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Abstract—We introduce and evaluate a technique to tackle
relational learning tasks combining a framework for mining
relational queries with a hierarchical Bayesian model. We present
the novel rsLDA algorithm that works as follows. It initially
discovers a set of relevant features from the relational data useful
to describe in a propositional way the examples. This corresponds
to reformulate the problem from a relational representation space
into an attribute-value form. Afterwards, given this new features
space, a supervised version of the Latent Dirichlet Allocation
model is applied in order to learn the probabilistic model. The
performance of the proposed method when applied on two real-
world datasets shows an improvement when compared to other
methods.

I. INTRODUCTION

Learning in domains that cannot be adequately represented
with a propositional language needs effective machine learn-
ing techniques. These domains where the data are strongly
interrelated and structured can be elegantly described with
Statistical Relational Learning (SRL) [1] or Probabilistic In-
ductive Logic Programming (PILP) [2] languages that com-
bine statistical learning techniques with relational (or first
order logic) representations. The vast interest in SRL has
resulted in a wide variety of different formalisms, models
and probabilistic programming languages, such as probability
logic based formalisms or modelling approaches concerning
the combination of relational database models and graphical
models, such as Probabilistic Horn Abduction (PHA) [3],
Probabilistic Logic Programming (PLP) [4], Bayesian Logic
Programming (BLP) [5], Logic Programs with Annotated
Disjunctions (LPADs) [6], [7], Probabilistic Relational Models
(PRMs) [8], Relational Markov Networks (RMNs) [9], and
Markov Logic Networks (MLNs) [10].

Another possible perspective towards SRL consists in re-
stricting expressiveness, this way allowing for more efficient
learning and inference algorithms. This category includes
for instance dynamic propositionalization approaches such as
nFOIL [11], that integrates the naive Bayes probabilistic model
with a relational rule learner, KFOIL [12], where a relational
kernel function is learnt and defined in terms of a small set of
interpretable relational features, and Lynx [13], that combines
the naive Bayes probabilistic model with relational queries
mining.

If on the one hand an expressive representation formalism
allows one to deal with complex and structured data, on the
other hand modern Bayesian analysis provides the hierarchical

Bayesian method as a powerful tool for representing rich statis-
tical models. Hierarchical modelling is a fundamental concept
in Bayesian statistics, where the parameters are endowed with
distributions which may themselves introduce new parameters
(some parameters are partly determined from distributions
defined by other parameters, named hyperparameters) [14].

The goal of this paper is to combine a hierarchical Bayesian
model with relational learning. In particular, we propose a
propositionalization approach for relational learning integrat-
ing the Latent Dirichlet allocation [15] (LDA) model. A way
to tackle the task of relational learning corresponds to reformu-
late the problem into an attribute-value form and then applying
a propositional learner [16]. The reformulation process may
be obtained adopting a feature construction method, such as
mining relational queries that can then be successfully used as
new Boolean features [17], [18], [19].

LDA is a mixed membership model, generalising a finite
mixture model, in which each data point is associated with
multiple draws from a mixture model. The mixture model is
composed by two levels. LDA was originally proposed in [15]
as a probabilistic model for uncovering the underlying seman-
tic structure of a document collection based on a hierarchical
Bayesian analysis of the original texts. There is a finite mixture
whose components can be viewed as representations of fopics,
and then a latent Dirichlet variable that provides a random
set of mixing proportions for the underlying finite mixture.
The idea of LDA is to model documents as arising from
multiple topics, where a topic is defined to be a distribution
over a fixed vocabulary of terms. K topics are associated with
a collections, and each document exhibits these topics with
different proportions.

Similar in the spirit to other propositionalization Inductive
Logic Programming [20] (ILP) approaches, where a relational
problem is turned into a propositional one by computing a
set of features and then using a traditional statistical learning
system on the resulting representation, here we propose the
rsLDA algorithm combining a propositionalization technique
and LDA. In particular, given a set of relational examples,
we firstly construct a set of relational features used to
propositionalize the examples, and then the LDA statistical
framework is used to learn a probabilistic model. rSLDA has
been experimentally evaluated on a benchmark ILP problem.

The paper is organized as follows. Section II reports some
works that are related to the proposed method. Section III



shows the proposed rsLDA method and Section IV reports its
evaluation on two real world datasets when compared to other
methods. Finally, Section V concludes the paper.

II. RELATED WORKS

This work may be correlated to that in [19], where the
authors presented one of the first Inductive Logic Program-
ming feature construction method. They firstly construct a
set of features adopting a declarative language to constraint
the search space and to find discriminant features. Then,
these features are used to learn a classification model with
a propositional learner.

The approach presented in this paper is related to dy-
namic propositionalization approaches such as nFOIL [21]
and KFOIL [12]. nFOIL integrates ILP and naive Bayes by
performing a covering search in which one feature (in form
of a clause) is learned after the other, until adding further
features does not yield improvements. The search heuristic is
based on class conditional likelihood and clauses are combined
with naive Bayes. KFOIL is a statistical relational learner that
greedily learns a set of clauses in a general-to-specif way.
It learns a logic kernel to be used within a kernel machine
learning algorithm. The set of learned clauses defines a feature
space representation of the input examples and a statistical
learning algorithm is trained with such a representation.

Finally, another system similar to this reported in this
paper is Lynx [13], originally proposed for relational sequence
learning, that combines probabilistic feature construction and
feature selection for relational learning. In a first phase it
adopts a classical probabilistic feature construction approach,
and then it adopts a wrapper feature selection approach,
that uses a stochastic local search procedure, embedding a
naive Bayes classifier to select an optimal subset of the con-
structed features. In particular, the optimal subset of patterns
is searched using a Greedy Randomised Search Procedure
(GRASP) and the search is guided by the predictive power of
the selected subset computed using a naive Bayes approach.

III. RSLDA: RELATIONAL SUPERVISED LATENT
DIRICHLET ALLOCATION

In this section we report the components of our approach
to combine ILP and LDA. Given a set of relational labelled
examples, the first step is to adopt a propositionalization algo-
rithm to reduce each relational example to an attribute-value
description. This goal is obtained by a feature construction
approach adopting a relational query mining algorithm, as
reported in Section III-A. After having extracted the relevant
relational features from the data, we can apply a supervised
LDA to the corresponding propositionalized dataset.

A. Relational query mining

Here we firstly briefly report the framework for mining
relational queries introduced in [22] and then adopted in
Lynx [13], that we use in this paper for feature construction
from relational data.

1) Logic Programming Concepts: As a representation lan-
guage we use first order logic. A first order alphabet consists
of a set of constants, a set of variables, a set of function
symbols, and a non-empty set of predicate symbols. Both
function symbols and predicate symbols have a natural number
(its arity) assigned to it. A term is a constant symbol, a variable
symbol, or an n-ary function symbol f applied to n terms
ti,to,...,t,. An atom p(ty,...,t,) is a predicate symbol p
of arity n applied to n terms ¢;. Both [ and its negation [ are
said to be (resp., positive and negative) literals whenever [ is
an atom. Literals and terms are said to be ground whenever
they do not contain variables.

A substitution 6 is defined as a set of bindings {X; <«
ay,..., X, + a,} where X;,1 < i < n are variables and
a;,1 < ¢ < n are terms. A substitution 6 is applied to an
expression e, obtaining the expression (ef), by replacing all
variables X; with their corresponding term a;.

2) Query mining and feature construction: Query mining
corresponds to the classical local pattern mining when applied
to multi-relational database representations [23]. In this paper,
Datalog is used to represent both queries and database.

We assume that there is a relational predicate key(X)
referring the examples to be characterised with queries, and
a language L of patterns corresponding to the set of queries
defined as {key(X),!1,...,l,}, where [; are positive atoms.

Query mining aims at finding all queries satisfying a set
of selection functions ¢;, and it can be formulated as fol-
lows [23]:

Given a language L containing queries of the form
{key(X),l1,...,l,}, a database D including the
relation key(X'), and a set of selection functions ¢;

Find all queries ¢ € £ such that ¢;(g, D) = true.

The classical selection function is the minimum frequency.
In order to compute the frequency of a query it is important
to define the concept of query subsumption.

Given > = B U U, where U is the set of conjunctive
atoms corresponding to an example e, and 5 is a background
knowledge, a query q subsumes an example e (¢ =< e), iff there
exists an SLDgr-deduction of ¢ from 3.

An SLDoi-deduction is an SLD-deduction under Object
Identity [24]. In the Object Identity framework, within a
clause, terms denoted by different symbols must be distinct,
i.e. they must represent different objects of the domain.

One of the component of Lynx, that we used in this paper, is
the feature construction process obtained by mining frequent
queries with an approach similar to that reported in [19]. The
algorithm for frequent query mining is based on the same idea
as the generic level-wise search method, known in data mining
from the Apriori algorithm.The level-wise algorithm performs
a breadth-first search in the lattice of patterns ordered by a
specialization relation <.

Generation of the frequent queries is based on a top-down
approach. The algorithm starts with the most general query
{key(X)}. Then, at each step it tries to specialise all the
candidate frequent queries, discarding the non-frequent queries



and storing those whose length is equal to the user specified
input parameter maxsize.

For each new refined query, semantically equivalent queries
are detected, by using the fp-subsumption relation, and dis-
carded. In the specialization phase the specialization operator,
basically, adds atoms to the query.

The query mining algorithm uses a background knowledge
B containing a set of constraints, similar to that defined in
SeqLog [25], corresponding to selection functions ¢; that must
be true. In particular, some of the constraints in B are (see [22]
for more details):

e maxsize (M):

e minfreqg(m):
greater than m;

e type (p) and mode (p), denote, respectively, the type
and the input/output mode of the predicate’s arguments
P, used to specify a language bias;

e posconstraint ([p1,p2,...,Pnl) (resp.
negconstraint ([p1,p2,...,pnl))  specifies a
constraint that the query must (resp. must not) fulfil;

e atmostone ([p1,p2,...,Pn]) discards all the queries
that make true more than one predicate among p1, po,. . .,
pn;

e key ([p1,p2,...,pn]) specifies that the key predi-
cate of the queries must be one among the predicates
P1;P2;---Pn-

Given a set of relational examples D defined over a set of
classes C, the frequency of a query ¢, freq(q, D), corresponds
to the number of examples e € D such that g subsumes e. The
support of a query ¢ with respect to a class ¢ € C, supp,(q, D)
corresponds to the number of examples e € D subsumed by
q whose class label is c. Finally, the confidence of a query
g with respect to a class ¢ € C is defined as conf.(q,D) =
supp,.(q, D) /freq(q, D).

The refinement of queries is obtained by using a refinement
operator p that maps each query to a set of its specializations,
ie. p(q) C {d'lg = ¢'} where ¢ < ¢’ means that ¢ is more
general than ¢’ or that ¢ subsumes ¢'.

For each specialization level, before starting the next refine-
ment step, Lynx may record all the obtained queries. Hence,
it might happen that the final set includes a query ¢ that
subsumes many other queries in the same set. However, the
subsumed queries may have a different support, contributing
in different way to a classification model.

maximal query length;
the frequency of the query must be

B. Propositionalization step

Given a relational dataset D, after having identified the set
of frequent queries (relational features), now the task is how
to use them as features in order to propositionalize D.

Let X be the input space of relational examples, and let
Y =1{1,2,...,C} denote the finite set of possible class labels.
Given a training set D = {(X;,Y;)}2,, where X; € X is a
single relational example and Y; € )Y is its corresponding
label, the goal is to learn a function h : X — ) from D that
predicts the label for each unseen instance.

Let Q, with |Q| = d, be the set of features obtained as
reported in the Section III-A (the queries mined from D). For
each example X, € X we can build a d-component vector-
valued @ = (x1, s, ..., xq) random variable where each x; €
x is 1 if the query ¢; € P subsumes the example zj, and O
otherwise.

Example Suppose to have the following three examples:

x1: { arc(a,b), arc(b,c), arc(c,b) }

x9: { arc(d,e), arc(d,f), arc(f,e) }

x3: { arc(g,1), arc(i,h), arc(h,qg) }
corresponding to a logical representation of the following three

graphs.
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Suppose to have the following three queries:

q1: { arc(X,Y), arc(Y,2) }

go: { arc(X,Y), arc(Y,X) }

qs: { arc(X,Y), arc(Y,Z), arc(Z,X) }.
Now, since ¢; = z; (i = 1,2,3), ¢2 < 21 and g3 =< 3,
we can build the following vector based representation for the
examples z;:

‘ 91 92 g3
T 1 1 0
z2| 1 0 O
zs | 1 0 1

C. Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) has been proposed in
[15] as a probabilistic model for uncovering the underlying
semantic structure of a document collection based on a hierar-
chical Bayesian analysis of the original texts. Here we review
the supervised LDA approach (sLDA), as proposed in [26],
[27], that extends LDA to the supervised case, but referring
to relational data and not just to documents. In particular, a
relational example may be considered as a document, and the
relational features subsuming the example will correspond to
the words belonging to a document.

The idea of LDA is to model documents as arising from
multiple topics, where a topic is defined to be a distribution
over a fixed vocabulary of terms. K topics are associated with
a collection of documents, and each document exhibits these
topics with different proportions.

LDA casts this intuition into a hidden variable model of
documents. Hidden variable models are structured distributions
in which observed data interact with hidden random variables.
In a hidden variable model, one assumes that there is a hidden
structure in the observed data, and the goal is to learn this
structure using a posterior probabilistic inference approach.
The interaction between the observed data and hidden structure
is manifest in the probabilistic generative process associated
with LDA, the random process that is assumed to have
produced the observed data.
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Fig. 1. The graphical model representing the generative process of SLDA

1) Relational topic model: A relational topic model can be
defined as a distribution over a relational dataset where each
relational example is represented as a collection of discrete
random variables X = Xj.y, denoting its relational features.
A query (resp., word in [15]) represents the basic feature
of a relational example (resp., document in [15]). We treat
the features of an example as arising from a set o latent
relational topics. Examples in a dataset share the same set
of K topics, but each example uses a mixture of topics (the
topic proportions) unique to itself. A random variable Y is
associated to examples denoting their response class value.
The parameters of the model are the K relational topics
B = B1.x, a Dirichlet parameter «, and the class response
parameters 7 and 0.

2) Supervised LDA: The sLDA model [26] is represented
by the following distributions:

Ola ~ Dir(a) (1)
|0~ Mult(d) 2)
Tnl|zn, B ~ Mult(B,,) 3)
ylz,n,6 ~ GLM(z,n,0) )

where z £ 4 SN |z, is the empirical topic frequency.
The family of probability distributions corresponding to this
generative process is depicted in the probabilistic graphical
model reported in Figure 1. The distribution of the label is a
generalised linear model (GLM) [28]:
T Ts
p(ylz,n,8) = h(y, ) exp { 0 2y 5 Aln Z)}
The sLDA generative process corresponds to:
1) draw topic proportions 8|a ~ Dir(«);
2) for each feature:
a) draw topic assignment z,|60 ~ Mult(8), and
b) draw feature x,|z,, 3 ~ Mult(5., );
3) draw label variable y|z,n,d ~ GLM(z,,4).
As reported in [26], the GLM framework gives us the flexi-
bility to model any type of label variable whose distribution
can be written in exponential dispersion form.
Given the model parameters 7 = {«,3,7,0}, the joint
distribution of a topic mixture 6, a set of N topics z, a set of
N features x, and the label y is given by:

p(0, z, @, y|T) = (6)

N
p(0]) <szn9 P(Tnlzn, )) p(ylz,n,0)

n=1

®)

(@) b~
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Fig. 2. The graphical model representing the generative process of Multi-
Class sLDA.

The computational problems to be solved in order to analyse
data with sLDA are the following. The first is the posterion
inference to compute the conditional distribution of the latent
variables at the example level given its features « and the
corpus-wide model parameters. Second is the parameter es-
timation that estimates the Dirichlet parameters «, the GLM
parameters 1 and 4, and the topic multinomial 3 from a dataset
of observed example-label pairs D = {x4,y4}7_,. Finally is
the prediction to predict the label y from a newly observed
example x, given the model parameters.

3) Multi-class sLDA: In Equation 4 of the generative pro-
cess for sLDA, a label variable for each example is assumed
to be drawn from a GLM. In [26] the label variable is real
valued and drawn from a linear regression. A continuous label
(response) is not appropriate for our classification problem,
where the class ¢ of each example is a discrete label. In this
paper, we adopt the approach proposed in [29], named multi-
class sLDA, where the class label response is drawn form a
softmax regression:

y|z ~ softmax(z, n), (7

that provides the following distribution

Zexp ®)

where the set of parameters has been modified considering the
set C' of class label coefficients 7;.c. Each 7. is a K-vector or
real values. The probabilistic graphical model corresponding
to this modified generative process is reported in Figure 2. As
we can see the difference regards the parameters generating
the response variable, by adding the plate containing the 7.
parameters.

a) Posterior inference: As for LDA [15], the posterior
distribution of the hidden variables given a model and a
labelled example described as

(0, zlx,y, o, B,m) )

is not efficiently computable, and a variational method to
approximate it may be used [29]. A solution is to adopt a
mean-field variational method that consider a simple family
of distributions over the latent variables, indexed by free
variational parameters, and try to find the setting of those pa-
rameters that minimises the Kullback-Leibler (KL) divergence
to the true posterior [30].

p(c|z,n) = exp(n, 2



Given m = {a, 3,m}, the evidence lower bound (ELBO)
L(+) to be maximised is

log p(z, y|m) > L(v, ¢, 7) =

Eq[logp(8, z,x,y|7)] + H(q) (10

where H(q) = —E4[logq(0, )] is the entropy of the chosen
variational distribution defined as
N
q(0, 27, $1.8) = q(0]7) H (2n|én) (11)
where v is a K-dimensional Dirichlet parameter vector and
each ¢, parametrises a categorical distribution over K el-
ements!. As reported in [15], [26], [29], by computing the

derivative of £ and by setting them equal to zero, it is possible
to obtain the following ascent update equations:

N
n=1
Sni o< exp(¥ (i) +nei/N — (BT o0 ") "thi) - (13)
where
hT¢n == Z H Z¢nzexp nlj/N) )
I=1n=1 \j=1
h=[hi,...,hg]", and ¥(z) denotes the digamma function.

b) Parameter Estimation: [26] fits the parameters of the
sLDA model with a variational expectation maximisation (EM)
approach. Given a dataset D = {(x4, yq)};_,, variational EM
optimises the corpus-level lower bound on the log likelihood
of the data. Expectations are taken with respect to a example-
specific variational distribution ¢4(z, 0).

The E-step estimates the approximate posterior distribution
for each example-class pair using the variational inference
algorithm, while the M-step maximises the corpus-level ELBO
with respect to the model parameters.

The corpus loglikelihood to be maximised setting
0Lg,.,1(D)/0Biy = 0 and 0Ly, .1(D)/On;c = 0, as reported
in [26], [29], is

D
= "logp(Ta, yal®). (14)
d=1
Assuming a symmetric Dirichlet, by fixing o = ¢/ K where
K is the number of topics and ¢ € Z™, there is no need to
estimate it. In the following experiments we set ¢ to 50.

c) Prediction: Given a new example £ = x1.y and a
fitted model {a, 3,1}, we want to estimate the probability of
the class label y by replacing the true posterior p(z|x) with

plyle) =

the variational approximation
L
o (2,3, e (S exnt19) )
=1

'The topic assignment Z,, is represented as a K -dimensional indicator
vector, and hence E[Z,] = q(zn) = ¢n.

15)

Since the second term of the exponent is constant with respect
to the class label, the prediction rule is

¢* = argmax, E,[n] 2] = argmax, 7. 6. (16)

IV. EXPERIMENTAL RESULTS

In order to prove the validity of our proposed approach,

we conducted experiments on the structural mutagenesis
dataset [31] coming from the field of organic chemistry and
on Alzheimer dataset [32].
Mutagenesis dataset describes a set of molecular compounds
and the task is to predict whether a compound is mutagenic.
The dataset is divided into two set: a regression friendly (r.f.)
set consisting of 188 examples (125 positive and 63 negative
examples) and a regression unfriendly (r.u.) consisting of 42
examples (13 positive and 29 negative examples). Here, the
atom and bound structure only has been used. The structural
representation is made up of atom and bond structures of the
compounds described by the following predicates:

¢ bond (compound, al,a2,btype): stating that
compound has a bond of btype between the atoms
al and a2;

e atm(compound, atom, e, atype, c): stating that in
compound, atom has element e of atype and partial
charge c.

In Alzheimer dataset, the goal is to compare four desirable
properties of drugs against Alzheimers disease. In each of the
four subtasks, the aim is to predict whether a molecule is better
or worse than another molecule with respect to the considered
property: inhibit amine reuptake (686 examples), low toxicity
(886 examples), high acetyl cholinesterase inhibition (1326
examples), and good reversal of scopolamine-induced memory
deficiency (642 examples).
Each experiment involved four steps:

1) a feature construction phase via query mining conducted
on the training examples;

2) a propositionalization step;

3) the sLDA model learning on the propositionalized train-
ing examples; and, finally,

4) the sLDA class prediction of the testing examples propo-
sitionalized with the feature obtained in the step 1.

For the query mining, in mutagenesis experiments we have
set maxsize to 6, and minfreq to 0.1, while in alzheimer
experiments we have set maxsize to 5, and minfreq to
0.01. Once the features have been extracted, then the proposi-
tionalization step has been done. SLDA? has been applied on
the propositionalized representation to estimate the model and
to perform the prediction on the testing examples.

Table I shows the parameters used for each experiment by
sLDA: the value of the o paremeter, the maximum number
of iterations or the convergence value for the EM stopping
criterion, and the number of topics.

2We used the implementation of sLDA  available at

http://www.cs.princeton.edu/~chongw/slda/.



[ Dataset [« EM steps EMconv. topics |
Mutagen. r.f. 1 40 1078 50
Mutagen. r.u. 3.3 40 10—8 15
Alzh. amine 0.5 0o 10~4 100
Alzh. toxic 0.25 00 104 200
Alzh. acetyl 0.2 00 104 250
Alzh. memory | 0.3 0 104 150

TABLE 1
SETTINGS FOR SLDA.

[ Dataset [ KkFOIL nFOIL rsLDA |
Mutagen. r.f. 770+14.5 754+12.3 85.6+1.0
Mutagen. r.u. 85.7+35.4 78.6+£41.5 85.0£3.0
Alzh. amine 89.8 £5.7 86.3 £4.3 90.9+14
Alzh. toxic 90.0 £ 3.8 89.2+3.4 989+15
Alzh. acetyl 90.6 +£ 3.4 81.2+5.2 95.3+1.4
Alzh. memory 80.5 £6.2 72.9+4.3 926+ 1.4

TABLE 11

AVERAGE PREDICTIVE ACCURACY RESULTS ON MUTAGENESIS FOR
KFOIL, NFOIL AND RSLDA WITH A 10-FOLD CROSS VALIDATION.

Table II reports the average predictive accuracy obtained
with a 10-fold cross validation on the two problems. We com-
pared the results obtained by the preposed approach rsLDA to
that of nFOIL and KFOIL, as that reported in [12]. We can
note that rSLDA improves the accuracy values achieved by
nFOIL and kFOIL.

Table III shows the number of features (queries), averaged
on the 10 folds, obtained using query mining algorithm inte-
grated in Lynx?, we can notice a significant features reduction
using rsLDA approach.

Table IV reports an example of the five top queries associate
to two of the fifty topics used in the first fold of the muta-
genesis r.f. problem, where p(g;|z;) denotes the f;; value of
the rsLDA model; supp,, and suppy,, indicate, respectively, the
support of the query on the positive and negative examples.
The predicates atm and bond have been abbreviated in the
table with a and b respectively.

V. CONCLUSION

In this paper we considered the problem of statistical
relational learning introducing the rsLDA algorithm, comb-
ing a Bayesian hierarchical model with relational learning.
In particular, we proposed to solve the relational learning
problem adopting two main phases: mapping the relational

3 Available at http://www.di.uniba.it/~ndm/lynx/.

[ Dataset | Lynx features  rsLDA topic |
Mutagenesis r.f. 189.4 50
Mutagenesis r.u. 163.7 15
Alzheimer amine 1671.2 100
Alzheimer toxic 2839.7 200
Alzheimer acetyl 2998.6 250
Alzheimer memory 2070.2 150

TABLE III

FEATURES REDUCTION ADOPTING RSLDA.

[ Topic 10 |

qi60: a(A,B,h,3,C), a(A,D,h,3,C), b(A,B,E, 1),
b(A,E,D,1)

p(q160]|210) = 0.113, suppp = 33, suppn = 20

ge9: a (A, _,c,22,_),a(h,_,c,10,_)

p(g69]2z10) = 0.112, suppp = 34, suppn = 19

qo6:- b(A,_,B,1),a(A,B,c,10,_)

p(g96]210) = 0.111, suppp = 34, suppn = 20

qi11: a(A,_,n,38,_),a(A,_,c,10,_)

p(q111]#10) = 0.111, suppp = 34, supp, = 20

q21: a(A,_,0,40,_),a(A,_,c,10,_)

p(g21|z10) = 0.111, suppp = 34, suppn = 20

[ Topic 42 |

q183: a(A,B,c,22,C),a(A,D,c,E,F),b(A,D,B,7),
a(ph,_,c,22,C),a(A,_,c,E,F)

p(q183]%210) = 0.500, suppp = 103, supp, = 24

qi7a: b(A,B,C,7),b(A,C,D,1),a(A,B,c,_,_),

a(A,C,c,22,_),a(A,D,n,38,_ )
p(q174]210) = 0.258, suppp = 66, suppn = 27
q163: 2a(A,B,0,40,C),a(A,D,_,_,C),b(A,B,_,2),
b(A,D,_,_)

p(q163]210) = 0.070, suppp = 49, suppn = 15

qi82: a(A,B,c,22,C),a(n,D,c,E,_),b(7,D,B,7),
a(A,_,c,22,C),a(A,_,c,E,_)

p(q182]210) = 0.045, suppp = 65, suppn = 23

q154: a(A,B,¢,C,_),a(p,D,c,_,_),b(7,D,B,7),
a(pr,_,c,C,_)

p(q154|z10) = 0.042, Suppp = 72, Suppn = 23

TABLE IV
THE FIVE TOP CONFIDENT FEATURES (QUERIES) ASSOCIATED TO TWO
SELECTED TOPICS LEARNED WITH SLDA FOR THE FIRST FOLD ON THE
MUATAGENESIS R.F. DATASET (ATM AND BOND ARE ABBREVIATED, RESP.,
WITH A AND B).

representation problem to a propositional one and the applying
a supervised Latent Dirichlet Allocation approach to induce
the statistical learning model.

In the first phase we adopted the query mining algorithm
included in Lynx in order to find the relevant features from
the relational examples and to use them to propositionalize the
relational problem. In the second step we cast the statistical
relational learning problem to learning a supervised LDA
model for a propositional problem.

The evaluation of the proposed approach has been made by
applying our proposed approach to a real world dataset and
proving that its predictive accuracy is better than that obtained
by other established similar systems.
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