
Simplifying, Regularizing and Strengthening
Sum-Product Network Structure Learning

Antonio Vergari and Nicola Di Mauro and Floriana Esposito

University of Bari “Aldo Moro”, Bari, Italy
{antonio.vergari,nicola.dimauro,floriana.esposito}@uniba.it

Abstract. The need for feasible inference in Probabilistic Graphical
Models (PGMs) has lead to tractable models like Sum-Product Net-
works (SPNs). Their highly expressive power and their ability to pro-
vide exact and tractable inference make them very attractive for several
real world applications, from computer vision to NLP. Recently, great
attention around SPNs has focused on structure learning, leading to
different algorithms being able to learn both the network and its pa-
rameters from data. Here, we enhance one of the best structure learner,
LearnSPN, aiming to improve both the structural quality of the learned
networks and their achieved likelihoods. Our algorithmic variations are
able to learn simpler, deeper and more robust networks. These results
have been obtained by exploiting some insights in the building process
done by LearnSPN, by hybridizing the network adopting tree-structured
models as leaves, and by blending bagging estimations into mixture cre-
ation. We prove our claims by empirically evaluating the learned SPNs
on several benchmark datasets against other competitive SPN and PGM
structure learners.

1 Introduction

Probabilistic Graphical Models (PGMs) [13] use a graph-based representation
eliciting the conditional independence assumptions among a set of random vari-
ables, thus providing a compact encoding of complex joint probability distribu-
tions. The most common task one want to solve using PGMs is inference, a task
that becomes intractable for complex networks, a difficulty often circumvented
by adopting approximate inference. For instance, computing the exact marginal
or conditional probability of a query is a #P-complete problem [27].

However, there are many recently proposed PGMs where inference becomes
tractable. They include graphs with low treewidth, such as tree-structured graph-
ical models where each variable has at most one parent in the network struc-
ture [7], and their extensions with mixtures [18] or latent variables [6], or Thin
Junction Trees [4], allowing controlled treewidths. Being more general than all
of these models and yet preserving tractable and exact inference, Sum-Product
Networks (SPNs) [23] provide an interesting model, successfully employed in im-
age reconstruction and recognition [23,9,1], speech recognition [21] and NLP [5]
tasks. Similarly to Arithmetic Circuits (ACs) [16], to which they are equivalent

for finite domains [26], they compile a high treewidth network into a deep prob-
abilistic architecture. By layering inner nodes, sum and product nodes, they en-
code the probability density function over the observed variables, represented as
leaf nodes. SPNs guarantee inference in time linear to their network size [23], and
they possibly becomes more expressively efficient as their depth increases [17].

Recently the attention around SPNs has focused on structure learning algo-
rithms as ways to automate latent interaction discovery among observed vari-
ables and to avoid the cost of parameter learning [8,19,10,26]. While many of
these efforts concentrated on optimizing the likelihoods of the models, little
attention has been devoted to the structural quality of such models, or to un-
derstand how data quality effects the learning process.

In this paper we extend and simplify one of the state-of-the-art SPN structure
learning algorithm, LearnSPN [10], providing several improvements and insights.
We show how to a) learn simpler SPNs, i.e. ones with less edges, parameters and
more layers, b) stop the building process earlier while preserving goodness of fit,
and c) be more robust and resilient in estimating the dependencies from data. In
order to accomplish this we limit the number of node children when building the
network, we introduce tractable multivariate distributions, in the form of Chow-
Liu trees [7], as leaves of an hybrid architecture without adding complexity to the
network, and we enhance the mixture models of an SPN via bootstrap samples,
i.e. by applying bagging for the likelihood function estimation.

We produced different algorithmic variants incorporating one or more of these
enhancements, and thoroughly evaluated them on standard benchmark datasets,
both under the structure quality perspective and the more usual data likelihood
gain. We compared them against the original algorithm, the best SPN structure
learner up to now, ID-SPN [26], and MT [18], learning mixture of trees, reported
to be the second best algorithm in [26] on the same datasets.

2 Sum-Product Networks

Sum-Product Networks have been introduced in [23] as a general architecture ef-
ficiently encoding an unnormalized probability distribution over a set of random
variables X = {X1, . . . , Xn}. The graphical representation of an SPN consists
of a rooted DAG, S, whose leaves correspond to univariate distributions of ob-
servable variables in X, while internal nodes are sum or product nodes. The
scope of each internal node i, denoted as Xψi

, is defined as the set of variables
appearing as its descendants. The sub-network Si rooted at node i encodes the
unnormalized distribution over its scope. The parameters of the network are
the positive weights wij associated to each edge i → j in S, where i is a sum
node. As in [10,26] we will refer to the whole network as S, and, for a given
state x of the variables X, we will indicate as S(x) the unnormalized probabil-
ity of x according to the SPN S , i.e., the value of S’s root when the network
is evaluated after X = x is observed. Intuitively, sum nodes encode mixtures
over probability distributions whose coefficients are the children weights, while
product nodes identify factorizations over independent distributions. Examples

of different SPNs are shown in Figure 1. For the sake of simplicity, we are consid-
ering X to be discrete valued random variables (the extension to the continuous
case is straightforward [23]).

An SPN is said to be decomposable if the scopes of the children of product
nodes are disjoint, and complete when the scopes of sum nodes children are the
same. Decomposability and completeness imply validity [23], i.e. the property
of correctly and exactly computing each evidence probability by evaluating the
network, that is, for a network S and a state x, P (X = x) = S(x)/Z, where Z
is the partition function, defined as Z =

∑
x S(x). From now on, we will assume

the SPNs we are considering to be valid.
To compute S(x), the whole network is evaluated bottom-up. For a leaf

node i, representing the variable Xk, Si(x) corresponds to univariate distribution
values for x, i.e. Si(x) = P (Xk = x). While for a generic internal node i, a) if it
is a product node, then Si(xψi) =

∏
i→j∈S Sj(xψj); b) if it is a sum node, then

Si(xψi) =
∑
i→j∈S wijSj(xψj). If the weights of each sum node i sum to one,∑

j wij = 1, and the leaf distributions are normalized, then the network will
compute the exact, normalized, probability, i.e. ∀x, P (X = x) = S(X). For the
rest of the paper we will assume SPNs being normalized in this way. Following
these considerations, it can be demonstrated that all the marginal probabilities,
the partition function and all MPE queries and states can be computed in time
linear in the size of the network, i.e. its number of edges [10].

X1 X2 X3 X4 X5 X6

(a)

X1 X2 X3 X4 X5 X6

(b)

X5

X4

X5

X3

X6 X6

X2 X1

(c)

w1 w2

w3 w4

(d)

w2w1w3 w1w4

(e)

Fig. 1: Examples of SPNs: a naive factorization over 6 random variables (1a), a
shallow mixture standing for a pointwise kernel density estimation (1b) and a
deeper architecture (1c) over the same scope (weights are omitted for simplicity).
An SPN with alternated layers of nodes of the same kind (1e) obtained from
pruning the one in (1d) and yet encoding the same distribution.

Note that this does not automatically imply the tractability of inference, for
it to be feasible the number of edges should be polynomial in the number of
random variables. One way to control the number of edges is to layer the nodes

into a deep architecture, where parameters are reused across the levels. We de-
fine the depth of a network as the longest path from the root to a leaf node in
networks with strictly interleaving layers of nodes of the same kind. Note that
it is always possible to convert an SPN in such a layered architecture. A node
c having parents {pi}Ii=1 sharing its same type can be pruned, and c’s children,
{gj}Jj=1, can be directly attached to each pi. If c was a sum node, the new weights
for each gj can be computed as wpicwcgj , see Figures 1d and 1e. For a visual
comparison of how the depth impacts the network size, see Figure 1c, where lo-
cal dependencies are exploited compared to the shallow SPN in Figure 1b where
they are not and each leaf is fully connected to the upper layer. Moreover, it has
been shown that increasing the depth of a network makes it more expressively
efficient [17]. Even the number of weights in a network impacts weight learning
feasibility [9], when hand-crafted SPNs are employed, usually some sparsity con-
straint is applied during learning to prune as many edges as possible [23]. The
opportunity to directly learn the structure of an SPN offers a way to govern the
time future inferences and learning stages will take. However, up to now, the
focus of structure learning algorithms has not been the quality of the learned
architectures in terms of depth, number of parameters and edges, but the abil-
ity to better capture the data probability distribution in terms of the achieved
likelihood scores.

2.1 Structure learning

Learning the structure of SPNs has always been tackled as a constraint-based
search problem exploiting heuristics and statistical tests to elicit the local latent
relationships in the data [8,19]. The first principled structure learning algorithm
is LearnSPN [10], it performs a greedy construction of treed SPNs, also referred
to as formula SPN [17], i.e. networks with inner nodes having at most one parent.
Nevertheless it is still the most attractive for its simplicity, parallelizability and
ability to learn the networks weights as well. It is the starting point for all the
extensions we will introduce.

The core idea behind LearnSPN, which is sketched in Algorithm 1, is to grow
a tree top down by recursively partitioning the input data matrix consisting of a
set T of rows as i.i.d instances, over V , the set of columns, i.e. the features. For
each call of LearnSPN on a submatrix, column splits add child nodes to product
nodes, while those on rows extend sum nodes. To split columns, the correspond-
ing features are checked for independency by means of a statistical test in the
splitFeatures procedure, while clusterInstances is employed to aggregate rows to-
gether by a similarity criterion. The weights of sum nodes children represent
the proportions of instances falling into the computed clusters (line 13). Termi-
nation is achieved in two cases, when the current submatrix contains only one
column (line 3) or when the number of its rows falls under a certain threshold
m (line 5). In the former, a leaf node, standing for a univariate distribution, is
introduced by estimating it from the submatrix data entries, i.e., for categorical
random variables by counting their values occurrences while applying Laplace

Algorithm 1 LearnSPN(T , V , α, m)

1: Input: a set of row instances T over a set of column features V ; m: minimum
number of instances to split; α: Laplace smoothing parameter

2: Output: an SPN S encoding a pdf over V learned from T
3: if |V | == 1 then
4: S ← univariateDistribution(T, V, α)
5: else if |T | < m then
6: S ← naiveFactorization(T, V, α)
7: else
8: {Vj}Cj=1 ← splitFeatures(V, T)
9: if C > 1 then

10: S ←
∏C

j=1 LearnSPN(T, Vj , α,m)
11: else
12: {Ti}Ri=1 ← clusterInstances(T, V)

13: S ←
∑R

i=1
|Ti|
|T | LearnSPN(Ti, V, α,m)

return S

Algorithm 2 naiveFactorization(T , V , α)

1: Input: a set of row instances T over a set of column features V , α Laplace smooth-
ing parameter

2: Output: an SPN S encoding a product of factors V estimated from T
3: return S ←

∏|V |
j=1 univariateDistribution(T, Vj , α)

smoothing with parameter α. In the latter, the random variables for the subma-
trix columns are modeled with a naive factorization, i.e. they are considered to
be independent and a product node is put over a set of univariate leaf nodes, as
in Algorithm 2.

It is worth noting that the two splitting procedures depend on each other:
the quality of row clusterings is likely to be enhanced by column splits correctly
identifying dependent features. At the same time, well done instance splits would
allow for finer independence tests in the next call of the algorithm. The likelihood
on the data is never computed explicitly, the search for local hidden relationships
leads to small submatrices whose likelihood can be easily estimated via naive
factorizations. In [10] it is said that if the two splitting procedures are able to
exactly separate the columns into independent groups and the rows by similarity,
they would lead to locally optimal structures in the terms of data likelihood.

While the presented version of LearnSPN allows for different kinds of splitting
procedures, the way they are implemented is crucial. In [10] a G-Test is used to
check for the independence of pairs of random variables in splitFeatures: if the
test p-value is less than a threshold ρ, then the two features are considered to
be independent. Two subsets of approximately dependent features are produced
by exploring features starting from one randomly chosen. Rows are aggregated
into an adaptive number of clusters l, by employing the hard online EM algo-
rithm. Columns Vj are assumed to be independent given the row clusters Ci, i.e.,
P (V) =

∑
i P (Ci)

∏
j P (Vj |Ci). To control the cluster numbers, an exponential

prior on clusterings in the form of e−λl|V | is used, with λ as a tuning parame-
ter. In this concrete formulation, the algorithm searches for treed SPNs in the
hyperparameter space formed by m, α, ρ and λ. If the algorithm finds all the
features in the complete data matrix to be independent, it would build an SPN
representing a naive factorization consisting in a single product node over |V |
leaves (like the one in Figure 1a over X1, . . . , X6). However, this degeneration is
prevented by forcing a split on the rows during the first call of the algorithm.
On the other hand, in the case of each cluster containing a single instance, the
network would be similar to a pointwise kernel density estimation (see Figure 1b
for a graphical example, where six instances are considered).

3 Contributions

Being greedy by design, LearnSPN, is highly prone to learn far from optimal
structures, both in terms of likelihood scores and network quality. This is par-
ticularly true when the training data is noisy and/or scarce. The statistical tests
implemented by the splitting procedures can easily be mislead into wrong choices,
and, worst of all, overfitting could lead to overcomplex networks for which in-
ference can be an issue. Given these shortcomings, our contributions will affect
them in several ways: here we show how limiting the number of node children
while splitting leads to deeper and simpler networks, how more complex and yet
tractable factorizations as leaves are able to reduce network complexity favoring
early termination, and how model averaging by bagging can be blended into the
definition of SPNs in order to get more robust models.

3.1 Deepening by limiting node splits

Our first contribution is to limit the number of node children while learning,
resulting in networks that will be deeper, and potentially with less edges and
parameters. Basically, we fix to two the number of submatrices the current matrix
can split into, for each call of LearnSPN, i.e., C ≤ 2 and R ≤ 2 on lines 8,
12 of Algorithm 1. This is already achieved in LearnSPN when splitFeatures is
implemented to decompose the features into two subsets, thus our variation will
effectively limit only row splits.

This simplifying idea is based on a number of observations. The first one is
that checking earlier and more often for independency among features enhances
the quality of row splits, reduces the average number of sum node children mak-
ing the network less wide but deeper. Successive splits along the same axis can be
seen as a hierarchical divisive clustering process whose termination is achieved
when splits along the other axis happen. The aim is to slow down this greedy
decision process to make it take the most out of data, while trying to exactly
determine all the splits along one axis at once would lead to local optima faster.
Secondly, we can observe that other splits on the same axis could always be
done in the following iterations, but only if necessary. As noted in the previous
section, in this way we are not limiting the expressive power of the learned SPNs

at all, since after pruning nodes whose parent has their same type, the number
of children per node can be more than two. This variation can be seen as an ap-
plication of the simplicity bias criterion. By not committing to complex choices
too early, the algorithm remains able to explore structures where the splits on
the features could lead to better networks. Moreover, it is also more robust to
overclustering in noisy situations since in those cases it can receive the valuable
help from the anticipated independence tests. As our experiments suggested, this
is particularly true when a row split is forced on the first call of LearnSPN.

Under these observations, to implement clusterInstances in our simplified ver-
sion one could still use any clustering algorithm, but limiting the number of
clusters to two, thus resulting in one hyperparameter less to tune.

3.2 Regularization by tractable multivariate distribution
hybridization

As our second contribution, we tackle the problem of fitting tractable multi-
variate distributions as leaves of an SPN. By substituting them to the naive
factorizations we aim at a twofold objective: improving the network likelihood
by capturing finer local dependencies when estimating leaf distributions, and
being able to stop the building process earlier.

To balance complexity and expressive power, we chose tree-structured dis-
tributions as the simplest tractable distributions that are able to model more
dependencies than a naive factorization while not adding complexity to the struc-
ture by adding additional parameters or layers. Directed Tree distributions [18]
are Bayesian Networks whose nodes, standing for the random variables Xj , have
at most one parent each, Paj , which leads to the following factorization for the
joint distribution P (X) =

∏
j P (Xj |Paj). From this formulation, it is easy to see

how we preserve the same complexity for computing inference on complete evi-
dences: it reduces again to a product of the same number of factors. Differently
from a naive factorization, each factor here provides the valuable information
about the conditional dependency between parent and child variables. More-
over, tree distributions guarantee that marginalizations, and MPE inference as
well, can be computed in time linear to the number of factors [18]. The validity of
the network is also preserved, row and column splits guarantee that the scope of
the multivariate leaves will not compromise decomposability nor completeness.

The classic Chow-Liu algorithm [7] can be used to learn the tree distribu-
tion that best approximates the underlying joint distribution in terms of the
Kullback-Liebler divergence. The algorithm builds a maximum spanning tree
over the graph formed by the pairwise Mutual Information (MI) values among
each pair of columns in the current submatrix. It then turns the undirected tree
into a directed one by randomly selecting a root and traversing it. In practice,
we substitute the procedure naiveFactorization from line 6 of Algorithm 1 with
the procedure LearnCLT as shown in Algorithm 3. In our hybrid architecture
now leaves can be simple univariate distributions like before or subnetworks St
encoding multivariate tree distributions over the set Xψt

of random variables.
Computing St(xψt) equals to evaluate the Chow-Liu tree on xψt .

Algorithm 3 LearnCLT(T , V , α)

1: Input: a set of instances T over a set of features V , α Laplace smoothing parameter
2: Output: a Chow-Liu tree S encoding a pdf over V learned from T
3: M ← 0|V |×|V |
4: for each Xu, Xv ∈ V do
5: Mu,v ← estimateMutualInformation(Xu, Xv, α)

6: T ← maximumSpanningTree(M)
7: return S ← traverseTree(T)

The complexity of learning a Chow-Liu tree is quadratic in the number of
features taken into account, however efficient implementations can lower it to
sub-quadratic times [18]. Note that we limit this stage to the last steps of the
algorithm, where submatrices have usually only few features.

The hyperparameter α is still needed to smooth the marginals in Algorithm 3,
line 5. If we consider the original formulation of LearnSPN, m and α offer the only
simplistic forms of regularization, however, when using naive factorizations, m is
not as valuable in terminating the search earlier as it is when tree distributions
are employed. In fact, to have the naive independency assumption hold, one has
to let the search continue up to small submatrices, where even larger ones can
be equally or better approximated by a Chow-Liu tree. As we will show in the
Section 5, by doing a grid search over the hyperparameter m, the best likelihood
wise structures on a validation set, employing naive factorizations, would prefer
smaller values for m, while the best ones introducing tree distributions would
likely be the ones learned with larger values for m. In this way one is able to
prefer even simpler models, possibly avoiding overfitting.

3.3 Strengthening by model averaging

While on the previous sections we concentrated on improving the structure qual-
ity, our next contribution will focus on directly increasing the likelihood estima-
tion capability of LearnSPN. In order to do so, we leverage a very well know
statistical tool for robust parameter estimation: bagging [12].

Before performing a split on rows, we draw k bootstrapped samples TBi
from

the current submatrix (sampling rows with replacements) and on each of those
we call clusterInstances, thus leading to k learned SPNs, SBi . We then build
the resulting network as a sum node as the parent of all the other sum nodes
representing the roots of the networks SBi

. We introduce 1/k as the weight for
these nodes, as in usual parameter estimation by bagging1. The bagged SPN
would result in this more robust estimation: Ŝ =

∑k
i=1

1
kSBi

. Note that while
this approach is theoretically applicable at each stage of the algorithm before
learning the mixture components, it will eventually build a network with an
exponential number of edges, making inference unfeasible in practice. Hence we

1 We have experimented with weights proportional to the likelihood score obtained by
each bootstrapped component, however the gain over uniform ones is negligible.

Algorithm 4 baggingSPN(T , V , α, m, k)

1: Input: a set of row instances T over a set of column features V ; m: minimum
number of instances to split; α: Laplace smoothing parameter

2: Output: an SPN S encoding a pdf over V learned from T
3: {TBi}ki=1 ← bootstrapSamples(T, k)
4: return S ←

∑k
i=1

1
k
LearnSPN(TBi , V, α,m)

limit this step to the first recursive call, where the split on rows is mandatory
and it is more likely to improve the model estimation globally. The procedure,
which we call baggingSPN is shown in Algorithm 4.

Our approach is similar to the one used in the discriminative framework for
tasks like regression, when model averaging is applied over a set of bootstrapped
weak learners, e.g. forests of regression trees [12]. In our case it is worth noting
that the resulting architecture is still an SPN: by pruning the roots of the SPNs
SBi as shown in the previous section, we end up with a single sum node averaging
local and possibly perturbed distributions over the same scopes; as a matter of
fact the validity of the network is preserved as well as the ability to use it
as a generative model. Inference is tractable as long as the number of edges
remains polynomial. Indeed, the newly introduced complexity grows linearly
in the number of the bootstrapped components, k. To limit the growth of the
number of edges and parameters in the network, it would be possible to merge
identical subtrees to compact the model; or, by separating the bootstrapped
SPNs aggregation from their learning phases, one could use a more informative
procedure, i.e. a L1-regularized gradient descent, to select only the components
consistently contributing to the likelihood increase.

4 Related works

The first SPN structure learner has been proposed in [8]. It splits the data
matrix top-down, however splits and their meaning are different from LearnSPN:
instances are clustered only once, at the start, and feature clustering is achieved
by K-Means, which is not able to locate independencies correctly. Arbitrary sum
nodes are then introduced as product nodes parents. The EM algorithm is needed
to learn the network weights. On the other hand, [19] proceeds bottom-up by
selecting the features to merge iteratively with a Bayesian-Dirichlet test, then
sum nodes and their parameters are learned by maximizing the MI through the
Information Bottleneck method, however considering only the best likelihood
scoring features to reduce the high complexity of the approach. Like in [8] the
learned SPNs are not tree structured, while the overall approach is still greedy.

The recent ID-SPN algorithm [26], by exploiting both indirect and direct in-
teractions among variables, unifies works on learning SPNs through top-down
clustering with works on learning tractable Markov networks [16]. ID-SPN learns
Sum-Products of Arithmetic Circuits (SPACs) models which consist of sum and

product nodes as inner nodes, and ACs as leaf nodes. ID-SPN consistently out-
performs the previous SPN and several other PGM structure learners [26]. AC
leaves can potentially better approximate more complex distributions than our
Chow-Liu tree leaves, however, at the cost of increasing structural complexity.
Note that our approach differs from ID-SPN not only on the choice of tractable
distributions to model leaves, but also on governing the greedy process. Starting
from a single AC, ID-SPN splits each leaf into two new ACs only if this improves
directly the likelihood on data, while we let the search be guided indirectly by
the splitting procedures, estimating leaf distributions only at the end. This, com-
bined with the high complexity of the base algorithm to learn ACs [16], makes
ID-SPN very slow in practice.

Another search approach based on directly maximizing the likelihood is found
in [20] where less expressive SPNs, named Selective SPNs, allow the efficient
optimization of a closed form of the likelihood function by stochastic local search.

On the side of mixtures of generative models, a very competitive structure
learner algorithm is MT [18]. MT learns a distribution of the form: Q(x) =∑k
i=1 λiTi(x), where the distributions Ti, learned with the Chow-Liu algorithm [7],

are the mixture components and λi ≥ 0,
∑k
i=1 λi = 1 are their coefficients. [18]

finds the best components and weights as (local) likelihood maxima by using
EM, with k fixed in advance. MT is reported as the second most accurate model
after ID-SPN in [26]. The hybrid SPNs we propose can express more latent
interactions than a single mixture of Chow-Liu trees, moreover, they allow leaf
scopes to consist of single random variables or subsets of the whole scope. Hybrid
architectures like ours are referred to as Generalized SPNs in [22].

While leading to potentially long learning times, the EM algorithm is still the
preferred choice to learn mixtures of generative models, like in the recent case
of mixtures of Cutset Networks (CNets) [24]. CNets are weighted probabilistic
model trees with Chow-Liu trees as leaves. Their inner nodes are OR nodes con-
ditioning on a variable, thus they do not represent latent features and despite the
depth of the tree they are shallow architectures. Similar works, applying bagging
to a generative scenario like ours, are those from [25] and [2]. In the former, bag-
ging is used to regularize the variant of EM proposed to determine the number
of components in boosting a mixture of density estimators. In the latter, again
applied to density estimation, a perturbing strategy derived from bootstrapped
or totally random samples lead to more robust mixtures of tree distributions. A
further work by the same authors relaxes the Chow-Liu algorithm on random
subspaces to further differentiate mixture components [3].

5 Experiments

To empirically evaluate our enhancements, namely Binary row clustering, Tree
distributions as leaf nodes, and model averaging through Bagging, we consider
these algorithmic variations of LearnSPN: SPN-B, implementing the first one,
SPN-BT adding to that the second one, SPN-BB including the clustering fix and
bagging, and SPN-BTB, which incorporates all three of them.

For the original LearnSPN we used the publicly available Java implementa-
tion2 from [10]. For the aforementioned ID-SPN, we used the implementation
from the Libra toolkit [14]. However, since we were not able to reproduce the
results shown in [26], we used the best learned models scores, kindly provided
by the authors (which we thank). As a third competitor, we used MT, whose
implementation can also be found in the Libra package. We implemented all our
variations in Python3, taking advantage of the scikit-learn version of EM used
for Gaussian Mixture Models4 for our variant of the clusterInstances procedure.

|V | |Ttrain| |Tval| |Ttest| |V | |Ttrain| |Tval| |Ttest|

NLTCS 16 16181 2157 3236 DNA 180 1600 400 1186
MSNBC 17 291326 38843 58265 Kosarek 190 33375 4450 6675

KDDCup2k 65 180092 19907 34955 MSWeb 294 29441 3270 5000
Plants 69 17412 2321 3482 Book 500 8700 1159 1739
Audio 100 15000 2000 3000 EachMovie 500 4525 1002 591
Jester 100 9000 1000 4116 WebKB 839 2803 558 838

Netflix 100 15000 2000 3000 Reuters-52 889 6532 1028 1540
Accidents 111 12758 1700 2551 BBC 1058 1670 225 330

Retail 135 22041 2938 4408 Ad 1556 2461 327 491
Pumsb-star 163 12262 1635 2452

Table 1: Datasets used and their statistics.

We evaluated the inferred networks comparing both the learned structures
quality and their likelihood scores on an array of 19 datasets, firstly introduced
in [15] and [11], now a standard to compare graphical model structure learning
algorithms [15,10,16,26]. They are binarized versions of datasets from tasks like
classification, frequent itemset mining, recommendation. The training, validation
and test splits statistics are reported in Table 1. Their features range from 16 to
1556, while training instances from 1670 to 291326, making them very suitable to
evaluate how we improve LearnSPN under our dimensions on different scenarios.

Our first experimental objective is to verify whether SPN-B and SPN-BT do
learn deeper and more compact structures compared to LearnSPN, and to do this
we measure the number of edges, layers and parameters of each learned model.
Secondly, we compare all algorithms in terms of average test data likelihoods
to verify if structural improvements damage likelihood scores and how much
bagging, on the other hand, improves them. ID-SPN does not appear in the first
confrontation since we were provided only the model scores.

2 http://spn.cs.washington.edu/learnspn/
3 Code is available at http://www.di.uniba.it/~vergari/code/spyn.html
4 http://goo.gl/HNYjfZ

http://spn.cs.washington.edu/learnspn/
http://www.di.uniba.it/~vergari/code/spyn.html
http://goo.gl/HNYjfZ

5.1 Experimental design

For each algorithm, we selected the best parameter configurations based on the
average validation log-likelihood scores, then evaluated such models on the test
sets. For LearnSPN we performed an exhaustive grid search for ρ ∈ {5, 10, 15, 20},
λ ∈ {0.2, 0.4, 0.6, 0.8}, m ∈ {10, 50, 100, 500} and α ∈ {0.1, 0.2, 0.5, 1, 2}, leaving
EM restarts to the default 4. For SPN-B and SPN-BT we use the same parameter
space for ρ, m and α, to make the comparison as fair as possible. We leave all
the default parameters for scikit-learn’s EM unchanged, with the exception of
the number of restarts which we set to 3. Note that in [10], α and m were not
considered hyperparameters, we are introducing them to show effective regular-
ization in the form of early stopping achieved when not naive factorizations are
employed. For ID-SPN, please refer to the original article for its complete exper-
imental settings; here we point out that its overparametrization, which is likely
a key factor in its performance, required a uniform random search in the pa-
rameter space, since an exhaustive one would have been unfeasible. Concerning
MT, we learned a number of components k from 2 up to 30, with increments of
2, rerunning each experiment five times to mitigate EM random initializations.

To reduce the complexity of the experiments for both SPN-BB and SPN-BTB,
we did not employed a grid search, but we used the best validation values for ρ,
m and α as previously found by SPN-B and SPN-BT respectively. We learned
k = 50 bootstrapped components for each of the two, then, we composed the
models by adding one component at a time, selecting as the resulting composite
model the one with the best validation score.

5.2 Results and discussion

In Table 2 are reported the edge, the layers and the parameters statistics for
the best models learned by LearnSPN, SPN-B and SPN-BT. As it can be seen,
the introduction of the limited Binary row clustering always makes the networks
deeper and significantly reduces the number of edges for both variants, except
for SPN-B on Netflix. It is worth noting that on datasets like BBC, Reuters-
52 and MSWeb, while the number of parameter increases, the networks grow
deeper and not wider, preventing edge explosions. When SPN-BT yields smaller
networks than SPN-B, e.g. on Plants, Audio, Netflix, Kosarek and Book, the
gain is huge in terms of edges and parameters saved, while considerable depths
are preserved. On the other hand, on cases like NLTCS, MSNBC, KDDCup2K,
Jester and BBC no structural improvement is observed if we add to the count
the number of edges in the Chow-Liu trees. Table 3 reports the average test
log likelihoods; the scores in bold are significantly better than all others under a
Wilcoxon signed rank test with p-value of 0.05. Figure 2a shows the total number
of times one algorithm wins under this same test. SPN-B proves no worst than
the original algorithm on all but two datasets, scoring even six victories, the
same value achieved by ID-SPN. The addition of the Chow-Liu trees variant in
SPN-BT improves SPN-B scores on 13 datasets, confirming the ability of trees
to better capture local dependencies at low levels.

edges # layers # params

LearnSPN SPN-B SPN-BT LearnSPN SPN-B SPN-BT LearnSPN SPN-B SPN-BT

NLTCS 7509 1133 1133 (1125) 4 15 15 476 275 275
MSNBC 22350 4258 4258 (3996) 4 21 21 1680 1071 1071

KDDCup2k 44544 4272 4272 (4166) 4 25 25 753 760 760
Plants 55668 13720 5948 (1840) 6 23 20 3819 2397 490
Audio 70036 16421 4059 (478) 8 23 15 3389 2631 105
Jester 36528 10793 10793 (8587) 4 19 19 563 1932 1932

Netflix 17742 25009 4132 (203) 4 25 14 1499 4070 82
Accidents 48654 12367 10547 (6687) 6 25 26 5390 2708 1977

Retail 7487 1188 1188 (1153) 4 23 23 171 224 224
Pumsb-star 15247 12800 9984 (6175) 8 25 23 1911 2662 1680

DNA 17602 3178 4225 (2746) 6 13 12 947 884 1113
Kosarek 7993 8174 2216 (1311) 6 27 21 781 1462 242
MSWeb 17339 9116 7568 (6797) 6 27 34 620 1672 1446

Book 42491 9917 3503 (3485) 4 15 13 1176 1351 430
EachMovie 52693 20756 20756 (17861) 8 23 23 1010 2637 2637

WebKB 52498 45620 8796 (6874) 8 23 16 1712 6087 1128
Reuters-52 307113 77336 77336 (59197) 12 31 31 3641 8968 8968

BBC 318313 63723 63723 (41247) 16 27 27 1134 6147 6147
Ad 70056 23606 23606 (20079) 16 59 59 1060 1222 1222

Table 2: Structural quality results for the best validation models for LearnSPN,
SPN-B and SPN-BT as the number of edges, layers and parameters. For SPN-BT
are reported the number of edges considering those in the Chow-Liu leaves and
without considering them (in parenthesis).

LearnSPN SPN-B SPN-BT ID-SPN SPN-BB SPN-BTB MT

NLTCS -6.110 -6.048 -6.048 -5.998 -6.014 -6.014 -6.008
MSNBC -6.099 -6.040 -6.039 -6.040 -6.032 -6.033 -6.076

KDDCup2k -2.185 -2.141 -2.141 -2.134 -2.122 -2.121 -2.135
Plants -12.878 -12.813 -12.683 -12.537 -12.167 -12.089 -12.926
Audio -40.360 -40.571 -40.484 -39.794 -39.685 -39.616 -40.142
Jester -53.300 -53.537 -53.546 -52.858 -52.873 -53.600 -53.057

Netflix -57.191 -57.730 -57.450 -56.355 -56.610 -56.371 -56.706
Accidents -30.490 -29.342 -29.265 -26.982 -28.510 -28.351 -29.692

Retail -11.029 -10.944 10.942 -10.846 -10.858 -10.858 -10.836
Pumsb-star -24.743 -23.315 -23.077 -22.405 -22.866 -22.664 -23.702

DNA -80.982 -81.913 -81.840 -81.211 -80.730 -80.068 -85.568
Kosarek -10.894 -10.719 -10.685 -10.599 -10.690 -10.578 -10.615
MSWeb -10.108 -9.833 -9.838 -9.726 -9.630 -9.614 -9.819

Book -34.969 -34.306 -34.280 -34.136 -34.366 -33.818 -34.694
EachMovie -52.615 -51.368 -51.388 -51.512 -50.263 -50.414 -54.513

WebKB -158.164 -154.283 -153.911 -151.838 -151.341 -149.851 -157.001
Reuters-52 -85.414 -83.349 -83.361 -83.346 -81.544 -81.587 -86.531

BBC -249.466 -247.301 -247.254 -248.929 -226.359 -226.560 -259.962
Ad -19.760 -16.234 -15.885 -19.053 -13.785 -13.595 -16.012

Table 3: Average test log likelihoods for all algorithms.

Le
ar
nS
PN

SP
N
-B

SP
N
-B
T

ID
-S
PN

SP
N
-B
B

SP
N
-B
T
B

M
T

LearnSPN - 2 1 1 0 0 2
SPN-B 6 - 1 3 1 1 10

SPN-BT 6 13 - 3 2 1 11
ID-SPN 6 12 12 - 7 5 17
SPN-BB 11 18 15 11 - 3 16

SPN-BTB 11 18 18 13 14 - 16
MT 6 7 8 1 3 3 -

(a) (b)

Fig. 2: Numbers of statistically significant victories (Wilcoxon signed rank test,
p-value= 0.05) for the algorithms on the rows compared to those on columns
in 2a. Average test likelihood values (y-axis) on Plants for SPN-BB and SPN-
BTB at the increase of k (x-axis), and the values from the best models from
LearnSPN, ID-SPN and MT are reported in 2b.

To consistently beat ID-SPN one has to give up simpler structures and make
more robust ones with SPN-BB and SPN-BTB, which score 11 and 13 wins respec-
tively. The likelihoods obtained on the datasets with fewer instances and many
more features, are much higher than the ones from ID-SPN and MT. This proves
how bagging can be effectively embedded as a very cheap way to strengthen
sum node mixtures. In our experiments for SPN-BB and SPN-BTB, we found a
monotonic behavior, resulting in k = 50 as the best validation parameter, while
for MT this value highly varies, implying that tuning is unavoidable. Trying to
balance inference complexity and likelihood accuracy one can limit k for SPN-
BB and SPN-BTB to smaller values. In Figure 2b we show an example of the
test likelihood gain by increasing k for both algorithms on Plants, plotting the
best value achieved by LearnSPN, ID-SPN and MT as a comparison. SPN-BB
and SPN-BTB, with k = 50, score faster learning times than ID-SPN (run with
default parameters) on all but four datasets, and sometimes even than MT which
has less components, e.g. for Accidents, the times in seconds are 15472, 9198,
8280, 14073 for ID-SPN, SPN-BB, SPN-BTB and MT, respectively. Additional re-
sults including p-values, times, best parameter configurations on validation and
the plots for the remaining datasets are availabe in the supplementary material5.

6 Conclusions

We focused on enhancing LearnSPN, a state-of-the-art SPN structure learner, by
proposing three algorithmic variations to improve the network quality in terms of
the numbers of edges, layers and parameters on the one hand and the likelihood
score on the other. We showed how limiting the number of node children while

5 http://www.di.uniba.it/~vergari/code/spyn.html

http://www.di.uniba.it/~vergari/code/spyn.html

splitting yields simpler and deeper networks; how the introduction of Chow-Liu
trees as multivariate leaf nodes leads to even more compact SPNs allowing an
early interruption of the building process; and how embedding bagging into sum
node mixtures can result in more robust models. An extensive empirical evalua-
tion on standard datasets proved our enhancements to be effective, suggesting a
number of future investigations: studying other ways of hybridizing SPNs with
tractable multivariate distributions as building blocks; how to apply other en-
sembling methods like arcing and boosting to sum node splits and the possible
application of input corruption techniques to make this generative model even
more robust. To balance structure compactness with likelihood gains we could
try to prune or graft subtrees from different bootstrapped SPNs encoding exactly
or approximately equal distributions. Furthermore, applying these ideas to other
tractable models structure learning algorithms could also be an opportunity.

Acknowledgements

Work supported by the project PUGLIA@SERVICE (PON02 00563 3489339)
financed by the Italian Ministry of University and Research (MIUR) and by the
European Commission through the project MAESTRA, grant no. ICT-2013-
612944. Experiments executed on the resources made available by two projects
financed by the MIUR: ReCaS (PONa3 00052) and PRISMA (PON04a2 A).

References

1. Amer, M.R., Todorovic, S.: Sum-product networks for modeling activities with
stochastic structure. In: (CVPR), 2012 IEEE Conference on. pp. 1314–1321. IEEE
(2012)

2. Ammar, S., Leray, P., Defourny, B., Wehenkel, L.: Probability density estimation
by perturbing and combining tree structured markov networks. In: Proceedings of
the 10th ECSQARU. pp. 156–167. Springer (2009)

3. Ammar, S., Leray, P., Schnitzler, F., Wehenkel, L.: Sub-quadratic markov tree
mixture learning based on randomizations of the Chow-Liu algorithm. In: Pro-
ceedings of the 5th European Workshop on Probabilistic Graphical Models. pp.
17–24 (2010)

4. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Advances in Neural Information
Processing Systems 14. pp. 569–576. MIT Press (2001)

5. Cheng, W., Kok, S., Pham, H.V., Chieu, H.L., Chai, K.M.A.: Language model-
ing with sum-product networks. In: 15th Annual Conference of the International
Speech Communication Association. pp. 2098–2102 (2014)

6. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree
graphical models. Journal of Machine Learning Research 12, 1771–1812 (2011)

7. Chow, C., Liu, C.: Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)

8. Dennis, A., Ventura, D.: Learning the architecture of sum-product networks using
clustering on varibles. In: Advances in Neural Information Processing Systems 25.
pp. 2033–2041. Curran Associates, Inc. (2012)

9. Gens, R., Domingos, P.: Discriminative learning of sum-product networks. In: Ad-
vances in Neural Information Processing Systems 25. pp. 3239–3247. Curran As-
sociates, Inc. (2012)

10. Gens, R., Domingos, P.: Learning the structure of sum-product networks. In: Pro-
ceedings of the 30th International Conference on Machine Learning. pp. 873–880.
JMLR Workshop and Conference Proceedings (2013)

11. Haaren, J.V., Davis, J.: Markov network structure learning: A randomized feature
generation approach. In: Proceedings of the 26th Conference on Artificial Intelli-
gence. AAAI Press (2012)

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer (2009)

13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

14. Lowd, D., Rooshenas, A.: The Libra Toolkit for Probabilistic Models. CoRR
abs/1504.00110 (2015)

15. Lowd, D., Davis, J.: Learning markov network structure with decision trees. In:
Proceedings of the 10th IEEE International Conference on Data Mining. pp. 334–
343. IEEE Computer Society Press (2010)

16. Lowd, D., Rooshenas, A.: Learning markov networks with arithmetic circuits. In:
Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics. JMLR Workshop Proceedings, vol. 31, pp. 406–414 (2013)

17. Martens, J., Medabalimi, V.: On the expressive efficiency of sum product networks.
CoRR abs/1411.7717 (2014)

18. Meilă, M., Jordan, M.I.: Learning with mixtures of trees. Journal of Machine Learn-
ing Research 1, 1–48 (2000)

19. Peharz, R., Geiger, B., Pernkopf, F.: Greedy part-wise learning of sum-product
networks. In: Machine Learning and Knowledge Discovery in Databases, LNCS,
vol. 8189, pp. 612–627. Springer (2013)

20. Peharz, R., Gens, R., Domingos, P.: Learning selective sum-product networks. In:
Workshop on Learning Tractable Probabilistic Models. LTPM (2014)

21. Peharz, R., Kapeller, G., Mowlaee, P., Pernkopf, F.: Modeling speech with sum-
product networks: Application to bandwidth extension. In: International Confer-
ence on Acoustics, Speech and Signal Processing. pp. 3699–3703. IEEE (2014)

22. Peharz, R., Tschiatschek, S., Pernkopf, F., Domingos, P.: On theoretical properties
of sum-product networks. The Journal of Machine Learning Research (2015)

23. Poon, H., Domingos, P.: Sum-product network: a new deep architecture. NIPS
2010 Workshop on Deep Learning and Unsupervised Feature Learning (2011)

24. Rahman, T., Kothalkar, P., Gogate, V.: Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of Chow-Liu trees. In: Machine
Learning and Knowledge Discovery in Databases, LNCS, vol. 8725, pp. 630–645.
Springer (2014)

25. Ridgeway, G.: Looking for lumps: Boosting and bagging for density estimation.
Computational Statistics & Data Analysis 38(4), 379–392 (2002)

26. Rooshenas, A., Lowd, D.: Learning sum-product networks with direct and indirect
variable interactions. In: Proceedings of the 31st International Conference on Ma-
chine Learning. pp. 710–718. JMLR Workshop and Conference Proceedings (2014)

27. Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1–2),
273–302 (1996)

	Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning

