sum-Product Networks 13

make the learning step a bottleneck, or build networks with millions of nodes if
the structure learner hyperparameters are not wisely chosen.

4.2 Reference models

For each dataset, we learn three SPN reference models on the X alone, i.e. leaving
the Y class variable apart. Later in Section |§| we are employing it in the supervised
phase where a classifier will be trained on the representations extracted from the
SPN reference models to predict it. Our objective is to learn networks with different
model capacities in order to analyze how different structures, learned by the same
algorithm, influence inference and the learned representations. Model capacity
with SPNs is related to their expressiveness and thus influenced by their size and
depth [26]. This, in turn, will determine the maximum embedding size we can
extract from a network, giving us a way to indirectly control it in our experiments
against models like RBMs for which it can be directly chosen as the number of
hidden neurons.

We employ LearnSPN-b [47], a variant of LearnSPN, as a structure learner.
LearnSPN-b splits the observed sample matrix slices always into two while performing
row clustering or checking for column independence. With the rationale of slowing
down the greedy hierarchical clustering processes, it guides the structure search
towards deeper and more compact networks without limiting their expressiveness
nor reducing their accuracy as density estimators [47]. For each dataset we learn
three different architectures by letting vary the early stopping parameter m €
{500, 100,50} and fixing the G-test threshold p to 20 for all datasets except for
OCR, for which we set it to 15. While such a value for p prevents RVs to be declared
independent too often (hence preventing SPNs to overgrow), the parameter m
enables a form of early stopping, as noted in [47]. In such a way, we end up with
three differently regularized architectures, each one comprising a different depth,
number of nodes and so on. For the rest of the paper we will refer to them as SPN-I,
SPN-1I and SPN-11l models, from the most regularized (for m = 500) to the least
one (for m = 50). After an architecture is fully grown, we choose leaf distribution
smoothing parameter value o € {0.1,0.2,0.5,1.0,2.0} with a grid search.

Table [1| reports structural statistics for the fifteen SPNs learned in this way. In
addition to the ones presented in [47] like size and depth, we record the number of
nodes divided by type (sum, product, leaf), the number of unique scopes and the
number of nodes belonging to a certain scope length group, since they correspond
to the sizes of the embeddings as they will be filtered in Section

We provide all the code employed for the visualizations and experiments as
openly available to reproduce thenﬂ

5 Visualizing Sum-Product Networks

Visualization techniques offer precious hints for understanding the representations
learned by a deep architecture and their inner workings [14} [52), [T'7} [46]. We show

2 https://github.com/arranger1044/spyn-repr

https://github.com/arranger1044/spyn-repr

14 Antonio Vergari et al.

108 108 108
10¢ 10¢ 10¢
2 108 2 108 2 108
§ 102 § 102 § 102
« 101 & 100 & 100
Al G T I 4 T R
101 10 10
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
scope length scope length scope length
(a)
105 108 108
104 104 104
g 103 g 108 g 108
§ 07 § 102 § 102
% 10 & 10 % 101
i1l
10 10t 10t
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
scope length scope length scope length
105 108 10
10 10 10
g 108 2 108 9 108
’é 102 § 102 '§ 102
% 100 # 100 w 100
100 100 100
101 101 101
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
scope length scope length scope length
(c)
108 108 108
10¢ 10¢ 104
g 103 9 103 g 108
§ 102 § 102 § 102
« 101 % 100 % 101
TN
10t 10 10
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
scope length scope length scope length
105 108 108
104 104 104
g g g
8 107 8 102 8 102
BT & 101 % 101
100 100 100
10t 10t 10
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
scope length scope length scope length
(e)

Fig. 2: Scope length distributions from SPN-I (left), SPN-II (middle) and SPN-III
(right) models on REC (Figs. [2a), CON (Figs. [2b), OCR (Figs. 2d)), CAL (Figs. [2d)
and BMN (Figs. up to length 400 for the sake of readability).

how to take advantage of visualization techniques on SPNs to grasp their structural
properties and workings of evidence, marginal and MPE inference and to determine
the role of nodes as feature extractors. We also want to provide practitioners novel
ways to inspect and assess SPN models. From this perspective, visualizations can be
used as diagnostic tools to check for learning issues, e.g. the effect of regularization
on model fitting, or to compare different models learned representations by visual
inspection. In this section we will both leverage consolidated approaches and propose
novel visualizations exploiting the interpretation of SPNs given in Section [3}

5.1 Visualizing scope distributions

Turned into sequential architectures of layers of alternated types (see Section
and Figure 7 our SPN-I, SPN-Il and SPN-III reference models are indeed very deep,
as reported in Table

Visualizing and Understanding Sum-Product Networks

15
1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700
4 13 } 13 }
110 110
3 o o8
s £ £
2 2 2 7l o 7m|
3 g _m g _mJ
: i i g
Sl i
0 1 1 }
scope length scope length scope length
(a)
1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700
6 13 15)
5 | 1y i
4 ‘ ! 11 WG 10
£ £ gl } I S o i
s 3 | 2 71 i 2 Zul W |
1 L 7H 1
) l T 5 © [i
! o i
1 | 31 I 31 1
1[I I [N
0 | 1
scope length scope length scope length
(b)
1 30 60 90 120 1 30 60 90 120
15" !
B4
oy hiw
S 91 moroaron < £
5y 7 ! T @ oy
© [O A 1T © ©
5 o
3 P
! :
scope length scope length scope length
(c)
1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700
3‘ 15
6 3)
110 1 |
s 5 £ of ! | £ Hti } |
g 4 53 I I o | |
3 L 7 (] I i
3 ° i ° !
2 5 !
1 3
0 1 !
scope length scope length scope length
(d)
1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700 1 100 200 300 400 500 600 700
17
S
131 1w
| 1l Wik
£ 1 1 = =
S 9| 1 8 = i
g i 1 9] Q i
7} ° ° LU
5 Sl
3} i)
1 ! |
|
scope length scope length scope length

(e)

Fig. 3: Layer-wise scope length distributions for SPN-I (left), SPN-1I (middle) and

SPN-III (right) models for REC (Figs.[3a)), CON (Figs.[3b), OCR (Figs.[3d), CAL (Figs.
and BMN (Figs. datasets. A vertical bar in a layer indicates it contains at
least one node of the corresponding scope length.

16 Antonio Vergari et al.

At first, we are interested in verifying our conjectures about the distribution
of the nodes and their scopes to support the introduction of the scope length
heuristics. If we plot scope length distribution for each model, as a histogram of
the scope length possible values (from 1 to |X]) against the number of nodes with
that scope length, a power law effect is visible in Figure [2} 80% or more of the
nodes in each model have a scope length of 1 to 3, while the remaining percentage
is concentrated, for most of the models, up to 100 RVs. The rest of the long tail
comprises scope lengths represented by very few nodes each (one on average).

We can also observe how leaves, having unitary scope lengths, are overabundant
w.r.t. inner nodes. We decide not to include them in the following experiments
about embedding extraction and evaluation. We adopt this representation bias,
based on two considerations. First, we do not want our embeddings to have an
excessive size. Such embeddings will likely incur in the curse of dimensionality,
plus they would force us to build oversized embeddings for the competitor models
for a fair experimental comparison. Second, we assume the discriminative power
of univariate distributions as feature extractors to be far smaller than that of
longer scope length features. We circumvent these issues by including leaf feature
information in scope aggregated embeddings in Section

Based on all these observations we define three scope length ranges to be later
used in the following sections as a heuristics to group nodes as feature extractors
at the same level of abstraction. We define Small scope lengths, comprising 2 to 3
RVs; scopes of Medium length containing up to 100 RVs for all datasets except
for OCR for which we set it to 50; and lastly, a Large length category including all
remaining lengths.

Then, we proceed to verify the arbitrary layered representation w.r.t. scope
lengths. We visualize the scope length distributions for all layers of a model in
Figure [3] in which each layer is labeled by its depth and each bar denotes the
presence of at least one node of a certain scope length in layer. We confirm that
multiple scope lengths are grouped together in a single layer and even if another
layer partitioning would be possible, see Section [3] each node would still retain its
depth, implying several scope lengths at the same depth. If the scope length of a
node is proved to be a reasonable proxy measure for extracted feature complexity,
this would imply that it is harder to directly exploit depth to determine features
at different abstraction levels, as it happens with other deep architectures [14, [52].

5.2 Sampling

One of the most basic techniques to assess a generative model quality is the visual
evaluation of its samples [20, [22]. To determine if a model has simply learned to
reconstruct the training set, sampled instances are usually compared against the
nearest training instances in the sense of the euclidean distance. An evaluation of
this kind can be misleading in comparing models w.r.t. their loglikelihoods [46].
Nevertheless, we exploit sampling to investigate the effect of regularization on
our reference models against their generative capabilities. We note that SPNs are
prone to a very simple form of sampling, however, to the best of our knowledge,
sampling has not been employed on SPNs in the literature. Apart from visual model
assessment on image datasets, sampling can be effectively employed in comparison
against probabilistic models for which the same likelihood measure is not easily

Visualizing and Understanding Sum-Product Networks 17

Fig. 4: Seven samples from SPN-I (left) and SPN-III (right) models on the first row,
compared to their nearest neighbor images in the training set on row below for REC

(Figs. [4a)), CON (Figs. 4b)), OCR (Figs. [4c), CAL (Figs. and BMN (Figs. .

computable. In such cases, the same Parzen window density estimation can be
applied on a congruous number of instances sampled from each model.

A sample from an SPN can be generated by remembering the probabilistic
interpretation of the weights w. To generate one sample, one traverses the network
top-down. At each sum node n, the child branch ¢ to follow is stochastically
chosen with probability wp.. Product node child branches are followed all together.
Similarly to the descending step of MPE inference, in a valid network one is
guaranteed to end up to a set of leaves representing exactly a complete scope
partitioning. Then, each leaf can be asked to generate some observations for the
RVs in its scope according to its own distribution.

To inspect our reference SPNs as generative models, we draw samples from
the most and least regularized networks, SPN-I and SPN-III, for all datasets. Then
we compare the samples to their nearest training instance as shown in Figure

18 Antonio Vergari et al.

The presence of noise is evident for all models and datasets. However, SPN-III
generated images are generally much less noisy and more recognizable, while SPN-I
ones are less distinctive. This difference is more evident on CAL, suggesting a
form of underfitting for the SPN-I model. On the other hand, on the same dataset
SPN-IIl may have overfit since the samples seem very close reconstructions of their
training counterparts. Whether this tendency also affects the extracted embeddings
performances in a supervised task, shall be investigated in Section [6]

As alast remark, we note how the samples from REC suggest how both SPN-I and
SPN-III architectures struggle to properly capture the straight line patterns. This
in turn suggests that the learned SPNs are not capturing any form of translational
invariance. The reason why this happens on REC and in a moderate form on CON,
while is not visible with the other datasets, may lie in the fact that for OCR, CAL
and BMN the training samples were all centered in their images.

5.3 Visualizing nodes as feature extractors

We now tackle the problem of extracting a visual representation for the learned
features in our reference models. By exploiting the direct encoding that the scope
function provides, we will investigate our conjectures about the hierarchy of repre-
sentations in SPNs.

For deep neural networks, the visualization of the learned features can generally
be done at a neuron level. The basic assumption is that the feature extracted by
each neuron h;; can be visually approximated by the representation in the input
space that maximizes h;; activation [I4]. To reconstruct such a representation back
into the input space X, a common approach is to look for a bounded norm sample
that solves this inverse non-convex maximization problem:

x* = argmax h;;(x;0) . (6)

x,||x[|=y

Its resolution can be tackled through SGD optimization after fixing all the network
parameters 8 = {W? b’} ie. all weights and biases for all the L layers in
the network. While the solver convergence is generally not guaranteed and the
approach is feasible only for a certain number of layers, the empirical results on
moderate sized networks suggest that the visualized representations are somehow
stable across different iterates and are therefore representative of the extracted
features [14].

SPNs lend themselves to an analogous problem formulation whose solution
can be found without iterative optimization. First of all, recall that in an SPN
S each inner node n defines a probabilistic distribution over its scope sc(n). This
suggests that even the scope information alone, through a direct encoding of the
input space, can enable a visualization of the learned features. To support this
argument, consider the input domain of image samples, the visualization of the
scope of each node corresponds to a shape against a background. If these shapes
were meaningful by themselves, e.g. they are distinctive of some particular object,
the scope information alone could be considered valuable enough.

Building on these considerations, one can reframe the problem of Eq. [f]for SPNs
by recalling that maximizing a node activation equals to find its MPE assignment

Visualizing and Understanding Sum-Product Networks 19

Fig. 5: Visualization of filters extracted from SPN-IIl models on REC (Figs. ,
CON (Figs. [5b), OCR (Figs. [fd), CAL (Figs. and BMN (Figs. [¢]). from 9 nodes
with similar scope lengths of increasing sizes (columns 1 to 3). Column 4 shows
the training images nearest to those in column 3.

20 Antonio Vergari et al.

limited to its scope sc(n):
xrsc(n) = argmax Sn(x|sc(n);w) . (7)
X

Leveraging the fully probabilistic nature of SPNs, this is equivalent to saying that
the visual representation of a node as a feature extractor is the most probable
sample according to the distribution encoded in the sub-network rooted at that
node.

Even if exact MPE assignments in SPNs are not easy to compute (see Sec-
tion , the approximate solution version still provides a valuable tool in under-
standing SPN nodes as filter. Moreover, consider that the joint approximate MPE
assignment for all sub-networks distributions can be computed efficiently. To do so,
one first evaluates the corresponding MPN network M once, after setting all leaves
to output 1, then retrieves the best assignments by descending from each M,,.

We apply this procedure for all the fifteen reference models. To verity the
validity of scope length heuristics as a proxy for determining the abstraction level
of a representation, we inspect visualized representations (filters) of nodes sharing
a similar scope length. Sample visualizations for different scope length ranges are
shown in Figure |5} We color the pixels not belonging to a scope red, to stress how
the depicted features are strictly bounded to portions of the input space and are
not spatially invariant, differently from other neural network visualizations [14] 52].
Moreover, in this way we can better evaluate how the scope information alone can
convey enough information. This is indeed true for many cases, since some filters
are recognizable as meaningful object parts, e.g. see Figure[5d]for an octagon shape
or Figure [5¢| for digit strokes. But it seems not enough for high level features, i.e.
features extracted from longer scope length nodes. Additionally, for the exception of
REC, node scopes naturally form clusters of adjacent pixels. Recall from Section [2:2]
that spatial autocorrelation is not taken into account by LearnSPN-b during learning.
This visualization highlights how the learner was able to capture such dependencies
by itself.

We confirm that features grouped by very different scope lengths appear
meaningfully clustered. In fact, the visualized activations resemble part-based
filters at different level of complexity: from pixel blobs to shape contours, to full
shapes comprising background parts, e.g. Figure The role of SPN nodes as
probabilistic part-based filters seems to be empirically confirmed on all datasets,
for the exception of REC in which the meaning conveyed by the visualization is
not immediate. This likely follows from the lack of translation invariance of SPNs:
highly variant and not centered objects are harder to be decomposed in compact
parts. CNN kernels, on the other hand, are not bounded by scope locations and
are representations that can appear in every part of an image [52].

As a last consideration from this kind of visualization, if compared against their
nearest training images, higher level features are not their exact reconstructions but
they still appear to be very specialized filters. The issue of feature overspecialization
will be tested in the RL experiments in Section @

5.4 Visualizing inference

We now tackle the visualization of different kinds of inference in SPNs, i.e. we
visualize in the input space the node activations after a particular query has been

Visualizing and Understanding Sum-Product Networks 21

Fig. 6: Node activations visualizations for some samples (col. 1) for SPN-I1l models
on REC (Figs. [fa)), CON (Figs. [6b), OCR (Figs. [6d), CAL (Figs. and BMN
(Figs. . Stronger cumulative activations in red, weaker in blue. Showing evidence
activations on all nodes (col. 3), normalized by scope (col. 2), only on sum (col. 4)
and product (col. 5) nodes.

formulated. Our objective is to determine whether there are differences among nodes
with different types while the network is evaluated, as well as investigate how the
network structure affects inference. Again, we will provide several visualizations for
our reference models showing their effectiveness as tools to compare and diagnose
them.

Differently from MPE filters, the joint visualization of a set of node activations
after a query is less immediate to map back to the input space. First, each visual

22 Antonio Vergari et al.

(m) (n)

Fig. 7: Partition function computation visualizations for SPN-1 (left), SPN-II (middle)

and SPN-III (right) models on REC (Figs. [Tall7d), CON (Figs. [7d{7f), OCR (Figs. [Tgt
[7)), CAL (Figs. [7{7]) and BMN (Figs. [Tml[7o)

Visualizing and Understanding Sum-Product Networks 23

(b)

Fig. 8: Node activations visualizations for marginal queries on SPN-III models on
CAL (Figs. and BMN (Figs. on the same samples used in Figures [6d and [6e]
Stronger cumulative activations in red, weaker in blue. Marginalizing over a set of
RVs from a patch of adjacent pixels (right) and over all the remaining RVs (left).

representation has to be done on a per instance or query basis, second, one has
to deal with values coming from nodes with overlapping scopes. To cope with the
latter issue, one approach one can take is to aggregate node outputs scope-wise.
We propose to visualize the node activations as the result of summing their node
probability outputs, thus emphasizing the pixel regions with the greatest total
activation. For complete evidence queries, i.e. for an input image x, we create a
representation in the input space, X, where each pixel is computed as

Fi= Y Sa(x) . (8)

n:X; €sc(n)

While this approach can help to highlight structural properties of learned
networks, it is clearly biased towards regions having more nodes with overlapping
scopes, thus falsifying the impact of some node against the others. To fix this bias
we propose another representation, x, defined as:

Bi= Y Sa(x)/N;)

n:X;€sc(n)

where N; is the number of nodes having X; in their scopes.

In Figure [6] we report some sample visualizations for SPN-IIl models after
a complete image is considered as a query. Stronger cumulative activations are
reported in red, while weaker in blue. By inspecting all node activations at first,
one can note the emerging pattern of lower activations generally corresponding
to the pixel regions near the query image shape in the normalized representation.
This is less prominent in the unnormalized version. These aspects suggest how the
probabilities coming from node activations act in transforming the input space into
the representation space: discriminative features deviate from the mean sample
which shall be represented with the highest probability, hence are assigned lower
values. Again, we leave to the empirical evaluation in Section [f] the answer to
whether or not this new representation space proves effective in a supervised
classification task.

Continuing with complete evidence queries, we can limit the activations visual-
ized to sum or product nodes only. Unnormalized sample visualizations in Figure [f]
show how product nodes almost share the most intense activation areas with sum

24 Antonio Vergari et al.

nodes, but the cumulative activations of the former ones are more prominent. This
aspect can be motivated with product nodes being more in number (see Table .
It also supports the conjecture of sum nodes acting as compressors for product
node outputs, as noted in Section |3] Whether or not the product node greater
activations carry useful information will be tested in Section [6.2

The unnormalized visualization of can be exploited also as a structural map
showing where the “denser” area in a network are. Consider the visualization of the
computation of the partition function Z (see Section , Eq. |§| would give a flat
map of 1s for a valid SPN. On the other hands, the unnormalized representation
can carry information about the node scope distributions in the network. In fact,
applying Eq. [§| while all the Sy (x) equal to 1 yields the count of nodes having a
certain RV in their scope. We propose to visualize such a computation for all our
reference models to compare their structural properties, both across the different
datasets and regularization effect. Their visualizations are shown in Figure[7] It is
evident how models learned on different datasets have “focused” their attention on
different image regions, i.e. have employed a larger number of nodes to model more
complex distributions for specific portions of the image. For instance, it reveals how
the models on BMN concentrate its nodes on the center pixels (Figures
while the ones on CAL focus on a ring-like area to better capture the silhouette
outlines (Figures . The effect of the regularization process is more evident on
SPN-I models, for which large regions share the same numbers of nodes. In general,
the less the regularized model, the more detailed the visualization. Figure [7d] shows
an interesting “segmented” visualization for SPN-I on CON, which suggests that
the structure learning process may have completed only few clustering iterations.
Again, this can be a hint at underfitting, as it appears to be the case for SPN-I on
CAL (Figure [7j).

From this structural perspective, the visualization of complete evidence inference
offers a way to recover a sort of “mean activation” signal. The lower activation
regions in Figure [f] are representations deviating from this signal. To further
analyze this aspect, we recur to marginal queries and visualize the node activations
employing Eq. [§| We determine a set or RVs Q C X corresponding to a square
patch of pixels of size 10 x 10. We then ask a query to our models marginalizing over
Q and another one marginalizing over X \ Q. The aim is to inspect the activations
w.r.t. a set of focus RVs and while the remaining ones are ‘don’t care’ RVs. Sample
visualizations for these queries activations are reported in Figures and for
starting image samples from CAL and BMN respectively. As expected, it is visible
how the regions we marginalize over resemble the partition function computation,
while the ones we are interested into are similar to portions of the visualizations
for the complete evidence in Figure [6]

Up to now we have visualized several node activations given a certain query
as these are the most natural constituents for building representations from an
SPN. A complementary route one can take to extract features from an SPN is to
collect the SPN root outputs only given several queries. From this perspective,
one can compare the outputs of different models to the same inference query.
Moreover, this approach offers a way to assess the goodness of a structure learner
when comparing representations extracted from node activations against those
generated from random queries. We will exploit this idea further in Section

Visualizing and Understanding Sum-Product Networks 25

1)

Fig. 9: Examples of different marginalization queries on a sample image from CAL
(col. 1) for an SPN-I model, comprising marginalizations over 1 x 1 (col. 2), 2 x 2
(col. 3), 4 x 4 (col. 4), 7 x 7 (col. 6) pixel patches. The last image depicts the same
7 x 7 marginals as computed by SPN-IIl. Highest likelihoods in white, lowest in
black (columns 2-6).

when comparing our reference models as feature extractors against other tractable
probabilistic models.

If these are marginal queries, one can visualize their answer in the input space
without coping with overlapping scopes if the queries concern disjoint sets of RVs.
In this way we are extracting a representation from the root node outputs according
to different portions of the input. That is, given a partitioning on the image pixels
{Qi}le, Q; CX,Q;nQ; =0,i,j=1,...,k in which each Q; corresponds to a set
of adjacent pixels, one input image can be visualized as colored in patches, each
one representing the output of the SPN when asked to marginalize over all other
RVs. That is, given an image x, we are interested in visualizing each patch xq, as:

X|Q, = S(X|Qi) =p(Qi = lei) : (10)

With this approach we are can look into user-defined regions even if there is no
single node with that exact scope.

Figure |§| shows different sample visualizations for marginal queries on a sample
image from CAL, comparing SPN-I model outputs on different pixel partitioning
at different scales. It is again evident how shape contours are determined by low
probability areas (darker patches). Clearly, the bigger the patch size the lower
the likelihood values across all the dataset, but at the same time, the greater
the differences between differently grained estimators like SPN-I and SPN-11I (last
image in Figure E[) With each model having its visual “signature”, the effect of
regularization across them is recognizable as the presence of darker patches.

In this Section we have gathered empirical evidences for our conjectures con-
cerning questions Q1 and Q2. We confirmed the meaningfulness of the scope and
scope length heuristics by visualizing the extracted features by the means of MPE
inference. Regarding question Q3 we proposed several visualizations, among which
the visualization of node activations, and in particular of the partition function
computation, highlights how the structure learned can influence the extraction of
features belonging to particular scope areas. In the end, we indirectly tackled the
problem of how to compare SPNs to other probabilistic models (questions Q3 and
Q6) with our visualizations. More specifically, region based marginal query visual-
izations as signature patches, can be applied to other tractable models. Moreover,
they suggest the experimental comparison protocol we employ in Section

26 Antonio Vergari et al.

6 Representation Learning with Sum-Product Networks

In this section we empirically evaluate SPNs as feature extractors in a classical
RL framework. From our reference models we actually extract different feature
sets from each reference model and use each of them to train a linear classifier to
predict the previously unseen class RV Y for each dataset. In a set of thorough
experiments, we use these representation accuracy scores as a proxy to assess their
usefulness and effectiveness. We point out how we are not interested in doing
a state-of-the-art accuracy score on these datasets. Instead, we firstly want to
investigate whether these representations are comparable against other commonly
employed feature extractors for RL, like RBMs. In addition to that, we exploit such
a comparison as a way to assess the contribution of different parts of a network
structure in extracting new representations. Lastly, we devise a novel way to extract
embeddings from tractable probabilistic models based on iterated random marginal
queries, enabling a way to evaluate SPNs against other tractable models, as it has
been hinted in the last part of Section [5.4

More formally, given the dataset samples {x'},x* € {0,1}", an SPN reference
model S and a filtering criterion f, we generate a new sample set {ei M, such
that each embedding e’ € R? is extracted from S according to f, i.e. e = fg(x').
The chosen filtering criterion determines the dimension of the new vector space, d,
which we will refer to as embedding capacity or size.

In all our experiments we employ a simple linear classifier to be trained on each
embedding set to predict Y. The rationale behind this common RL approach is to
inspect if the new geometric space induced by the embeddings has disentangled
the input space enough to let a linear separator easily discriminate the associated
classes [5]. We employ a logistic regressor with an L2 regularizer in a one-versus-rest
setting. We leverage the implementation available in the scikit-learn frameworkﬂ
For each experiment involving one feature set, we determine the L2 regularization
coefficient Cﬂ value in {0.0001,0.001,0.01,0.1,1.0}, choosing the model with the
best validation accuracy. As the simplest baseline possible, we apply such a classifier
directly on the initial data representation, i.e. {x' 1- We are denoting the model

I m
1=
trained in such a way as LR in the following sections.

6.1 Node activations as features

As a first experiment we consider local interactions in the form of inner node
outputs in an SPN S after evaluating x', i.e. ej- = 5; (x') for a generic node set
indexed by j =1,...,d. We collect all node outputs in the log domain to be able
to represent even very small probabilities that would go to zero in the exp domain.

As the first filtering criterion, we extract all nodes in S whose scope length
is strictly larger than one. We are interested in evaluate the performance of
all nodes as feature extractors, however, comprising even the leaf nodes would
determine too large embedding sizes (see Table |1| and Section . Even if a larger
embedding capacity could definitely help a linear classifier in discriminating the
disentangled representations, it could let it incur in the curse of dimensionality as

3 http://scikit-learn.org/

4 in scikit-learn this has the same meaning of the SVM regularization coefficient, hence smaller

values indicate more regularized linear models.

http://scikit-learn.org/

Visualizing and Understanding Sum-Product Networks 27

Table 2: Test set accuracy scores for the embeddings extracted with the best SPN,
RBM models and with the baseline LR model on all datasets. Bold values denote
significantly better scores than all the others for a dataset.

LR SPN-I SPN-II' SPN-III RBM-5h RBM-1k RBM-5k
REC 69.28 77.31 97.77 97.66 94.22 96.10 96.36
CON 53.48 67.48 7831 84.69 67.55 75.37 79.15
OCR 75.58 82.60 89.95 89.94 86.07 87.96 88.76
CAL 62.67 59.17 65.19 66.62 67.36 68.88 67.71
BMN 90.62 95.15 97.66 97.59 96.09 96.80 97.47

well. Additionally, it would pose a problem if we were to learn RBMs of comparable
model capacity. Nevertheless, We investigate the contribution of the information
coming from leaf nodes in Section

As reference competitors we consider RBMs having 500, 1000 and 5000 hidden
units (d) to take into account the effect of increasing a model representation
capacity in the same way we did with our reference SPNs. We refer to them as
RBM-5h, RBM-1k and RBM-5k respectively. We end up with fifteen RBM models
as well. Applying the same experimental setting, we train them on the X alone
by using the Persistent Constrastive Divergence (PCD) algorithm, leveraging the
implementation available in scikit-learn. We follow [25] in which PCD has been
demonstrated to be a very good overall performer across different benchmark tasks
to train the weights of an RBM. For the weight learning hyperparameters we run
a grid search for the learning rate in {0.1,0.01}, the batch size in {20,100} and
the number of epochs in {10,20,30}. We then select the best models according to
their pseudo-log likelihood validation scores. To generate an embedding from an
RBM model, we evaluate the conditional probabilities of the hidden units given
each sample. To make the comparison fairer we transform these values in the log
domain in the same way we do for our SPN representations.

Accuracy scores for the test splits of all five datasets, for LR, SPN and RBM
reference models are reported in Table 2] From these results one can first note
how LR model alone can score a 90.6% of accuracy on BMN, indicating the input
representations for the ten classes to be already disentangled enough. By the same
line of thought, CON can be considered a harder dataset, having LR score only 53.5%
on a binary classification task. Each embedding set extracted from a reference
model performs better that their baseline counterparts, meaning that they have
been able to effectively disentangle the latent factors in the new representations,
even if learned in an unsupervised way. The only exception seems to be the SPN-I
model on CAL, scoring a poorer result which can finally be ascribed to underfitting
after all the hints from the previous Section visualizations. On the other hand,
even if the visualization of the samples from models trained on REC and CAL (see
Figures and of their extracted filters (see Figure seemed poor, the
improvement in their accuracy scores is quite relevant.

Concerning the regularization effect on the SPN reference models, one can
observe a constant improvement gained by less regularized ones, even if the per-
formance difference between SPN-II and SPN-IIl models can be negligible, e.g. on

28 Antonio Vergari et al.

Table 3: Test set accuracy scores for the embeddings extracted with SPN models and
filtered by node type. Results for SPN-11l embeddings filtered by Small , Medium and
Large scope lengths are reported in columns 8-10. Bold values denote significantly
better scores than all the others. A indicates a better score than an RBM embedding
with greater or equal size. V indicates worse scores than an RBM embedding with
smaller or equal size.

SPN-I SPN-II SPN-III SPN-III
sum prod sum prod sum prod | S M L

REC 72.46 62.25 98.03% 97.064 98.004 97.04‘\ 88.73 98.45% 93.91
CON 62.36 64.03 77.134 76.074 83.594 82.064 ‘ 70.51V 77.18 83.324
OCR 74.19 81.58 89.734 88.784 90.024 89.32 ‘87.22v 89.294 83.194
CAL 38.19 56.95 62.64 64.80 66.587 66.40V ‘63.37v 66.23"V 66.10
BMN 93.50 94.75 97.67 96.90V 97.80 97.207 ‘96.02v 97.42V 97.38

OCR and BMN datasets. A similar patter can be seen with more capable versus
less capable RBM models. Only in one case, on CAL, RBM-5k overfit.

By comparing SPN reference model scores to RBM ones, it can be seen how the
former are very competitive if not better than the latter. This is true for the less
regularized SPN models on all dataset except for CON. It is also remarkable how high
are these accuracy scores if one considers the highly greedy and fully unsupervised
way in which the SPN structures have been learned. The best performance on
REC, held by SPN-II, scores a classification error of 2.23% which is very close to
the best error score achieved by the best supervised learner in [21]: 2.15% by an
SVM with RBF kernel. In the case of CON, the 15.31% error score of SPN-III is
even lower than the best one of 18.41% achieved by supervisedly trained Stacked
Auto Encoders in [21].

6.2 Filtering embeddings

To explore the contribution of different nodes to the learned representations,
we apply different filtering criteria that select a strict subset of the embeddings
extracted in the previous section. At first, we filter features as extracted by the
inner node types, to evaluate whether there is a pattern in sum versus product
node embeddings. Additionally, we filter features based on the scope length of
their node extractors, defining three embedding sets for Small, Medium and Large
scope length ranges (see Section . We employ in this second experimentations
only embeddings extracted from SPN-IIl models, as they have shown the more
homogeneous distributions across all scope lengths (see Figure [3]). In this case, we
evaluate our scope length heuristic as a means to reduce the embedding size and
to assess the importance of the representations at different levels of abstraction. It
is worth noting that selecting only a fraction of nodes of the network as feature
extractors is not the same as having a network composed only by those nodes. The
contributions of the nodes filtered out are still present, even if indirectly, in the
output activations of the collected nodes.

Visualizing and Understanding Sum-Product Networks 29

Test accuracy results for the five filtering criteria are reported in Table |3] For
SPNs with fewer nodes, the product nodes seem to contribute most to the scored
performance. On the other hand, when the model capacity seems congruous, e.g.
with SPN-III models, sum nodes act as efficient compressors, greatly reducing the
embedding size (see Table [1] as a reference) and preserving the accuracy scores
achieved by the full embeddings or even increasing them. More generally, a holistic
effect can be observed, sum and product nodes together score better, even if slightly,
accuracies than alone, even when the size of a full embedding could incur in the
curse of dimensionality.

The last column section of Table |3| reports the accuracies for the SPN-III
embeddings filtered by the scope length ranges S, M, L. Embeddings from the
smallest scope lengths are always the less accurate both than the full version and
than the ones filtered from longer scope lengths. Even if they are the embeddings
with the largest capacity (see Table , the meaningfulness of the extracted features
is minimal, as conjectured in the previous Sections. However, also the contribution
of the higher level features is less prominent. This confirms the intuition we had
through the filter visualizations: high level features in our reference models may
be too much specialized, and likely prone to overfitting. As a result, in general,
selecting only mid level features proved itself to be a meaningful way to extract
compressed, but still accurate, embeddings.

If accuracies from Table 3| are to be compared against those scored by RBM
models, one can note filtering the SPN full embeddings produces representations
whose size can be shorter than their RMB counterparts, while accuracies are
comparable or better on three datasets over five. The embedding filtering process,
when achieving better scores, can also improve on the performances reported in
the previous Section about supervised models. The error rate of 2.20% on BMN
achieved by the sum nodes of SPN-IIl is one remarkable example, as it is the 1.54%
error rate scored by SPN-III M scope length embeddings on REC.

6.3 Aggregating scopes

In this Section we investigate a filtering criterion based on aggregating more node
activations in a single feature. We propose to build an embedding based on the
aggregation of node outputs having the same scope, leveraging the idea that all the
nodes sharing the same scope are extracting different features over a same latent
factor. The most natural aggregation function we can employ is the mean, thus
actually computing for each possible scope j in S

L 3 S () (11)

ol — ‘
J |{n|’rL c S7 SC(TZ) = J}‘ ne{n|neS,sc(n)=4}

where Sy, (xl) values are in the exp domain and the final computation is projected
in the log domain for a fair comparison against all other embeddings involved in
the previous experiments.

The question concerning which nodes to consider for each aggregation can be
answered in different ways. We note how constructing embeddings according to
Eq. [[T] equals to collect the output of a fictitious valid sum node introduced in
the network to compute a uniform mixture over all nodes sharing a same scope.

30 Antonio Vergari et al.

Table 4: Test set accuracy scores for the embeddings extracted with SPN models
by aggregating node outputs with the same scope. Results for when leaves are not
counted in the aggregarion (no-leaves columns) are reported alongside the case in
which they are considered (leaves columns). Bold values denote significantly better
scores than all the others for each dataset. A indicates a better score than an
RBM embedding with greater or equal size. V indicates worse scores than an RBM
embedding with smaller or equal size.

SPN-I SPN-II SPN-III

no-leaves leaves no-leaves leaves no-leaves leaves
REC 72.47 7592V 97.94%4 97.994 97.944 98.024
CON 62.35 66.49YV 77.214 78.05 83.524 83.844
OCR 74.32 81.85 89.714 89.684 89.904 89.914
CAL 38.10 63.19V 6259 62.76Y 66.49V 66.58"
BMN 93.51 94.83V 97.64% 97.624 97.80 97.80

From this perspective, we are providing our SPN with a number of additional
sum root nodes, each one representing a particular scope in the network. Such
a representation could be exploited also in other learning schemes, e.g. weight
learning to ameliorate the vanishing gradient issue afflicting SPNs [36]. Following
all these considerations, we decide to aggregate only sum node outputs and not
product node ones, since the latter already contribute to their sum node parent
feature extractions. As an alternative filtering criterion, we propose to aggregate
by scope both sum nodes and leaf nodes as well. In this way we can verify if
the additional information they provide can be of some use, while keeping the
embedding capacity small thanks to the mean aggregation. Refer to Table [] to
determine these embedding sizes as the number of unique scopes in our reference
models.

Table [f] shows the test accuracy results for all the reference models when leaves
are included or not in scope aggregation embeddings. It is visible how leaf addition
helps models with lower capacity like SPN-I ones, scoring the best accuracy for
them on CAL. As the model capacity increases, the contribution of leaves becomes
marginal or even null.

As a general tendency, accuracies for the leaves-included variants are comparable
to the best sum embeddings for the corresponding models, while their sizes are
reduced. This is an empirical confirmation of the goodness of scope aggregations
as a heuristic to extract embeddings from an SPN.

As a recap about all the filtering schemes employed so far and to better
compare their accuracy scores w.r.t. their embedding capacities, we present a
series of scatterplots in Figure [I0] We repeat our general findings: sum node
activations alone act as sufficient compressors for less regularized models; mid level
of abstraction representations, i.e. embeddings belonging to nodes with medium
scope lengths, are a good heuristic to preserve test accuracy and reduce while
reducing the embedding size; scope aggregations prove to be an additional effective
embedding size reduction heuristic.

Visualizing and Understanding Sum-Product Networks

31

100

95

90

85

80

75

test accuracy

70

65

60

a4 Qe
[m]

o3

>

100

10t 102

embedding size

(a)

103

104

"

L0
78
76

74

N

10t

98.0

102 103

embedding size

(©)

104

105

97.5
97.0
965
Q
©
596.0
Q
(8]
® 955
7
8950
94.5
94.0

93.5

102

103 104
embedding size

(e)

105

85 -
. v
>
80
o []
~n <&
) >
&8 75 a
=
Q
3
7 70 <
g
[e] [m]
v
65
>
bl
60
10t 102 103 104
embedding size
(b)
70
VIR |
= «v
65 * .o *7>
a N4 <&
60 °
3 >
[
555
Q
o
S50
w
]
45
40
g
35
101 102 103 104
embedding size
(d)
O SPN-I full » SPN-IIl prod
© SPN-II full & SPN-NILS
® SPN-III full & SPN-lIIM
O RBM-5h ¢ SPN-lIIL
@ RBM-1k A SPN-l aggr
® RBM-5k vV SPN-l aggr-leaves
< SPN-Isum A SPN-Il aggr
> SPN-I prod Vv SPN-Il aggr-leaves
< SPN-Il sum A SPN-Ill aggr
> SPN-Il prod ¥ SPN-lll aggr-leaves
< SPN-lll sum

Fig. 10: Embedding capacity versus test accuracy for SPN and RBM models on REC
(Figs. [10a), CON (Figs.[10b), OCR (Figs.[10c), CAL (Figs.[10d) and BMN (Figs. [10¢)
according to the different filtering criteria employed: all inner nodes (full), only
sum or product nodes, filtered by scope length of small (S), medium (M) and large
(L) sizes and scope aggregations without (aggr) or with leaves (aggr-leaves).

32 Antonio Vergari et al.

6.4 Probabilistic queries as features

80
> >
3 a5 < SPN-I 3
3 . oo SPN-I 365 oo SPN-I
& go —+— SPN-Ill & —+— SPN-Ill
8 oo MT- 860 e MT-
75 es MTAE | T e MT-II
70 = MT-III 55 = MT-IIl
— LR — LR
65 50
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
features # features
(a) (b)

SPN-III

o MT-L
s MTHI
e M-I
— IR

test accuracy

— LR

70 58
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
features # features

(c) (d)

test accuracy
o
o

84
100 200 300 400 500 600 700 800 900 1000
features

(e)

Fig. 11: Test accuracies for SPN and MT models on REC (Figs., CON (Figs.,
OCR (Figs. [L1d), CAL (Figs. and BMN (Figs. [L1¢). against 1000 features
generated as random marginal queries evaluations. Logistic regressor as a baseline
is reported as LR.

In this Section we investigate another take in extracting embedding from SPNs
by evaluating the networks several times against a fixed set of template queries. By

Visualizing and Understanding Sum-Product Networks 33

doing so we are registering only the root activations, i.e. the network outputs to
some inputs, treating the density estimator as a black boz inference tool. Actually,
such embedding generation scheme is applicable not only to SPNs but also to every
tractable probabilistic models for which the template queries can be answered
in tractable time. To the best of our knowledge, this is a novel way to exploit
tractable probabilistic models to generate embeddings and can be proved useful in
extracting representations from already learned density estimators to be employed
in new tasks. Moreover, it is a model agnostic way to compare models previously
not comparable on the same supervised task, similarly to how Parzen windows are
now exploited to compare different generative models likelihood performances.

We employ marginal queries following the considerations from Section to
generate query templates over some randomly chosen sets of RVs to be asked to our
reference models. We extend our comparison to the Mixture of Trees distributions
(MT) [27]. Despite their simplicity, they have been proven to be very competitive
against SPNs, likelihood-wise [47]. MT models define a mixture model over tree
distributions, for which marginal inference can be computed in linear time in
|X| [27]. We are interested in performing structure learning on such models. MT
trees are learned with the Chow-Liu algorithm [8], while the mixture coefficients
are estimated through the EM algorithm. We employ mtlearn, the implementation
of MT available in the Libra toolkit [24]. To investigate different model capacities
as we did for all our reference models, we learned mixtures with 3, 15 and 30 trees
for each dataset (fifteen models total), from here on denoted as MT-I, MT-II, MT-III
respectively.

The process to generate the query templates is as follows. For each feature
J we have to generate, j = 1,...,d, we stochastically select a scope Q; C X and
then we compute each embedding component as the evaluation of a marginal
query over (); according to a certain probabilistic model, i.e. e;- =p(Q; = x‘in).
For an SPN model S this reduces to compute S(Q; = XIin)' To understand why
tractable marginal inference is mandatory, consider this: in a naive computation
one would have to ask a model to answer d - m marginal queries, and even if one
cashes the answers for each possible observable state configuration for the RVs
Q;, assuming all of them to have at most [values, | < m, it would end up with
d - 1 evaluations. Being these random query evaluations, one would expect d to be
large enough to let some statistical pattern emerge. As a practical example, since
in our experiments we set d = 1000 as a reasonable large enough embedding size,
the naive computation of such an embedding set for the test split of REC alone
would require 50000000 query evaluations.

This kind of constrained evaluation offers also a way to assess the meaningfulness
of the nodes generated by the structure learner algorithm as feature extractors,
when compared to ones whose scope is randomly generated. Remember that a
node n in valid SPNs defines a distribution over its scope. One could think at this
distribution as the marginalization of the whole joint over the scope of n, that is
Sn(x) & S(X|se(n)) = P(sc(n) = X|s¢(n))- This is clearly not an equality but a very
rough approximation. It is moved by the intuition gained from the visualization
of marginal inference compared to the whole partition function computation (see
Section . If one accepts this sort of approximation, then the answer for a
marginal query p(Q;) can be thought as the output of a fictitious node with scope
Q;. By comparing the accuracy scores of features extracted from these randomly

34 Antonio Vergari et al.

generated fictitious nodes against those collected from nodes built by a structure
learning algorithm, one can evaluate this structure learner effectiveness from a non
likelihood-wise point of view.

We evaluate all the SPN and MT models on the same 1000 randomly generated
query templates on each dataset. For each query we select RVs corresponding to
adjacent pixels in a rectangular image patch having minimum sizes of 2 pixels
and maximum of 7 pixels for OCR and 10 pixels for all the other datasets. Then,
we train a logistic regressor on each embedding set as in the same experimental
protocol employed for the other experiments.

Figure [T1] shows the accuracy scores by SPN-1, SPN-II, SPN-1Il and MT-I, MT-II,
MT-IIl on each dataset, measured while adding 100 features at a time. It is visible
how such embedding accuracies improve as the number of feature increases. This
is true in almost all scenarios with the exception of REC and CON. On these two
datasets, a sort of model “herding” can be noted: model performances are not
growing noticeably while features are added, except for the more reguarized model,
SPN-I on REC and of the least regularized one, SPN-IIl on CON. We experimented
on OCR and BMN by adding other 1000 randomly generated features, however, the
accuracy gained was almost null.

All the LR baselines are overcome by both SPN and MT models. No more than
300 features appear to be enough for SPNs to beat LR scores. This demonstrate
how this representation extraction scheme can be effective empirically. Instead,
if compared to the embeddings extracted as node activations, these embeddings
perform worse in almost all cases. This is an empirical affirmative answer to
whether or not LearnSPN-b built meaningful networks even from a RL point of view.
However, it shall be noted that heavily regularized models like SPN-I perform far
better in this setting than in the ones from previous Sections. This suggests that
an SPN representation capacity could go beyond the actual number of nodes in
the network (remember SPN-I to have very few inner nodes, see Table .

Lastly, if compared to MT models, SPN ones are performing definitely better
on OCR, CAL and BMN, on the other hand, only SPN-I on CON demonstrates far
superior accuracies after 300 features. A similar argument about a regularized
model capacity can be stated in a minor way for MT models on CAL and BMN.

In this Section we definitely confirm the validity of the scope length criterion
to extract features at certain grains of complexity (questions Q2, Q5). From
our supervised RL experimentations we proved SPNs to be more than simply
competitive to RBMs as feature extractors (question Q4) evaluating embeddings
generated with several criteria (question Q5). We also devised a way to extend
this kind of comparison to other tractable probabilistic models, proving not only
SPNs to be competitive against MT models (question Q6) but also assessing the
meaningfulness of the structure learned by LeanSPN-b by comparing the embeddings
from their inner node activations against those generated from random marginal
queries (question Q3).

Visualizing and Understanding Sum-Product Networks 35

7 Related Work
7.1 SPNs

The network polynomial has been introduced for probability distribution encoded
by BNs by Darwische, along the differential approach to inference in [10, [IT]. Its
extended version has been presented in [34] as a means of performing the differential
approach on SPNs whose leaves model any kind of tractable distribution (as the
ones we are referring to), even continuous pdfs.

MPE inference and MPE assignments have been thought to be exactly com-
putable in linear time in SPNs as well [36] [I2]. However, only recently, MPE
inference has been stated to be hard [29, [32] in SPNs, and an MPE assignment has
been proved to be found efficiently only on augmented SPNs, networks in which
the latent RVs associated to sum nodes are made explicit, providing a form of
determinism that enables the correct maximization of the network polynomial.

Weight learning for SPNs has been proposed in different fashions. Given an
SPN initialized with a generic but valid architecture, weight learning can be done
by employing the EM approach or gradient descent as in [36]. The weights can be
updated by gradient steps since in SPNs efficient computation of the likelihood
gradient can be obtained by backpropagation. EM, on the other hand, exploits
the latent variable semantics of SPNs. The computation of the gradient for very
deep SPNs can be an issue [36]. This problem has been overcame in [36] [I5] by
adopting a hard gradient approach, i.e. exploiting MPE inference to update the
weights along a descent path by hard counts.

Instead of using a generative likelihood loss, in [I5] a discriminative one has
been employed in a hard gradient descent scheme leading to discriminative training
of SPNs, obtaining state-of-the-art results on some standard image classification
tasks. However, having to deal with a fixed, hand crafted network structure, has
determined these algorithms to be less and less popular. Only very recently, weight
learning has regained interest with novel online and distributed learning schemes.
However, it is still hard to obtain a largely better likelihood score than an SPN
whose structure has been learned as well, by just employing weight learning. Some
interesting recent attempts comprise [38], proposing the online Bayesian Moment
Matching algorithm (OBDMM), and [53], implementing a collapsed variational
approximation for bayesian weight learning. In the former, an extensive empirical
comparison shows OBDMM effectiveness and scalability in comparison to online
extensions of gradient descent, exponentiated gradient and EM on many benchmarks
datasets. In the latter, the new bayesian approach outperforms OBDMM both in
the online and distributed settings.

Structure learning algorithms, on the other hand, have been largely investigated.
As already stated in Section [2] many of them share with LearnSPN the intuition
behind the iterative clustering processes along the instance and feature dimensions.
More different structure learning schemes can be found in [30] in which a bottom-
up approach is employed, still exploiting the probabilistic interpretation of sum
and product nodes. A likelihood score-based local search approach has been tried
in [31] on a deterministic version of SPNs, Selective SPNs, for which the likelihood
function is computable in closed form.

While the theoretical properties of SPNs are being thoroughly investigated, their
node interactions and practical interpretability have received little or no attention.

36 Antonio Vergari et al.

These recent works focused on studying SPNs expressive power or relating them to
other probabilistic models. In [26] it is demonstrated how their expressive efficiency
potentially increases as their depth grows. In [34] the notion of generalized network
polynomial is introduced, and it was shown that consistency, a less strict constraint
for product nodes still ensuring validity, does not lead to exponentially more
compact networks. In [54] it is demonstrated how they are equivalent to bipartite
BNs with Algebric Decision Diagrams modeling their conditional probability tables.

We follow [47] and argue that likelihood scores alone do not provide a complete
picture and a qualitatively and quantitatively comparison of learned architectures
structural properties is needed.

7.2 Visualization Tecniques

Visualizations provide important tools to assess a model from a qualitatively
perspective, and have proven to be complementary to quantitative analysis. The
visualizations of what has been learned by a neural network can be traced back
to scientific visualizations of the sign and magnitude of an MLP weight matrices,
techniques like Hinton’s diagrams and bond diagrams are reviewed in [9]. Several
visualizations of deep architectures have been proposed in the literature, the most
common and simplest one being the visualization of sampled instances [20)] [22], 46].

Recently, the need of understanding deep models successes more in depth, lead
to studies focused on particular architectures, highlighting their peculiarities and
investigating how to exploit them. For instance this has been done for CNNs in [52]
and for Recurrent Neural Networks even more recently in [I7]. In [52] a new
visualization technique, using a multi-layered Deconvolutional Network, to project
the feature activations back to the input pixel space as in [5I], has been introduced.
It is able to reveal the input sample that excite individual nodes the most at
any layer in the model. Such a visualization has been exploited to handcraft a
CNN architecture scoring state-of-the-art accuracy results on a benchmark image
recognition task.

In this paper, we followed the work in [I4] to visualize each neuron learned
feature from an arbitrary layer as the input instance maximizing its activation, as
already described in Section Extending the work of [14], recent works have
explored how to impose natural image priors while determining the maximally
activating images for a neuron. In [43] the optimization problem is recast in two
variants: finding the best image maximizing a class score and computing a saliency
map for a query image sample, given a class. The same approach is adopted in [50]
in which, however, a stronger prior as a regularizer is added to the loss score and an
efficient software tool able to visualize all hidden neurons is presented. Employing
visualizations as debug tools to spot “blind spots” for networks, adversarial images,
i.e. images crafted to fool a network output, are synthesized in [45].

7.3 Representation Learning
Representation Learning works have extensively studied how to extract useful

features in unsupervised, semisupervised and supervised settings from both deep
and shallow models. For a comprehensive review of the field of RL, see [5]. RBMs

Visualizing and Understanding Sum-Product Networks 37

alone have been employed in several studies comparing different weight learning
regimes and evaluating them both as generative models and feature extractors,
see [19] 20 25] just to cite a few. They also have been employed as the inspiration to
build successful autoregressive models like the Neural Autoregressive Distribution
Estimator (NADE) [22]. In [22] their likelihood formula is employed to derive a
neural formulation for a step of a mean field inference routine. Along RBMs, a
popular architecture are Denoising Autoencoders (DAE) [48]. For all these neural
network density estimators the structure is fixed a priori or after a hyperparameter
selection for the number of hidden layers and hidden nodes per layer. With SPNs,
efficient, even if greedy, structure learning schemes are possible. They both enable
a “deeper” form of RL, in which the extracted representations can be assessed
against the learned structure and vice versa.

To the best of our knowledge, SPNs have never been employed as feature
extractors. The only task in which they have been used to produce a structured
output is input reconstruction. MPE inference is exploited to predict the value of
RVs unobserved at test time, e.g. the pixels in an image [36] or frequencies in a
spectrogram [33]. However, in all those cases they have been treated as black box
density estimators.

In [45] it is argued that the representational power of a deep architecture
shall not be searched in individual neurons but in the space generated by all high
level layers. This is proven by comparing high level neuron outputs and random
combinations of them, showing little variations performance-wise. This is somewhat
similar to the intuition we had in Section [6.4] when we observed SPN-I models to
perform better when random fictitious node outputs were collected, although this
is only a speculation to be investigated more extensively.

8 Conclusions

In this work we investigated how the internal representations learned by SPNs
can be extracted, exploited and better understood. We have explored different
visualization techniques on the computation of evidence, marginal and MPE
queries. We employed several embedding sets extracted from our reference models
to empirically evaluate their meaningfulness in a supervised classification task.
Concerning Q1 we argue that even if SPN can be reframed as labelled con-
strained and fully probabilistic MLPs, their structures may not be suited to extract
embedding in the classic layer-wise setting. For this reason we advance a scope
heuristics to aggregate features at different levels of abstract. We confirmed the
meaningfulness of using scope length ranges to correlate a node feature abstraction
level first visually by the means of MPE inference and then experimentally. We
found medium sized scope length embeddings to provide the best accuracies (Q2).
We investigated the impact of the learned structure on network inference and on
the learned representations. We noted how the visualization of node activations
aggragated by scope can provide visual clues on the denser sub-structure. A differ-
ent role for product nodes has been hinted in such visualizations and confirmed
in the classification task but only for high capacity models. Sum nodes have been
demonstrated to provide the best size versus accuracy compromise. All in all a
holistic effect can be seen and the representation capacity of an SPN seems to go
beyond its single node activations (Q3). The embedding extracted from SPNs have

38 Antonio Vergari et al.

been proven to be rather competitive against the ones extracted from RBMs of
even or more capacity This has been verified for several filtering criteria as well.
Along with the already stated sum node and medium sized scope length filtered
embeddings, scope aggregation provides compact and accurate representations.
Their increased accuracy for small capacity models derives from leveraging the
information of previously excluded leaf nodes (Q4, Q5). Lastly, comparing the node
activation embeddings against those generated by random marginal queries reveals
the meaningfulness of the structure learned in a greedy unsupervised manner, but
also suggests the representation power of an SPN to go beyond its single node
outputs (Q3, Q6).

Hence, we can confirm the three objectives we set at the beginning. We ob-
tained a better understanding of the inner workings of SPNs (O1), by visualizing
their structure and behaviour under different types of inference queries, plus, we
empirically evaluated the usefulness and meaningfulness of different representations
one can extract from them (02), and by doing so we provided alternative ways to
assess a learned SPN value (03).

As future works, We plan on investigating the random query RL scheme in
a more extensive way, e.g. by exploiting other types of probabilistic queries to
generate features or studying how this can be related to the effective expressive
capacity of these architectures. Another interesting aspect to research is how to
exploit further the learned representations. As a first option, stacking more density
estimators on these representations seems quite challenging. A more direct way
to follow can be directly plugging them in end to end deep architectures to train
them both as density estimators and classifiers at once, e.g. in a semi-supervised
learning scheme.

Acknowledgements The authors wish to thank Pierpaolo Basile for the computational
resources kindly offered.

References

1. Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the structure of
sum-product networks via an svd-based algorithm. In Uncertainty in Artificial
Intelligence, 2015.

2. Mohamed Amer and Sinisa Todorovic. Sum product networks for activity
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
2015.

3. Mohamed R Amer and Sinisa Todorovic. Sum-product networks for modeling
activities with stochastic structure. In (CVPR), 2012 IEEE Conference on,
pages 1314-1321. IEEE, 2012.

4. Yoshua Bengio. Learning deep architectures for ai. Found. Trends Mach. Learn.,
2(1):1-127, January 2009.

5. Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Unsupervised Fea-
ture Learning and Deep Learning: A review and new perspectives. CoRR,
abs/1206.5538, 2012.

6. Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., 2006.

Visualizing and Understanding Sum-Product Networks 39

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Wei-Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong Chieu, and Kian
Ming Adam Chai. Language modeling with Sum-Product Networks. In
INTERSPEECH 2014, pages 2098-2102, 2014.

C Chow and C Liu. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462—467,
1968.

Mark W. Craven and Jude W. Shavlik. Visualizing learning and computation in
artificial neural networks. International Journal on Artificial Intelligence Tools,
1:399-425, 1991.

Adnan Darwiche. A differential approach to inference in bayesian networks.
J.ACM, 2003.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge,
2009.

Aaron Dennis and Dan Ventura. Learning the Architecture of Sum-Product
Networks Using Clustering on Varibles. In Advances in Neural Information
Processing Systems 25, pages 2033—2041. Curran Associates, Inc., 2012.

Aaron Dennis and Dan Ventura. Greedy Structure Search for Sum-product
Networks. In IJCAI’15, pages 932-938. AAAT Press, 2015.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visu-
alizing Higher-Layer Features of a Deep Network. ICML 2009 Workshop on
Learning Feature Hierarchies, Montréal, Canada., 2009.

Robert Gens and Pedro Domingos. Discriminative Learning of Sum-Product
Networks. In Advances in Neural Information Processing Systems 25, pages 3239—
3247, 2012.

Robert Gens and Pedro Domingos. Learning the Structure of Sum-Product
Networks. In Proceedings of the ICML 2013, pages 873-880, 2013.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. Visualizing and understanding
recurrent networks. CoRR, abs/1506.02078, 2015.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and
Techniques. MIT Press, 2009.

Hugo Larochelle and Yoshua Bengio. Classification using discriminative re-
stricted boltzmann machines. In Proceedings of the ICML 2008, pages 536—543,
2008.

Hugo Larochelle, Yoshua Bengio, and Joseph P. Turian. Tractable Multivariate
Binary Density Estimation and the Restricted Boltzmann Forest. Neural
Computation, 22, 2010.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. An Empirical Evaluation of Deep Architectures on Problems with
Many Factors of Variation. In Proceedings of the ICML 2007, pages 473—480,
2007.

Hugo Larochelle and Tain Murray. The Neural Autoregressive Distribution
Estimator. In International Conference on Artificial Intelligence and Statistics,
pages 29-37, 2011.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324,
Nov 1998.

Daniel Lowd and Amirmohammad Rooshenas. The Libra Toolkit for Proba-
bilistic Models. Journal of Machine Learning Research, 16:2459-2463, 2015.

40

Antonio Vergari et al.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Benjamin M Marlin, Kevin Swersky, Bo Chen, and Nando D Freitas. Inductive
Principles for Restricted Boltzmann Machine Learning. In AISTATS 2010,
pages 509-516, 2010.

James Martens and Venkatesh Medabalimi. On the Expressive Efficiency of
Sum Product Networks. CoRR, abs/1411.7717, 2014.

Marina Meila and Michael I. Jordan. Learning with mixtures of trees. Journal
of Machine Learning Research, 1:1-48, 2000.

Aniruddh Nath and Pedro M. Domingos. Learning tractable probabilistic
models for fault localization. CoRR, abs/1507.01698, 2016.

Robert Peharz. Foundations of Sum-Product Networks for Probabilistic Modeling.
PhD thesis, Graz University of Technology, SPSC, 2015.

Robert Peharz, Bernhard Geiger, and Franz Pernkopf. Greedy Part-Wise
Learning of Sum-Product Networks. In FECML-PKDD 2013, 2013.

Robert Peharz, Robert Gens, and Pedro Domingos. Learning selective sum-
product networks. In Workshop on Learning Tractable Probabilistic Models.
LTPM, 2014.

Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M. Domingos. On the
latent variable interpretation in sum-product networks. CoRR, abs/1601.06180,
2016.

Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz Pernkopf. Model-
ing speech with sum-product networks: Application to bandwidth extension.
In ICASSP2014, 2014.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos.
On theoretical properties of sum-product networks. The Journal of Machine
Learning Research, 2015.

Hoifung Poon. Tutorial on spn. NIPS2011, 2011.

Hoifung Poon and Pedro Domingos. Sum-Product Networks: a New Deep
Architecture. UAT 2011, 2011.

Tahrima Rahman and Vibhav Gogate. Merging strategies for sum-product
networks: From trees to graphs. In UAI pages 77-77, 2016.

Abdullah Rashwan, Han Zhao, and Pascal Poupart. Online and distributed
bayesian moment matching for parameter learning in sum-product networks.
In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, pages 1469-1477, 2016.

Martin Ratajczak, S Tschiatschek, and F Pernkopf. Sum-product networks for
structured prediction: Context-specific deep conditional random fields. Proc
Workshop on Learning Tractable Probabilistic Models, 1:1-10, 2014.
Amirmohammad Rooshenas and Daniel Lowd. Learning Sum-Product Networks
with Direct and Indirect Variable Interactions. In Proceedings of ICML 2014,
2014.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273-302, 1996.

Ruslan Salakhutdinov and Iain Murray. On the Quantitative Analysis of Deep
Belief Networks. In Proceedings of the ICML 2008, volume 25, 2008.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

Paul Smolensky. Information processing in dynamical systems: Foundations of
harmony theory. Technical report, DTIC Document, 1986.

Visualizing and Understanding Sum-Product Networks 41

45.

46.

47.

48.

49.

50.

o1.

52.

53.

54.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. CoRR, abs/1312.6199, 2013.

L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of
generative models. In International Conference on Learning Representations,
Nov 2016.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, Reg-
ularizing and Strengthening Sum-Product Network Structure Learning. In
ECML-PKDD 2015, 2015.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of ICML 2008, 2008.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? CoRR, abs/1411.1792, 2014.

Jason Yosinski, Jeff Clune, Anh Mai Nguyen, Thomas Fuchs, and Hod Lip-
son. Understanding neural networks through deep visualization. CoRR,
abs/1506.06579, 2015.

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks
for mid and high level feature learning. In International Conference on Computer
Vision, pages 2018-2025, 2011.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convo-
lutional networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
Tuytelaars, editors, Proceedings of the 13th European Conference on Computer
Vision, pages 818—-833. Springer International Publishing, 2014.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed
variational inference for sum-product networks. In In Proceedings of the 83rd
International Conference on Machine Learning, volume 48, 2016.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the Relationship between
Sum-Product Networks and Bayesian Networks. In ICML, 2015.

	1 Introduction
	2 Sum-Product Networks
	3 Sum-Product Networks Interpretations
	4 Experimental setup
	5 Visualizing Sum-Product Networks
	6 Representation Learning with Sum-Product Networks
	7 Related Work
	8 Conclusions

