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Abstract. Probabilistic models learned as density estimators can be ex-
ploited in representation learning beside being toolboxes used to answer
inference queries only. However, how to extract useful representations
highly depends on the particular model involved. We argue that tractable
inference, i.e. inference that can be computed in polynomial time, can
enable general schemes to extract features from black box models. We
plan to investigate how Tractable Probabilistic Models (TPMs) can be
exploited to generate embeddings by random query evaluations. We de-
vise two experimental designs to assess and compare different TPMs as
feature extractors in an unsupervised representation learning framework.
We show some experimental results on standard image datasets by ap-
plying such a method to Sum-Product Networks and Mixture of Trees
as tractable models generating embeddings.

1 Background And Motivation

Density estimation is the unsupervised task of learning a model θ estimating
a joint probability distribution p over a set of random variables (r.v.s) X that
are assumed to have generated a given set of observed samples {xi}mi=1. Once
such an estimator is learned, one can use it to do inference, that is computing
the probability of queries about certain states of the r.v.s, e.g. the marginals
pθ(Q),Q ⊆ X. Many machine learning problems can be reframed as different
kinds of inference tasks; for instance, the classification of a set of r.v.s Y can be
done by Most Probable Explanation (MPE) inference [13].

Examples of commonly used density estimators comprise Probabilistic Graph-
ical Models (PGMs) [13] like Bayesian Networks (BNs) and Markov Networks
(MNs), that represent the conditional dependence assumptions in p in a graph
formalism. On the other hand, (deep) neural models represent a factorization
of p by the means of neural architectures like Restricted Boltzmann Machines
(RBMs) and its variations [18], Fully Visible Sigmoid Belief Networks [8,2] or
embed an inference algorithm into a network evaluation, like in the case of Varia-
tional Autoencoders [12]. Accurately estimating complex distributions from data
and efficiently querying them are the required qualities for a good density es-
timator. Performing exact inference is, however, still a hard task in general.
For PGMs, for example, even approximate inference routines may end up being
exponential in the worst case [23].

ar
X

iv
:1

60
8.

02
34

1v
1 

 [
cs

.L
G

] 
 8

 A
ug

 2
01

6



We want to investigate how to extract useful representations from general
purpose density estimators. That is, finding a way to exploit probabilistic models,
already learned to encode p in an unsupervised fashion by using existing learning
algorithms, in order to transform the initial data into another representation
space. More specifically, we want to build an embedding for each sample, ei =
fθ,p(x

i), such that the transformation f is provided by a probabilistic model θ,
learned to estimate p. These embeddings could be employed in other tasks such as
clustering and classification, allowing for new transfer and unsupervised learning
schemas, as usually done in representation learning [3]. The usefulness of these
representations can be stated by proxy performance metrics on the subsequent
supervised tasks, e.g. the accuracy scored on predicting some previously unseen
sample labels [3]. Moreover, they could enable new ways to assess and compare
different models, going beyond the classic likelihood comparison, which can be
highly misleading sometimes [26].

To build a mapping fθ,p, one can take advantage of the geometric space in-
duced by pθ, the estimate of p according to model θ. A straightforward way is
to build each embedding component as the result of a single inference step on
θ according to some query Q = qj , i.e. eij = pθ(qj). The classic way in which
this has been implemented in the past is to employ the probability space embed-
dings in the construction of hand-crafted and problem dependent kernels, like
P-kernels [25]. Another possibility is to leverage additional first order informa-
tion as the one encoded in the gradient of p, as already done by Fisher vectors
and Fisher kernels [11]. However, to implement these classic approaches, one
has to derive analytically the embedding computation according to each model
parameters, a task not always feasible for all models [25].

We are interested in a generic procedure that employs different density esti-
mators as black boxes, despite their parametrizations or inner representations.
By following the first line of thought, we try to capture the differences among the
samples projected in various spaces induced by the probability densities encoded
in a model θ. The basic idea is to construct features with a random query gen-
erator, computing their values according to the evaluation of θ. Hence, tractable
inference routines become crucial to construct complex enough representations
by evaluating θ several times.

In the following sections we introduce Tractable Probabilistic Models and we
define two possible schemas to generate embeddings from them by leveraging the
tractability property. We then discuss a possible empirical evaluation of such a
framework and show some results for an experimental application on benchmark
image datasets, showing promising results.

2 Tractable Probabilistic Models

Tractable Probabilistic Models (TPMs) are density estimators for which exact
inference is polynomial in |X|. It is important to note that tractability of in-
ference is not a global property, but it is associated to classes of queries. For
instance, pointwise evidence, marginals, MPE inference and the computation of



a partition function, etc can each result tractable for some models while the
others are unfeasible for the same models [6].

Here we provide a rough classification and review for some TPMs commonly
found in the literature:

– low treewidth PGMs, alleviating the computation of the partition function
of p by limiting the model expressiveness in terms of the representable con-
ditional dependencies. They comprise models such as Hidden Markov Mod-
els [13], tree distributions and their mixture [19] or latent r.v. variants [4],
for which pointwise and marginal queries can be answered in time linear to
the number of r.v.s.

– computational models derived from a knowledge compilation process, in-
volving the elicitation of another representation form for p (e.g. the network
polynomial), usually encoding it into a computation graph. This is the case of
Arithmetic Circuits (ACs) [6], and Sentential Decision Diagrams (SDDs) [7],
both enabling intractable BNs and MNs to be compiled into data structures
for which marginals and even MPE inference can be answered in time linear
in the size of such structures [17].

– neural autoregressive models, factorizing p according to the chain rule and
modeling each factor by a (possibly deep) neural network. Models like Neural
Autoregressive Distribution Estimators (NADEs) [16] and Masked Autoen-
coder Distribution Estimators (MADE) [10] leverage constrained feedfoward
and autoencoder networks to provide pointwise inference linear in the size
of the networks. To answer marginal queries in polynomial time, variants
like EoNADE, allowing for an order agnostic training of the factors, are
necessary [27].

Complete evidences, marginals, and even the computation of the partition func-
tion for p are computable in tractable time for Sum-Product Networks (SPNs) [22].
SPNs are deep neural architectures equivalent to ACs for finite domains, com-
piling the network polynomial of p into a more sophisticated architecture that
introduces a latent variable semantics [21,20]. Differently from other tractable
neural models, SPNs guarantee that each hidden neuron still models a correct
probability distribution over a restriction of the input r.v.s X, named its scope.
This constrained form allows for a direct encoding of the input space. The great
interest around SPNs is also motivated by the increasing arsenal of structure
learning algorithms arising in the literature [9,28]. This makes SPNs one of the
few deep architectures for which the structure can be directly and effectively
learned and not crafted or tuned by hand.

3 Representation Learning for TPMs

For tractable models like HMMs one can leverage the emission probabilities
for each evaluated sample to generate a particular kernel [25]. This case is an
example of a model dependent embedding space construction, in which not only
the tractability of the model is mandatory, but also the input space definition



shall be suitable (e.g. sequences as samples). In the same way, building a Fisher
kernel for Gaussian Mixture Models can be done easily because it is possible to
compute the gradient of the likelihood in a closed form for each parameter.

For neural architectures, representations are usually extracted as the activa-
tions of hidden neurons after the evaluation of each input sample. It is common
practice to extract the embeddings from their last layers, comprising higher level
representations, hence the more informative ones [3]. While one could adopt the
same approach for other neural autoregressive density estimators, the proba-
bilistic meaning of the extracted features would be lost and a direct comparison
against other models would not be possible. Extracting node activations from an
SPN would retain their probabilistic interpretation, however they would highly
depend on the (structure or weight) learning algorithm employed to train the
model. Moreover, it is still not clear which hidden neurons to choose to extract
meaningful embeddings from an SPN. Following a layer-wise procedure for the
embedding extraction does not cope with the different scope semantics of an
SPN. As a general rule of thumb, one could employ all the nodes or all the
nodes of one kind (sum or products only).

We argue that different TPMs as black box density estimators can be used to
generate vector embeddings on a common ground, by defining a set of template
queries to be answered. By doing so, one is able to evaluate different regions of
the probability density surfaces induced by different queries. For instance, defin-
ing marginalized conditional queries would represent probability distributions
different from the joint p, highlighting local interactions for the input r.v.s.

The most basic way to do so is to generate these queries in a random fashion.
However, defining more sophisticated schemes is possible. In the end, a domain
knowledge guided embedding extraction process could be thought as a sort of
feature engineering step in which query template families are devised as features.

We propose two different embedding generation schemas exploiting random-
ness. In the first one, each feature template is constructed as a random marginal
query evaluation, i.e. a subset of r.v.s Qj ⊆ X, j = . . . , k is randomly chosen for
each component of the k-dimensional embedding to generate. Each sample em-
bedding is then exactly computed as eij = pθ(Qj = xiQj

), where xiQj
indicates

the restriction of the sample vector xi to the r.v.s in Qj . Again, the random
selection criterion can be lead by domain knowledge, e.g. if the samples xi are
images, it is meaningful to extract adjacent pixels as the r.v.s Qj . A sketch of
this process is presented in Algorithm 1.

The second approach, presented as Algorithm 2, extracts a set of random
“patches” from the training data, as s random portions of size d, {ri}si=1, from
randomly chosen input samples. Then a TPM θ is trained on this reduced
dataset. Each embedding component is then generated by evaluating the original
samples for different subsets {Qh ⊂ X}wh=1, |Qh| = d of the training samples of
length d, according to model θ. For instance, in a sliding window approach, with
unitary stride, the total number of adjacent subset of length d from a vector of
size n would be w = n − d. This is more meaningful for image samples as it is
a way to take into account pixel autocorrelation and translation invariance. If



Algorithm 1 randQueryEmbedding(D, k)

1: Input: a set of instances D = {xi}mi=1 over r.v.s X = {X1, . . . , Xn}, k as the
number of features to generate

2: Output: a set of embeddings E = {ei}mi=1, e
i ∈ Rk

3: θ ← learnDensityEstimator(D)
4: E ← {}
5: for j = 1, . . . , k do
6: Qj ← selectRandomRVs(X)
7: for i = 1, . . . ,m do
8: eij = pθ(x

i
Qj

)

9: E ← E ∪ {ei}
return E

Algorithm 2 randPatchEmbedding(D, s, d)

1: Input: a set of instances D = {xi}mi=1 over r.v.s X = {X1, . . . , Xn}, s as the
number of patches to extract, d as the patch length,

2: Output: a set of embeddings E = {ei}mi=1, e
i ∈ Rk

3: R← {}
4: for i = 1, . . . , s do
5: xrand ← selectRandomSample(D)
6: ri ← extractRandomPatch(xrand, d)
7: R← R∪ {ri}
8: θ ← learnDensityEstimator(R)
9: E ← {}

10: for i = 1, . . . ,m do
11: j ← 0
12: for each patch qi, |qi| = d in xi do
13: eij = pθ(q

i)
14: j ← j + 1

15: E ← E ∪ {ei}
return E

that were the case, this approach would be similar to the dictionary learning one
proposed in [5]. In this case, however, the feature generation scheme is directly
done by a pointwise evaluation of a whole TPM, which in turn is directly learned
on the patches.

In the first approach it is mandatory that the models involved guarantee
tractable marginal inference. Indeed, in a naive computation one would have to
ask a model k ·m marginal queries, and even if one cashes the answers for each
possible observable state configuration for the r.v.s Qj , assuming all of them to
have at most l values, l < m, it would end up with k · l evaluations. In a random
generation approach, the value of k will probably be large enough to demand
each single evaluation to be as fast as possible.

The first approach is also the more flexible one, since it can be adapted to
other types of queries, possibly involving more complex computations but still



tractable for certain models. For example, symmetric queries like parity counting,
end up being tractable for SDDs [1].

On the other hand, the second one requires only tractable pointwise infer-
ence. Therefore, it is more easily adaptable to a larger set of models, since all
locally learned models are globally evaluated and no marginal computations are
involved.

Both models allow for very different TPMs to be evaluated against the same
exact set of feature templates, since the generation of the random queries and
patches can be done just once in a comparative experiment. This aspect allows
for fairer comparisons among different models, moreover, it enables an additional
way to understand the structure of such models: feature selection routines ap-
plied on the generated embedding spaces could reveal particularly effective sets
of features hinting at powerful r.v.s interactions.

4 Evaluation

We plan to conduct a thorough empirical evaluation comprising at least two
TPMs for each of the kinds presented in the second section. The meaningfulness
and usefulness of the generated embeddings shall be measured against different
metrics and in different tasks. For instance, both multi-class and multi-label clas-
sification tasks are worth investigating, and for each one of them, several metrics
like accuracy, hamming loss and exact match shall be taken into account. The
main objective of this intensive empirical comparison is to investigate how dif-
ferent TPMs would behave under this general embedding extraction framework.

Here we present a smaller empirical evaluation of the first proposed approach
in a classification task on three standard benchmark image datasets. We employ
both SPNs and Mixture of Trees (MT) [19] as a PGM for which marginal in-
ference is tractable. We want to determine how different models, with different
expressive capabilities, generate embeddings against the same marginal query
evaluations. To learn a supervised classifier, we employ a logistic regressor with
an L2 regularizer in a one-versus-rest setting on top of all the embeddings we
generate. We use the implementation available in the scikit-learn framework1.
For each representation we determine the regularization coefficient C value in
{0.0001, 0.001, 0.01, 0.1, 1.0}, choosing the model with the best validation accu-
racy. As the simplest baseline possible, we apply such a classifier directly on
the initial data representation xi, denoting it with LR. To declare an extracted
representation as useful, we expect it to surpass the accuracy score of LR.

We consider the following datasets: Rectangles (REC) as introduced in [15],
Convex (CON), always introduced in [15], OCR Letters (OCR) as presented
in [14], Caltech-101 Silhouettes (CAL) [18] and a binarized version of MNIST
(BMN) as processed in [24]. The accuracy scores for the best LR models are
75.58% for OCR, 62.67% for CAL and 90.62% for BMN.

We employ models of the same family but with different model capacities
to study the effect of regularization on the same set of features. We learn three

1 http://scikit-learn.org/

http://scikit-learn.org/


differently regularized SPN models on each dataset, by employing LearnSPN-
b [28], a structure learning algorithm adopting a simplified iterated clustering
strategy for determine the insertion of the inner nodes in the networks. We
let vary the early stopping parameter m ∈ {500, 100, 50} while we fix the G-
test threshold ρ to 15 for OCR and 20 for all the other datasets. The effect of
parameter m is to regularize the learned SPNs, therefore it governs the model
capacity. We denote these models as SPN-I, SPN-II and SPN-III respectively. For
MT, we let the number of the mixture component vary among 3, 15 and 30,
ending up with three models, MT-I, MT-II, MT-III.

We evaluate all the models on 1000 randomly generated marginal queries on
each dataset. For each query we select r.v.s corresponding to adjacent pixels in
a rectangular image patch having minimum sizes of 2 pixels and maximum of 7
pixels for OCR and 10 pixels for the remaining datasets.

Figure 1 shows the accuracy scores by SPN-I, SPN-II, SPN-III and MT-I,
MT-II, MT-III on each dataset, while adding 100 features at a time. The first
consideration one can draw is that all models are able to beat the LR baselines
without using all the random features. On OCR, CAL and BMN, 300 features
appear to be enough, for better scoring models, even 200 features provide a nice
boost of 1 to 2 points in accuracy compared to the baselines. On REC and CON,
just 100 features score a very high accuracy, indicating that the geometric space
induced by the respective models is indeed meaningful. These considerations hint
to the effectiveness of such an approach despite its randomness.

It is also visible how such embedding accuracies improve as the number
of feature increases. This is true in almost all scenarios with the exception of
REC and CON. On these two datasets, a sort of model “herding” can be noted:
model performances are not growing noticeably while features are added, with
the exception of the more reguarized model, SPN-I on REC and of the least
regularized one, SPN-III on CON. Adding even more features seemed to leave
the performance as it is, with a decreasing pattern when the embedding length
has reached 2000. A behavior that is likely due to the introduction of too many
irrelevant features and to the curse of dimensionality.

Moreover, it is visible how the SPN extracted embeddings outperform the
MT generated ones in almost scenarios, with the exception of CON. If we were to
compare only the likelihood of these models, the MT ones would outperform the
SPN ones. One explanation for this behavior can be found in the better capacity
of the SPN structure learner in optimizing the marginal loglikelihood [9]. Nev-
ertheless, this clearly suggests that a learned representation comparison can be
new informative dimension along which to assess different probabilistic models.

Concerning the performance of differently regularized models, one can note
how more specialized models like SPN-III and SPN-II tend to perform less well
that SPN-I, a pattern that can be seen for MT-III on CAL as well. Such an evidence
can be considered as a form of overfitting for the density estimators. The greater
degree with which they are able to reconstruct and model the training set, even
if does not damage the test data likelihood, makes the extracted embedding
probably too specific, at least for this set of marginal queries.
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Fig. 1: Test accuracies for SPN and MT models on REC (Figs. 1a), CON
(Figs. 1b), OCR (Figs. 1c), CAL (Figs. 1d) and BMN (Figs. 1e). against 1000
features generated as random marginal queries evaluations. Logistic regressor as
a baseline is reported as LR.

5 Conclusions

We devised a general and model agnostic schema to extract embeddings from
Tractable Probabilistic Models by exploiting random query generations and eval-
uations. We plan to conduct an extensive empirical experimentation to investi-
gate in depth several models behavior according to different embedding evalua-
tion performances. A proposed empirical comparison on five different standard
image datasets and exploiting random marginal queries hints to the effectiveness
of this approach.

All in all, the proposed approaches could be used to compare differently
uncomparable models in a representation learning framework. They could serve
a role similar to Parzen windows when models for which the likelihood cannot
be easily computed have to be compared in a generative framework.

More sophisticated query types can improve this general but basic schema. It
would be interesting to correlate the embedding performances to different query
types according to different TPM models.
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