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Abstract. The probabilistic graphs framework models the uncertainty inherent
in real-world domains by means of probabilistic edges whose value quantifies the
likelihood of the edge existence or the strength of the link it represents. The goal
of this paper is to provide a learning method to compute the most likely relation-
ship between two nodes in a framework based on probabilistic graphs. In particu-
lar, given a probabilistic graph we adopted the language-constrained reachability
method to compute the probability of possible interconnections that may exists
between two nodes. Each of these connections may be viewed as feature, or a fac-
tor, between the two nodes and the corresponding probability as its weight. Each
observed link is considered as a positive instance for its corresponding link label.
Given the training set of observed links a L2-regularized Logistic Regression has
been adopted to learn a model able to predict unobserved link labels.

1 Introduction

Over the last few years the extension of graph structures with uncertainty has
become an important research topic [1-4], leading to probabilistic graph model.
Probabilistic graphs model uncertainty by means of probabilistic edges whose
value quantifies the likelihood of the edge existence or the strength of the link
it represents. One of the main issues in probabilistic graphs is how to compute
the connectivity of the network. The network reliability problem [5] is a gen-
eralization of the pairwise reachability, in which the goal is to determine the
probability that all pairs of nodes are reachable from one another. Unlike a de-
terministic graph in which the reachability function is a binary value function
indicating whether or not there is a path connecting two nodes, in the case of
probabilistic graphs the function assumes probabilistic values.

The concept of reachability in probabilistic graphs is used, along with its
specialization, as a tool to compute how two nodes in the graph are likely to be
connected. Reachability plays an important role in wide range of applications,
such as in peer-to-peer networks, for probabilistic-routing problem, in road net-
work, and in trust analysis in social networks. Reachability is quite similar to the
general concept of link prediction [6], whose task may be formalized as follows.



Given a networked structure (V, E') made up of a set of data instances V' and
set of observed links £ among some nodes in V/, the task corresponds to predict
how likely should exist an unobserved link between two nodes. The extension
to probabilistic graphs adds an important ingredient that should be adequately
exploited. The key difference with respect to classical link prediction is that here
the observed connections between two nodes cannot be considered always true,
and hence methods exploiting probabilistic links are needed.

The goal of this paper is to provide a learning method to compute the most
likely relationship between two nodes in probabilistic graphs. In particular, given
a probabilistic graph we adopted the reachability tool to compute the probabil-
ity of some possible interconnections that may exists between two nodes. Each
of these connections may be viewed as a feature, or a pattern, between the two
nodes and the corresponding probability as its weight. Each observed labeled
link is considered as a positive instance for its corresponding link label. The link
label corresponds to the value of the output variable y;, and the features between
the two nodes, computed with the reachability tool, correspond to the compo-
nents of the corresponding vector x;. Given the training set D = {(x;, y;) }1{,
obtained from n observed links, a L.2-regularized Logistic Regression has been
adopted to learn a model to be used to predict unobserved link labels.

The proposed approach is quite similar to that of propositionalization pro-
posed in the fields of Statistical Relational Learning [7], where the relational
data are flattened to a propositional representations using relational fetures in
order to have efficient learning results. Here the further problem that we have to
handle is that the relational representation is uncertain.

The application domain we chosen corresponds to the problem of recom-
mender systems [8], where the aim is to predict the unknown rating between an
user and an item. The experiments on a real-world dataset prove that the pro-
posed approach achieves better results than that obtained with models induced
by Singular Value Decomposition (SVD) [9] on the user-item ratings matrix,
representing one of the best recent methods for this kind of task [10].

2 Probabilistic Graphs

Let G = (V, E), be a graph where V is a collection of nodes and £ € V x V' is
the set of edges, or relationships, between the nodes.

Definition 1 (Probabilistic graph). A probabilistic graph is a system G =
(V,E, X, ly,lg,s,t,pe), where (V, E) is an directed graph, V is the set of
nodes, I is the set of ordered pairs of nodes where e=(s,t), 2. is a set of labels,
ly 'V — X is a function assigning labels to nodes, lp, : E — X' is a func-
tion assigning labels to the edges, s : E — V is the source node of an edge,



t : E — V is the target node of an edge, p. : E — [0, 1] is a function assigning
existence probability values to the edges.

The existence probability p.(a) of an edge a = (u,v) € E is the probability
that the edge a, between v and v, can exist in the graph. A particular case of
probabilistic graph is the discrete graph', where binary edges between nodes
represent the presence or absence of a relationship between them, i.e., the exis-
tence probability value on all observed edges is 1. The possible world semantics
is usually used for probabilistic graphs. We can imagine a probabilistic graph G
as a sampler of worlds, where each world is an instance of GG. A discrete graph
G’ is sampled from G according to the probability distribution P,, denoted as
G’ C G, when each edge a € F is selected to be an edge of G’ with probabil-
ity pe(a). Edges labeled with probabilities are treated as mutually independent
random variables indicating whether or not the corresponding edge belongs to a
discrete graph.

Assuming independence among edges, the probability distribution over dis-
crete graphs G’ = (V, E') C G = (V, E) is given by

P(AG) = [] pe(@) T (1 =pela)). (1)

ackE’ a€E\E'

Definition 2 (Simple path). Given an uncertain graph G, a simple path of a
length k from u to v in G is an acyclic path denoted as a sequence of edges
DPuw = (€1,€2,...ex), suchthate; = (u,v1), ex = (Vi,,v), and e; = (vi—1, ;)
forl < < k.

Given an uncertain graph G, and p, , a path in G from node u to node v,
U(pyuw) = l(e1)l(e2)---1l(er) denotes the concatenation of labels of all the
edges in p,,. We adopt a regular expression R to denote what is the exact se-
quence of labels that the path must contain.

Definition 3 (Language-constrained simple path). Given a probabilistic graph
G and a regular expression R, a language constrained simple path is a simple
path p such that {(p) € L(R).

2.1 Inference

Given a probabilistic graph GG a main task corresponds to compute the probabil-
ity that there exists a simple path between two nodes u and v, that is, querying
for the probability that a randomly sampled discrete graph contains a simple
path between u and v. More formally, the existence probability P.(q|G) of a

! Sometimes called certain graph.



simple path g in a probabilistic graph G corresponds to the marginal P((q, G')|G)
with respect to g:

P.(qlG) = > P(qG)- P(G'|G) )
G'CG

where P(q|G’) = 1 if there exits the simple path ¢ in G’, and P(q|G’") = 0
otherwise. In other words, the existence probability of the simple path ¢ is the
probability that the simple path ¢ exists in a randomly sampled discrete graph.

Definition 4 (Language-constrained simple path probability). Given a prob-
abilistic graph G and a regular expression R, the language-constrained simple
path probability of L(R) is

P.(q|L(R),G) = > P(q|G',L(R)) - P(G'|G) (3)
G'CG

where P(q|G’, L(R) = 1 if there exists a simple path q in G’ such that {(q) €
L(R), and P(q|G’, L(R)) = 0 otherwise.

The previous definition give us the possibility to compute the probability of a set
of simple path queries, or patterns, fulfilling the structure imposed by a regular
expression. In this way we are interested in discrete graphs that contain at least
one simple path belonging to the language denoted by the regular expression.

Computing the existence probability directly using (2) or (3) is intensive and
intractable for large graphs since the number of discrete graphs to be checked
is exponential in the number of probabilistic edges. It involves computing the
existence of the simple path in every discrete graph and accumulating their prob-
ability. A natural way to overcome the intractability of computing the existence
probability of a simple path is to approximate it using a Monte Carlo sampling
approach [11]: 1) we sample n possible discrete graphs, G1,Go, .. .G, from
G by sampling edges uniformly at random according to their edge probabilities;
and 2) we check if the simple path exists in each sampled graph G;. This process
provides the following basic sampling estimator for P, (q|G):

5 o PglG!
P.(4l0) ~ P(glG) = 2= ) "

Note that is not necessary to sample all edges to check whether the graph
contains the path. For instance, assuming to use an iterative depth first search
(DFS) procedure to check the path existence. When a node is just visited, we
will sample all its adjacent edges and pushing them into the stack used by the
iterative procedure. We will stop the procedure either when the target node is
reached or when the stack is empty (non existence).



3 Link Classification

After having defined the probabilistic graph, now we can adopt language-constrained
simple paths in order to extract probabilistic features (patterns) to describe the
link between two nodes in the graph.

Given a probabilistic graph (G, with the set V' of nodes and the set £ of
edges, and Y C 3 a set of edge labels, we have a set of edges D C F such
that for each element e € D: [g(e) € Y. In particular D represents the set of
observed links whose label belongs to the set Y. Given the set of training links
D and the set of labels Y we want to learn a model able to correctly classify
unobserved links. A way to solve the classification task can be that of using a
language based classification approach. Given an unobserved edge e; = (u;, v;),
in order to predict its class ¢; € Y we can solve the following maximization
problem:

Ui = argm]aXP(qj‘(Uiava)v )

where ¢;(u;,v;) is the unknown link with label ¢; € Y between the nodes u;
and v;. In particular, the maximization problem corresponds to compute the link
prediction for each ¢; € Y and then choosing that label with maximum likeli-
hood. The previous link prediction task is based on querying the probability of
some language-constrained simple path. In particular, predicting the probability
of the label ¢; as P(g;(u;, v;)|G) in (5) corresponds to compute the probability
P(q|G) for a query path in a language L;, i.e., computing P(L;|G) as in (3):

y; = argmax P(q;(u;,v;)|G) ~ argmax P(q|L;, Q). (6)
j J

The previous query based approach consider the languages used to compute
the (6) as independent form each other without considering any correlation be-
tween them. A more interesting approach that we want investigate in this paper
is to learn from the probabilistic graph a linear model of classification com-
bining the prediction of each language constrained simple path. In particular,
given an edge e and a set of k languages £ = {L,..., Ly}, we can generate
k real valued features x; where z; = P(q|L;,G), 1 < ¢ < k. The original
training set of observed links D can hence be transformed into the set of in-
stances D = {(x, y;) }i=1,... n, Where x; is a k-component vector of features
xi; € [0, 1], and y; is the class label of the corresponding example x;.

Linear classification represents one of the most promising learning tech-
nique for problems with a huge number of instances and features aiming at
learning a weight vector w as a model. L2-regularized Logistic Regression be-
longs to the class of linear classifier and solves the following unconstrained



optimization problem:

T n
min f(w) = (W VoY log(1 + eXp(—yZ-WTXi))> , 7
v 2 i=1

where log(1 + exp(—yw!x;)) = &(W;x;,y;) denotes the specific loss func-
tion, %WTW is the regularized term, and C' > 0 is a penalty parameter. The
decision function corresponds to sgn(w'x;). In case of binary classification
y; € {—1,41}, while for multi class problems the one vs the rest strategy
can be used. Among many methods for training logistic regression models,
such as iterative scaling, nonlinear conjugate gradient, quasi Newton, a new
efficient and robust truncated Newton, called trust region Newton method, has
been proposed [12]. In order to find the parameters w minimizing f(w) it is
necessary to set the derivative of f(w) to zero. Denoting with o (y;w’x;) =
(14 exp(—y;w!x;))~!, we have:

0
giv w + CZ yzw X;) — 1) yix; = 0.
To solve the previous score equation, the Newton method requires the Hessian
matrix: 2 f(w)
O f(w T
—— =14+ CX"DX
owowT + ’

where X is the matrix of the x; values, D is a diagonal matrix of weights with
ith diagonal element o (y;w?x;)(1 — o(y;w’x;)), and I is the identity matrix.

The Newton step is W™ « w49 4+ s°ld where s° is the solution of the
following linear system:

52f(W01d) gold _ Of( Old>‘
owowT ow
Instead of using this update rule, [12] propose a robust and efficient trust
region Newton method, using new rules for updating the trust region, whose
corresponding algorithm has been implemented in the LIBLINEAR? system.

4 EXPERIMENTAL EVALUATION

The application domain we chosen to validate the proposed approach is that of
recommender systems. In some domains both data and probabilistic relation-
ships between them are observable, while in other domain, like in this used in
this paper, it is necessary to elicit the uncertain relationships among the given
evidence.

http://www.csie.ntu.edu.tw/~cjlin/liblinear.



4.1 Probabilistic graph creation

A common approach to elicit probabilistic hidden relationships between data is
based on using similarity measures. To model the data with a graph we can adopt
different similarity measures for each type of node involved in the relationships.

In a recommender system we have two types of entities: the users and the
items, and the only observed relationship corresponds to the ratings that a user
has assigned to a set of items. The goal is to predict the rating a user could
assign to an object that he never rated in the past. In the collaborative filter-
ing approach there are two methods to predict unknown rating exploiting users
or items similarity. User-oriented methods estimate unknown ratings based on
previous ratings of similar users, while in item-oriented approaches ratings are
estimated using previous ratings given by the same user on similar items.

Let U be a set of n users and [ a set of m items. A rating r,; indicates the
preference degree the user u expressed for the item ¢, where high values mean
stronger preference. Let .S, be the set of items rated from user u. A user-based
approach predicts an unobserved rating 7,; as follows:

_— ZveU\iesu ou (U, v) - (Tyi — T)

Tui = Ty +
ui u EUGU\iESu |0’u(u,v)‘

®)

where 7, represents the mean rating of user u, and o, (u, v) stands for the sim-
ilarity between users u and v, computed, for instance, using the Pearson corre-

. Z S.NS (Tua*ﬁ)'(rvafﬁ)
lation: o (u,v) = a€5u NSy .
U( ’ ) \/ZaGSuﬁSU (rua=Tu)? L aesuns, (Tva=Tv)?
On the other side, item-based approaches predict the rating of a given item

using the following formula:

— ZjeSuU;ﬁi Jz(Zaj) *Tuj

T = — )
Y Yiesuyziloiti )l

where o;(4, ) is the similarity between the item 7 and j.

These neighbourhood approaches see each user connected to other users or
consider each item related to other items as in a network structure. In particular
they rely on the direct connections among the entities involved in the domain.
However, as recently proved, techniques able to consider complex relationships
among the entities, leveraging the information already present in the network,
involves an improvement in the processes of querying and mining [13, 14].

Recommender Probabilistic Graph Given the set of observed ratings K =
{(w, 7, 7y;)|Tu; is known}, we add a node with label user for each user in
IC, and a node with label item for each item in K. The next step is to add



the edges among the nodes. Each edge is characterized by a label and a prob-
ability value, which should indicate the degree of similarity between the two
nodes. Two kind of connections between nodes are added. For each user u, we
added an edge, labeled as simU, between v and the k£ most similar users to
u. The similarity between two users u and v is computed adopting a weighted
Pearson correlation between the items rated by both « and v. In particular, the
probability of the edge simU connecting two users v and v is computed as:
P(simU(u,v)) = oy(u,v) - wy(u,v), where o, (u,v) is the Pearson correla-
tion between the vectors of ratings corresponding to the set of items rated by
both user w and user v, and wy, (u, v) = Sy, N Sy|/|Su U Sy|.

For each item ¢, we added an edge, with label simI, between ¢ and the most
k similar items to 4. In particular, the probability of the edge simI connect-
ing the item ¢ to the item j has been computed as: P(simI(,j)) = o0i(i,7) -
w;(7,7), where (7, j) is the Pearson correlation between the vectors corre-
sponding to the histogram of the set of ratings for the item ¢ and the item 7, and
w;(i,§) = [S; N'S;|/1S: US|, where S; is the set of users rating the item i.

Finally, edges with probability equal to 1, and with label rj between the
user u and the item ¢, denoting the user u has rated the item ¢ with a score equal
to k, are added for each element (u, , %) belonging to /C.

4.2 Feature construction

Let us assume that the values of r,; are discrete and belonging to a set R.
Given the recommender probabilistic graph G, the query based classification ap-
proach try to solve the problem 7,; = argmax; P(r;(u,?)|G), where r;(u,1)
is the unknown link with label r; between the user u and the item 4. This
link prediction task is based on querying the probability of some language
constrained simple path. For instance, a user-based collaborative filtering ap-
proach may be obtained by querying the probability of the edges, starting from
a user node and ending to an item node, denoted by the regular expression
L; = {simU'r}}. In particular, predicting the probability of the rating j as
P(rj(u,1i)) corresponds to compute the probability P(q|G) for a query path
in Lj, i.e., ry; = argmax; P(r;(u,7)|G) ~ argmax; P(L;|G). In the same
way, item-based approach could be obtained by computing the probability of
the paths constrained by the language L; = {r}simI'}.

The power of the proposed framework gives us the possibility to construct
more complex queries such as that constrained by the language L; = {r;simI" :
1 < n < 2}, that gives us the possibility to explore the graph by considering
not only direct connections. Hybrid queries, such as those constrained by the
language L; = {r;simI”: 1 <n <2} U {simUmri1 : 1 <m < 2}, give us
the possibility to combine the user information with item information.



In order to use the feature based classification approach proposed in this
paper we can define a set of regular expression £ and then computing for each
language L; € L the probability P(L;|G) between a given user and all the items
the user rated. In particular, the set of observed ratings K = {(u, 7, 7y;)|ru; 18
known} is mapped to the training set D = {(x;,y;) }i=1,....n, Where x;; is the
probability P(L;|G) between the nodes u and 4, and y; is equal to 7;.

The proposed link classification method has been implemented in the Eagle
system 3 that provides a set of tools to deal with probabilistic graphs.

4.3 Dataset

In order to validate the proposed approach we used the MovieLens dataset*,
made available by the GroupLens research group at University of Minnesota
for the 2nd International Workshop on Information Heterogeneity and Fusion
in Recommender Systems. We used the MovieLens 100K version consisting
of 100000 ratings (ranging from 1 to 5) regarding 943 users and 1682 movies.
Each user has rated at least 20 movies and there are simple demographic info
for the users (such as age, gender, occupation, and zip code).In this paper we
used the ratings only without considering the demographic information. Movie-
Lens 100K dataset is divided in 5 fold, where each fold present a training data
(consisting of 80000 ratings) and a test data (with 20000 ratings).
For each training/testing fold the validation procedure followed the steps:

1. creating the probabilistic graph from the training ratings data set as reported
in Section 4.1;

2. defining a set £ of regular expressions to be used to construct a specific set

of features as described in Section 4.2;

learning the L2-regularized Logistic Regression model; and

4. testing the ratings reported in the testing data set 7 by computing, for each
pair (u, ) € T the predicted rating adopting the learned classification model
and comparing the result with the true prediction reported in 7.

et

For the graph construction, edges are added using the procedure presented
in Section 4.1, where we set the parameter n = 30, indicating that an user or a
film is connected, respectively, to 30 most similar users, resp. films. The value
of each feature have been obtained with the Monte Carlo inference procedure
by sampling M discrete graphs.

In order to construct the set of features, we proposed to query the paths
belonging to the set of languages £ reported in Table 1. The first language-
constrained simple paths L; corresponds to adopt a user-based approach, while

Shttp://www.di.uniba.it/~claudiotaranto/eagle.html
‘http://ir.ii.uam.es/hetrec20ll/datasets.html



the second language Lo gives us the possibility to simulate an item-based ap-
proach. Then, we propose to extend the basic languages L; and Lo in order
to construct features that consider a neighbourhood with many nested levels.
Finally, we constructed hybrid features by combining both the user-based and
item-based methods and the large neighbourhood explored with paths whose
length is greater than one (L5, Lg and Lg).

We defined two sets of features 71 = {L1, Lo, L3, L4, L5}, based on sim-
ple languages, and Fo» = {Ls, L4, L5, Lg, L7, Lg, Ly}, exploiting more com-
plex queries. In order to learn the classification model as reported in Section 3,
we used the L2-regularized Logistic Regression implementation included in the
LIBLINEAR system [12].

Table 1. Language constrained simple paths used for the MovieLens dataset.

Ly = {simU'r}}

Lo = {risimF'}

Ly = {rpsimF™:1<n <2}

Ly = {simU"r} : 1 < n <2}

Ls = {simU"r} : 1 <n <2} U {risimF™ : 1< n < 2}
Le = {rpsimF™: 1 <n < 3}

L7 = {simU"r} : 1 < n < 3}

Ls = {simU"r} : 1 <n < 3} U {risimF™:1<n < 3}
Lo = {simU"r} : 1 <n <4} U{risimF™:1<n < 4}

Given a set 7 of testing instances, the accuracy of the proposed framework
has been evaluated according to the macroaveraging mean absolute error [15]:
o~ k o~
MAEM (75;,T) = % ijl \Tlﬂ ineTj |Twi — Tui|, where T; C T denotes the
set of test rating whose true class is j.

4.4 Results

Table 2 shows the results obtained adopting the proposed approach implemented
in the Eagle system when compared to those obtained with the RecSys SVD
approach based implementation’. The first row reports the mean value of the
MAEM averaged on the five folds obtained with an SVD approach and with the
proposed classification method as implemented in the Eagle system. As we
can see the error achieved by our method is lower than that obtained by the SVD
method. The results improve when we use the set F» of features. The difference
of the results obtained with the two methods is statistically significant, with a
p-value for the t-test equal to 0.0000023 when using the set /7 of features, and

Shttps://github.com/ocelma/python-recsys



equal to 0.000000509 for the other set of features. The last two columns report
the results of two baseline methods. The second last column reports the results
obtained with a system that predicts a rating adopting a uniform distribution,
while the last column reports the results of a system that uses a categorical
distribution that predicts the value k of a rating with probability py = |Dx|/N,
where D, is the number of ratings belonging to the dataset having value &, and
N is the total number of ratings.

Table 2. MAE™ values obtained with Eagle and SVD on MovieLens dataset.

l Fold [ SVD Eagle@F; Eagle@F, U C
1 0.9021 0.8424 0.8255
2 0.9034 0.8332 0.8279
3 09111 0.8464 0.8362
4 0.9081 0.8527 0.8372
5 0.9159 0.8596 0.8502
Mean [0.908+0.006 0.847+0.01 0.835+0.01 1.6 1.51
p-value 2.3E-6 5.09E-7

In Table 3 we can see the errors committed by each method for each rating.
The rows for the methods U and C report the mean of the MAE™ value for each
fold using a system adopting a uniform or a categorical distribution. The dataset
is not balanced as and both the SVD and the proposed method adhere more to the
categorical distribution proving that they are able to recognize the unbalanced
distribution of the dataset

Table 3. MAE™ values for each class obtained with Eagle and SVD on MovieLens dataset.

Method rl 2 3 4 15
U 20 14 12 14 2.0

C 2.53 1.65 1.00 0.89 1.47

SVD 1.62 1.03 0.55 0.44 0.88
Eagle@F7|1.16 0.76 0.67 0.60 1.02
Eagle@F3|1.11 0.75 0.68 0.62 1.00

S CONCLUSIONS

In this paper we adopt the probabilistic graphs framework to deal with uncertain
problems exploiting both edges probabilistic values and edges labels denoting
the type of relationships between two nodes. In this paper the Eagle system



integrating a framework based on probabilistic graphs able to deal with link
prediction problems adopting reachability has been presented. We proposed a
learning method to compute the most likely relationship between two nodes in
probabilistic graphs. Given the training set of observed links a L2-regularized
Logistic Regression has been adopted to learn a model able to predict the la-
bel of unobserved links. The experimental evaluation proved that the proposed
approach achieves better results when compared to that obtained with models
induced by Singular Value Decomposition on the user-item ratings matrix, rep-
resenting one of the best recent method for this kind of problem.
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