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Abstract In this paper we propose to apply the Information Bottleneck (IB) approach

to the sub-class of Statistical Relational Learning (SRL) languages that are reducible

to Bayesian networks. When the resulting networks involve hidden variables, learning

these languages requires the use of techniques for learning from incomplete data such as

the Expectation Maximization (EM) algorithm. Recently, the IB approach was shown

to be able to avoid some of the local maxima in which EM can get trapped when

learning with hidden variables. Here we present the algorithm Relational Information

Bottleneck (RIB) that learns the parameters of SRL languages reducible to Bayesian

Networks. In particular, we present the specialization of RIB to a language belonging

to the family of languages based on the distribution semantics, Logic Programs with

Annotated Disjunction (LPADs). This language is prototypical for such a family and

its equivalent Bayesian networks contain hidden variables. RIB is evaluated on the

IMDB, Cora and artificial datasets and compared with LeProbLog, EM, Alchemy and

PRISM. The experimental results show that RIB has good performances especially

when some logical atoms are unobserved. Moreover, it is particularly suitable when

learning from interpretations that share the same Herbrand base.

1 Introduction

Probabilistic Inductive Logic Programming (De Raedt et al, 2008) and Statistical Rela-

tional Learning (SRL) (Getoor and Taskar, 2007) have been recently proposed for over-

coming the limitations of traditional and relational Machine Learning by integrating

approaches for learning graphical models with Inductive Logic Programming (Muggle-

ton and De Raedt, 1994) techniques. This combination has been highly successful in a
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variety of fields, from social networks analysis to entity resolution, from collective clas-

sification to information extraction. With probabilistic logical languages such as Prob-

abilistic Logic Programs (Dantsin, 1991), the Independent Choice Logic (ICL) (Poole,

1997), Bayesian Logic Programs (Kersting and De Raedt, 2001), Stochastic Logic

Programs (Muggleton, 2002), CLP(BN ) (Costa et al, 2003), Markov Logic Networks

(MLNs) (Richardson and Domingos, 2006) PRISM (Sato, 1995) or ProbLog (De Raedt

et al, 2007) one can represent the different type of objects and the uncertain relations

among them that are typical of most application domains.

Some of these languages can be translated into Bayesian networks. When the net-

works contain hidden variables, learning the parameters of these languages requires the

use of techniques for learning from incomplete data such as the Expectation Maximiza-

tion (EM) algorithm (Dempster et al, 1977; Lauritzen, 1995). This algorithm performs

a greedy search of the likelihood surface converging to a local stationary point, usually

a local maximum. When there are many local maxima, EM can be trapped in a poor

solution. The Information Bottleneck (IB) framework, originally proposed in (Tishby

et al, 1999), was shown to be superior to EM for learning parameters of Bayesian net-

works with hidden variables (Elidan and Friedman, 2005) because it can avoid some

local maxima. Moreover, it can be easily extended for inducing the structure of the net-

work, including the number and cardinality of hidden variables. Given the advantages

of IB with respect to EM, it is interesting to investigate its application to statisti-

cal relational languages that can be converted to Bayesian networks. In this paper,

we discuss how IB can be applied to the problem of learning the parameters of these

languages and present the Relational Information Bottleneck (RIB) algorithm. RIB

modifies IB by taking into account parameter tying in its M-step.

In order to describe a concrete example of RIB, we specialize it for the case of

Logic Programs with Annotated Disjunction (LPADs) (Vennekens et al, 2004), a recent

formalism that is prototypical for the class of languages based on the distribution se-

mantics (Sato, 1995) such as Probabilistic Logic Programs, ICL, PRISM and ProbLog.

In the distribution semantics, a probabilistic program defines a joint distribution over

queries and programs and the probability of a query is obtained by marginalization.

All these languages have the same expressive power: there are transformations that

can convert each one into the others (Vennekens and Verbaeten, 2003; De Raedt et al,

2008). In this paper we will use LPADs because they have the most general syntax and

thus allow more modeling freedom.

Acyclic (Apt and Bezem, 1991) LPADs can be translated into Bayesian networks

with hidden variables (Vennekens et al, 2004), thus an algorithm that handles incom-

plete data is necessary in order to perform learning. Previous approaches for learning

this language include (Blockeel and Meert, 2007; Meert et al, 2007, 2008) that pro-

posed to use the EM algorithm for inducing parameters and the Structural EM al-

gorithm (Friedman, 1998) for inducing the structure of ground LPADs, and (Riguzzi,

2004, 2007a, 2008a) that adopts constraint optimization techniques to learn a subclass

of ground programs.

RIB has been tested on the IMDB and Cora datasets and compared with LeP-

robLog (Gutmann et al, 2008, 2010), EM and Alchemy (implementing MLNs (Richard-

son and Domingos, 2006)). The experiments show that RIB is competitive with the

other algorithms, with EM performing particularly well. To further investigate the rel-

ative strengths and weaknesses of RIB and EM, they are compared on a number of

artificial datasets in which the example interpretations share the same Herbrand base.

Two of these datasets also have unobserved atoms. On all these datasets RIB achieves
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better mean absolute difference of the parameters, log likelihood and area under the

precision-recall curve than EM, thus showing the suitability of RIB for learning from

interpretations that share the same Herbrand base.

The paper is organized as follows. Section 2 presents notation and some preliminar-

ies on Bayesian networks. In Section 3 we discuss the IB approach. Section 4 describes

IB for learning Bayesian networks with hidden variables. Section 5 presents the RIB

algorithm. In Section 6 we introduce the distribution semantics and LPADs and in

Section 7 we illustrate how RIB has been tailored to LPADs. Section 8 discusses re-

lated work and Section 9 the experiments performed. Finally, Section 10 concludes the

paper.

2 Preliminaries

In this section we briefly describe the adopted notation and we provide some prelimi-

nary notions regarding Bayesian networks.

We will use capital letters, such as X, Y , T , for variable names and lowercase

letters x, y, t for specific values taken by the variables. Sets of variables will be usually

denoted by boldface capital letters, such as X, Y, T, while assignments of values to

those variables will be denoted by boldface lowercase letters, x, y, t. Finally, we will

use P (x|y) as a shorthand for P (X = x|Y = y).

Let X = {X1, X2, . . . , Xn} be a set of random variables, where each variable Xi

may assume values from a finite set. Formally, a Bayesian network (Pearl, 1988) over

X is a pair 〈G, Θ〉, where G is a directed acyclic graph whose nodes correspond to

the random variables in X, and the edges represent direct dependencies between the

variables. The component Θ represents the set of parameters quantifying the network.

For each variable Xi, the set of parents of Xi in G will be denoted by PaXi
or simply

by Pai.

Each node in the graph is annotated with a conditional probability table (CPT)

P (Xi|Pai) defined by the parameters θxi|pai
∈ Θ for each value xi of Xi and pai

of Pai. A Bayesian network defines a unique joint probability distribution over X

given by P (X1, X2, . . . , Xn) =
∏n

i=1 P (Xi|Pai). The graph G represents independence

properties holding in the P distribution. In particular, each Xi is independent of its

non-descendants given its parents Pai. Moreover, Xi is independent of the rest of the

variables given its Markov blanket : the set of its parents, its children and the parents

of its children.

3 The IB Framework

In this section we briefly review the IB framework on which our approach is based.

IB has its origin in clustering (Tishby et al, 1999). Given the variables X and Y

and their joint distribution Q(X,Y ), the aim of clustering is to group values of Y

such that as much information as possible is preserved about X. For example, if Y

are the words appearing in a set of documents and X are the documents’ topics, the

aim is to cluster words in a way that is most relevant to the documents’ topics. The

information that Y contains about X (and vice versa), or, in other words, the relevance

of the variable X with respect to the variable Y , is naturally measured in terms of the
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mutual information

IQ(X;Y ) ,
∑

x,y

Q(x, y) log
Q(x, y)

Q(x)Q(y)
=
∑

x,y

Q(x)Q(y|x) log
Q(y|x)

Q(y)
. (1)

This quantity, as defined in Equation (1), is symmetric, non-negative, and is equal to

zero iff the variables are independent. It measures how many bits are needed on average

to convey the information X has about Y (or vice versa).

The aim of clustering in this case is to find (soft) partitions of Y ’s values that are

informative about X. This requires balancing two goals: a) losing irrelevant distinctions

made by Y , and at the same time b) maintaining relevant ones. To cluster Y ’s values,

(Tishby et al, 1999) introduces a bottleneck variable T and a function Q(T |Y ): the val-

ues of T identify the various clusters and Q(T |Y ) represents the degree of membership

of the values of Y to the clusters. The T variable must compress Y while capturing

as much as possible the information about X. In other words, T must be such that

IQ(T ;Y ) is minimized while IQ(X;T ) is maximized. Clustering in this case can be

performed by finding the parameters of the Q distribution such that the function

L[Q] = L[Q(t|y)] = IQ(Y ;T )− βIQ(T ;X) (2)

is minimized, where β determines the trade-off between information compression and

preservation (Elidan and Friedman, 2005). At β = 0 the compression is maximal (ev-

erything is assigned to a single cluster), while as β → ∞ the quantization becomes

arbitrarily detailed.

In (Friedman et al, 2001) the IB approach has been extended to the case of mul-

tiple observed variables X using several bottleneck variables. Let us consider first the

case of a single bottleneck variable. The interactions are represented by two Bayesian

networks: Gin, representing the Q distribution (i.e., the required compression), and

Gout, representing the P distribution (i.e., the independences that should be obtained

between the bottleneck variables and the target variables), see Figure 1. In particu-

lar, in Gin X and T have to be conditionally independent given Y , while, in Gout,
Y has to be conditionally independent of X given T . In other words, Gin represents

that T is the compressed version of the observed variables, while Gout represents which
relations should be maintained or predicted, since it specifies which variables are pre-

dicted by T . Any structure for Gin and Gout can be chosen provided they encode the

above mentioned independences. The networks of Figure 1, for example, satisfy these

constraints.

The application of IB to Gin and Gout attempts to find the values of Q(T |Y )

assuming thatQ can be approximated by a distribution that factorizes according to Gin.
(Elidan and Friedman, 2005) showed that clustering can be performed by minimizing

the following objective function

L(2)[Q,P ] = IQ(Y ;T ) + γD(Q(Y, T,X)||P (Y, T,X)), (3)

where Q and P are the joint probabilities that are represented by the networks Gin
and Gout, respectively, and D is the Kullback-Leibler divergence. The parameter γ

balances the above two factors. When γ is zero one is interested in compressing the

variable Y , while when γ is high one concentrates on choosing Q(T |Y ) that is close to

a distribution satisfying the independences encoded by Gout.
The case of multiple bottleneck variables can be treated similarly, by considering

networks Gin and Gout containing a vector T of variables.
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Fig. 1 Gin and Gout for the multivariate information bottleneck framework.

4 IB for Learning Probabilistic Graphical models

The IB approach has been applied in (Elidan and Friedman, 2005) to the problem of

learning Bayesian networks with hidden variables. The aim is to compress informa-

tion about the training data and to make the hidden variables informative about the

observed attributes to ensure they preserve the relevant information. The approach is

based on the multivariate extension of IB.

While the aim of IB is to learn a distribution Q(T |Y ), in (Elidan and Friedman,

2005) the authors focus on a somewhat different problem. In particular, given some

data D = {x[1], . . . ,x[M ]} over the observed variables X, the aim is to find a gen-

erative model P over the variables X and the hidden variable T that describes D.
The variable Y is used in this case to represent the instance identity and takes values

from {1, . . . ,M}. For each instance y, x[y] are the values that the variables X take in

instance y. The goal is to find the parameters (and possibly the structure) of P such

that T explains the observed data.

(Elidan and Friedman, 2005) proved that one can learn the parameters of P by

minimizing the IB objective function L(2)[Q,P ] of Equation (3). In this case it takes

the form

LEM = IQ(T ;Y )− γ
(

EQ[logP (X, T )]− EQ[logQ(T )]
)

(4)

In the general case, we may have a vector T of hidden variables. Any distribution for

Gin and Gout can be chosen, provided that T is independent of X given Y in Gin and

Y is a leaf in Gout with T as its only parents. In order to make the treatment feasible, a

factorized form for Q(T|Y ) can be used, for example a naive Bayes assumption can be

made, in which Q(T|Y ) is factorized as
∏

i Q(Ti|Y ). Different factorizations correspond

to different choices for Gin. In the näıve Bayes case, the objective function takes the

following form (Elidan and Friedman, 2005):

L+EM =
∑

i

IQ(Ti;Y )− γ

(

EQ[logP (X,T)]−
∑

i

EQ[logQ(Ti)]

)

. (5)

4.1 The IB-EM Algorithm

The Information Bottleneck EM algorithm (IB-EM) consists of the repetition of the

following two steps:

– E-step: maximize −L+EM by optimizing Q(T|Y ) while holding P fixed;

– M-step: maximize −L+EM by optimizing P while holding Q fixed.
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Fig. 2 Illustration of IB-EM (reproduced with permission from (Elidan and Friedman, 2005)).

The M-step is a standard maximum likelihood optimization of Bayesian networks.

Indeed, the term involving P is EQ[logP (X,T)] having the form of a log likelihood

function with the empirical distribution Q. The distribution is over all the variables,

and hence sufficient statistics can be used. The E-step requires the following result,

reported in (Elidan and Friedman, 2005).

Proposition 1 Let L+EM be defined via Gin and Gout as in Equation (5). Assuming

a naive Bayes approximation for Q(T|Y ), a stationary point of L+EM satisfies the

following equations for all i, ti and y:

Q(ti|y) =
1

Z(i, y, γ)
Q(ti)

1−γeγEP(ti,y), (6)

where

Z(i, y, γ) =
∑

t′i

Q(t′i)
1−γeγEP(t

′

i,y) (7)

is a normalizing constant, and

EP(ti, y) ≡ EQ(T|ti,y)[logP (x[y],T)]. (8)

The parameter γ balances between compression of the data and fitness of the parame-

ters to Gout: for γ = 1, Equation (5) is equivalent to the objective function of the EM

algorithm (Elidan and Friedman, 2005). The IB-EM can bypass local maxima of EM

by varying γ in Equation (5) using a deterministic annealing strategy (Rose, 2002): γ is

initially set to 0, where a single, easy to compute solution exists (see Figure 2 (a)) and

then it is gradually incremented towards higher values, tracking the solution through

various stages, hopefully bypassing local maxima by staying close to the optimal solu-

tion at each value of γ. The aim is to follow a smooth path from the trivial solution at

γ = 0 to a good solution at γ = 1, see Figure 2 (b).

4.2 E-Step

The characterization of such paths may be done as follows. As reported in Proposition 1,

when the gradient of L+EM is zero, Equation (6) holds for all ti and y, and thus we
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will consider paths where all of these equations hold. Taking a log of Equation (6), it

is possible to define a set of functions G as

Gti,y(Q, γ) = − logQ(ti|y) + (1− γ) logQ(ti) + γEP(ti, y)− logZ(i, y, γ).

Gti,y(Q, γ) = 0 when Equation (6) holds for all ti and y. The goal is hence to follow an

equi-potential path where all Gti,y(Q, γ) functions are zero starting from some small

value of γ up to the desired solution at γ = 1. Starting from a point (Q0, γ0), where

Gti,y(Q0, γ0) = 0 for all ti and y, the aim is to move in a direction ∆ = (dQ, dγ) s.t.

Gti,y(Q0 + dQ, γ0 + dγ) = 0. Hence, one wants to find a direction ∆ s.t.

∀ti, y∇Q,γGti,y(Q0, γ0) ·∆
T = 0, (9)

see Figure 2 (c), where ∇Q,γGti,y(Q0, γ0) is the gradient of Gti,y(Q0, γ0) with respect

to the parameters Q(ti|y) and γ that results in a derivative matrix

H(Q, γ) =

(

∂Gtj ,y1(Q, γ)

∂Q(ti|y2)
|
∂Gtj ,y(Q, γ)

∂γ

)

,

for i, j = 1, . . . , n, where n is the number of hidden variables and y1 and y2 are two

values of Y . To find the direction ∆ satisfying Equation (9) we have to satisfy the

matrix equation

H(Q0|γ0)∆
T = 0. (10)

The matrix H is of size
∏

i |Ti|×|Y |×(
∏

i |Ti|×|Y |+1), so in practice we approximate

it by a matrix that contains only the diagonal entries
∂Gti,y

(Q,γ)

∂Q(ti|y)
and the last column

∂Gti,y
(Q,γ)

∂γ . Denoting the first expression with hti,y and the second with hγti,y, we can

write Equation (10) as a set of equations of the form

dti,yhti,y + dγh
γ
ti,y

= 0

where dti,y and dγ are the elements of ∆. Since we are only interested in the direction

of the step and not on the magnitude at the moment, we can use dγ as a parameter

and obtain

dti,y = −
hγti,y
hti,y

dγ .

In order to decide the size of the step, we can use a continuation method in the de-

terministic annealing strategy: we do not fix the size in advance but we let it vary in

the process depending on the expected change of IQ(T;Y ) that represents a measure

of the progress. We want to normalize the step so that, when IQ(T;Y ) is not sensitive

to changes in the parameters, we proceed rapidly and, when it is sensitive, we proceed

in small steps. Therefore, we rescale ∆ in a way that produces a fixed increase ǫ of

IQ(T;Y ), by choosing dγ so that:

∇Q,γIQ(T;Y ) ·∆T = ǫ.

Usually, a minimum and maximum values for the step are used in order to ensure that

γ is always increased but not too much.



8

4.3 M-Step

In the M-step, the parameters of P can be obtained from counts of the following form:

N (v,pav) =
∑

y

Q(y)Q((vpav ∩T)|y)1{(vpav ∩X)[y] = (vpav ∩X)}+ α(v,pav)

N (pav) =
∑

v

N (v,pav)

where v is a variable from X∪T, pav are its parents in P , α are the hyper-parameters

of the Dirichlet prior distribution, 1{} is the indicator function, the notation V[y]

indicates the values of the variables of the set V in instance y and with vV we denote

{v} ∪V. The parameters of P can then be expressed as

θv|pav
=
N (v,pav)

N (pav)

for every variable V either observed or hidden.

Having expressed the parameters, we are thus able to compute the derivatives of

logP (x[y], t), and thus also of EP(i, y), that take the form

∂EP(i, y)

∂Q(ti|y)
= Q(y)EQ(T|ti,y)D(y, ti,mbi),

where mbi are the values of the variables in the Markov blanket of ti and D(y, ti,mbi)

is a formula whose expression for a single hidden variable can be found in (Elidan and

Friedman, 2005).

5 Relational Information Bottleneck

The IB approach can be applied to any statistical relational language that can be con-

verted to Bayesian networks. In particular, it can be applied to those that follow a

Knowledge Based Model Construction (KBMC) (Breese et al, 1994) approach: expres-

sions in the language are a compact way of representing a number of Bayesian network

portions. The network portions, when combined, produce a graphical model of the

domain. Examples of languages that follow the KBMC approach are (Bacchus, 1993),

Bayesian Logic Programs (BLP) (Kersting and De Raedt, 2001), CLP(BN ) (Costa

et al, 2003), or Relational Bayesian Networks (Jaeger, 1997).

For these languages, a formula of the language is a template for a set of families

of variables: it compactly encodes the dependencies of a set of variables in the ground

Bayesian network from their parents or further ancestors. Typically, a formula r encodes

the fact that a template variable S depends on a set of template parents PaS with

parameters θs|pas
. A function i takes as input a template variable and returns the set

of its instantiations, i.e. i(S) contains the child variables in the families encoded by r.

The parents of each variable of i(S) are specified by i(PaS) and r usually specifies also

the CPT, which is shared by all the families.

We further distinguish between Bayesian network-based SRL languages that natu-

rally contain hidden variables such as those based on the distribution semantics (LPADs

(Vennekens et al, 2004), ICL (Poole, 1997), ProbLog (De Raedt et al, 2007), PRISM

(Sato, 1995)) and BLP with combining rules, from those that do not, such as (Bacchus,

1993), BLP without combining rules and CLP(BN). The hidden variables in the first
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class of languages are used to model the result of probabilistic choices either for the

head of rules (LPADs, BLP with combining rules) or for probabilistic facts (PRISM,

ICL, ProbLog). The second class of languages instead models Bayesian network more

directly, without introducing extra variables. Both classes of languages may also have

some logical atom variables hidden in the data.

IB can be used for learning when both types of hidden variables are present, ob-

taining the Relational Information Bottleneck (RIB) algorithm. Let us call CH the set

of choice variables and T the set of unseen atom variables. Moreover, let us consider a

naive Bayes factorization for the Q distribution:

Q(CH,T|Y ) =
∏

i

Q(CHi|Y )
∏

i

Q(Ti|Y ). (11)

The function LEM from Equation (4) becomes:

L+EM = IQ(CH,T;Y )− γ(EQ[logP (X,CH,T)]− EQ[logQ(CH,T)]) (12)

where

IQ(CH,T;Y ) = −EQ[logQ(CH,T)] + EQ[logQ(CH,T|Y )] =

−EQ[logQ(CH,T)] +
∑

i

EQ[logQ(CHi|Y )] +
∑

i

EQ[logQ(Ti|Y )]

and

EQ[logQ(CH,T)] ≈
∑

i

EQ[logQ(CHi)] +
∑

i

EQ[logQ(Ti)].

following the approximation used in (Elidan and Friedman, 2005). Thus the objective

function takes the following form

L+EM = EQ[logQ(CH,T|Y )]− γEQ[logP (X,CH,T)] + (γ − 1)EQ[logQ(CH,T)]) =
∑

i

EQ[logQ(CHi|Y )] +
∑

i

EQ[logQ(Ti|Y )]− γEQ[logP (X,CH,T)] +

(γ − 1)
∑

i

EQ[logQ(chi)] + (γ − 1)
∑

i

EQ[logQ(ti)]

As for the classical IB approach, the aim is to bypass local maxima, following a smooth

path from the trivial solution at γ = 0 to a good solution γ = 1.

In the case of Bayesian network-based languages, the G functions are

Gchk,y(Q, γ) = − logQ(chk|y) + (1− γ) logQ(chk) (13)

+γEP(chk, y)− logZCH(k, y, γ)

Gtk,y(Q, γ) = − logQ(tk|y) + (1− γ) logQ(tk) + (14)

γEP(tk, y)− logZT(k, y, γ)

where EP(chk, y), EP(tk, y), ZCH(k, y, γ) and ZT(k, y, γ) have expressions analogous

to Equations (8) and (7). We want to compute the derivatives of Gchi,y(Q, γ) and

Gti,y(Q, γ) for all chi, ti and y with respect to the parameters and γ and then use the

orthogonal direction as the update step.

The P distribution that is needed in order to compute the derivatives is determined

by the ground Bayesian network but we must ensure that the parameters of families
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that are instantiations of the same rule r are “tied”, i.e. they are the same in the

different families. To do so, in the maximization phase, the parameters have to be

computed by taking into account the counts for all the families that are instantiation

of the same rule

θs|pas
=
N (s,pas)

N (pas)
=

∑

v∈i(s)N (v,pav)
∑

v∈i(s)N (pav)
.

In general, each propositional variable V will be observed or hidden separately from

each other. In practice, most often all the instances of the same template variable will

share the same condition. The values of these parameters are then used in the formulas

of the derivatives.

6 Distribution Semantics

The distribution semantics (Sato, 1995) is shared my many languages, including ICL,

PRISM, LPADs and ProbLog. A program in one of these languages defines a proba-

bility distribution over normal logic programs called worlds. This distribution is then

extended to queries and the probability of a query is obtained by marginalizing the

joint distribution of the query and the programs.

If the program does not contain function symbols, the set of worlds W is finite,

otherwise it is infinite. The semantics has been defined for both cases, we review here

the case of no function symbols for simplicity. Let us call P (W ) the distribution over

worlds. The probability of a query Q given a world w is P (Q|w) = 1 if w |= Q and 0

otherwise, where |= is truth in the well-founded model (Van Gelder et al, 1991). Thus

the probability of a query Q is given by

P (Q) =
∑

w∈W

P (Q,w) =
∑

w∈W

P (Q|w)P (w) =
∑

w∈W :w|=Q

P (w) (15)

The languages following the distribution semantics differ in the way they define the

probability distribution over worlds. In ICL and PRISM the facts of a program may

be probabilistic statements that specify sets of atoms together with their probability

of being selected. A world is then obtained from the union of the normal rules together

with one fact selected from every grounding of each probabilistic statement. The prob-

ability of a world is obtained by multiplying the probabilities of selecting the facts

from probabilistic statements because these are assumed to be independent from each

other. In ProbLog, the probabilistic facts are required to have only two alternatives: an

atom and a dummy atom that does not appear in the body of any clause. (De Raedt

et al, 2008) showed that ICL and PRISM can be converted to ProbLog: a probabilistic

statement with n alternatives is encoded with a set of probabilistic ProbLog facts with

the appropriate probabilities. The opposite transformation is straightforward since a

ProbLog program is a valid ICL/PRISM program.

In Logic Program with Annotated Disjunctions (Vennekens et al, 2004) the al-

ternatives are encoded in the head of clauses in the form of a disjunction in which

each atom is annotated with a probability. Each groundind of an annotated disjunctive

clause represents a probabilistic choice between a number of ground normal clauses.

By choosing a head atom for each grounding of each clause of an LPAD we get a world.

The probability of the world is given by the product of the annotations of the atoms
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selected. An ICL, PRISM or ProbLog program is a valid LPAD, since the clauses can

have an empty body. (Vennekens and Verbaeten, 2003) showed that LPADs can be

translated to ICL, so all these languages have the same expressive power.

Formally, an LPAD L consists of a finite set of formulas of the form

H1 : θ1 ∨ H2 : θ2 ∨ . . . ∨ Hn : θn ← B1, B2, . . . Bm,

called annotated disjunctive clauses. In such a clause the Hi are logical atoms, the Bi are

logical literals and the θi are real numbers in the interval [0, 1] such that
∑n

i=1 θi ≤ 1.

The head of the clause implicitly contains an extra dummy atom none whose annotation

is 1 −
∑n

i=1 θi. For a rule r of the form reported above, we define H(r, i) as Hi and

θ(r, i) as θi. Let HB(L) be the Herbrand base of L.

A world is identified by means of a selection function. Let L be an LPAD: a

selection (Vennekens et al, 2004) σ is a function which selects one pair (Hδ : θ)

from each grounding rδ of each rule r of L where δ is a substitution grounding r:

σ(rδ) ∈ head(r)δ ∪ {none : 1 −
∑n

i=1 θi}. For each ground rule rδ, we denote the

selected atom H by σatom(rδ) and the selected probability θ by σprob(rδ). Let σ

be a selection and g(L) be the grounding of L: the world Lσ chosen by σ is ob-

tained by keeping only the atom selected for c in the head of each rule c ∈ g(L), i.e.,

Lσ = {“σatom(c)← body(c)”|c ∈ g(L)}.

The probability of a world Lσ is the product of the probabilities of the individual

choices made by the corresponding selection, i.e. P (Lσ) =
∏

c∈g(L) σprob(c). We as-

sume that each world has a total model according to the well-founded semantics. The

probability of a query Q is then given by Equation (15) where w is replaced by Lσ.

Example 1 Let us see an example of an LPAD.

earthquake(X, strong) : 0.3 ∨ earthquake(X, moderate) : 0.5←
fault rupture(X).

earthquake(X, strong) : 0.2 ∨ earthquake(X, moderate) : 0.6←
volcanic eruption(X).

fault rupture(stromboli).

volcanic eruption(stromboli).

volcanic eruption(eyjafjallajkull).

This program models the occurrence of earthquakes depending on its possible causes.

In particular, if an earthquake at a site X is caused only by the rupture of a geological

fault, we have a strong earthquake with probability 0.3, a moderate earthquake with

probability 0.5 and no earthquake with probability 1− 0.3− 0.5 = 0.2. In other words,

if only one cause happens, the probability of the effect is given by the parameter in the

head. If more than one cause happens, the probabilities of the effect are combined with

the noisy-or relation. For example, the probability of earthquake(stromoboli, strong)

is given by 1− (1− 0.3) · (1− 0.2) = 0.44. ⊓⊔

To compute the probability of a query given a set of atoms, one needs to use an

inference algorithm such as (De Raedt et al, 2007; Riguzzi, 2007b, 2008b, 2010; Meert

et al, 2010; Riguzzi and Swift, 2010).

Let us now define the acyclic property for LPADs, extending the definition of (Apt

and Bezem, 1991) for normal logic programs. An LPAD is acyclic if an integer level

can be assigned to each ground atom so that the level of each atom in the head of each

ground rule is the same and is higher than the level of each atom in the body.
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An acyclic LPAD L can be translated into a Bayesian network β(L) (Vennekens

et al, 2004). β(L) is built by associating each atom A in HB(L) with a binary variable

A with values true (1) and false (0). Moreover, for each rule ci of the following form

H1 : θ1 ∨ . . . ∨ Hn : θn ← B1, . . . Bm,¬C1, . . . ,¬Cl
in g(L) we add to β(L) a new variable CHi (for “choice for rule ci”) that hasB1, . . . , Bm,

C1, . . . , Cl as parents and has the values h1, . . ., hn and none, corresponding respec-

tively to atoms H1, . . ., Hn and none. The CPT of CHi is

. . . B1 = 1, . . . , Bm = 1, C1 = 0, . . . , Cl = 0 . . .

CHi = h1 0.0 θ1 0.0
. . .

CHn = hn 0.0 θn 0.0
CHi = none 1.0 1−

∑n
i=1 θi 1.0

Moreover, each variable A corresponding to the atom A ∈ HB(L) has as parents all the

variables CHi of rules ci that have A in the head. The CPT for A is the following:

at least one parent equal to A remaining columns
A = 1 1.0 0.0
A = 0 0.0 1.0

Fig. 3 Bayesian network

Note that in order to convert an LPAD containing variables into a Bayesian network,

its grounding must be generated.

Example 2 Consider the following LPAD L:
r1 = x1 : 0.4 ∨ x2 : 0.3.

r2 = x2 : 0.1 ∨ x3 : 0.2.

r3 = x4 : 0.6 ∨ x5 : 0.4← x1.

r4 = x5 : 0.4← x2, x3.

r5 = x6 : 0.3 ∨ x7 : 0.2← x2, x5.
Its corresponding network is shown in Figure 3. ⊓⊔

7 RIB for LPADs

In order to apply RIB to LPADs, the network Gout is the result of the translation of the

LPAD for which we want to learn the parameters plus the addition of the Y variable.

We consider the case in which the data available for training is a set of interpreta-

tions, i.e., a set of subsets of HB(L). Thus the data contain the truth values of atoms
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Fig. 4 Gin = Q (left) and Gout = P (right)

from HB(L) but not of the choice variables. Moreover, some of the atoms may be

unobserved as well. Thus, the set of hidden variables contains the vector of the choice

variables CH plus the unobserved atoms, T. With X we indicate the set of atom vari-

ables that are observed in the data. For the Gin network, we consider a näıve Bayes

factorization as in Equation (11). In Gout, the choice and the unobserved variables are

the only parents of Y . In fact, given the choice and the unobserved variables, the X

variables are uniquely determined, and so is the instance identity (assuming there are

no duplicate examples, but this can be modeled by assigning them a different prior

probability Q(Y )).

Consider the LPAD L reported in Example 2. Moreover, suppose that x5 is un-

seen in the data. The networks Gin and Gout for this LPAD are shown in Figure 4.

According to IB, the chosen Q distribution must be such that unobserved variables are

independent of observed ones given Y . This requirement is satisfied by Gin in Figure 4.

Regarding P , CH and T must be the only parents of Y , which is true in Gout.

Once the equivalent Bayesian networks Gin and Gout are created, we need to com-

pute the update direction ∆. The G functions are given by Equations (13) and (14).

We need to compute the derivatives of Gchi,y(Q, γ) and Gti,y(Q, γ) for all chi, ti and y.

In the following, we will present the main results and point to (Riguzzi and Di Mauro,

2010) for the proofs.

Let us first express the parameters of P . Note that, if we want to be able to translate

the learned network back to an LPAD, some of the parameters are fixed in advance:

those belonging to the CPTs for atoms and those in the rows corresponding to a false

body in the CPTs for choice variables. So we must minimize the objective function

by varying only a subset of the parameters. Moreover, some parameters are “tied”: all

the choice variables that refer to ground rules obtained from the same non-ground rule

share the same parameters.

Let us indicate with θxj |paXj

the parameters of the CPT for atom Xj. Thus

θXj=1|paXj

= 1 if the atom Xj is among the values paXj
of its parents, and 0 otherwise.

For a non-ground rule r, let θHDr=hdr|bodyr
or simply θhdr|bodyr

be the probability that

the head hdr is selected given that the body has truth value bodyr. Thus θhdr|false = 1

if hdr = none.

Moreover, let i(r) be the set of indexes k instances ck of r. Given the body paCHk

of the instantiated rule ck, let bt(paCHk
) be 1 if the observed variables in paCHk

do

not make the body false, and 0 otherwise. Let tb(paCHk
) be a set of values for the

unobserved variables that are parents of CHk and that do not make the body false.
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The maximum likelihood parameters of the distribution of HDr in the case of a

true body are

θhdr|true =
N (r, hdr) + α(r, hdr, true)

N (r) + α(r, true)

N (r, hdr) =
∑

k∈i(r)

∑

y

Q(y)Q(CHk = hdr|y)bt(pachk
[y])

∏

tj∈tb(pachk
)

Q(tj |y)

N (r) =
∑

hdr

N (r, hdr)

where α() are the hyper-parameters of the Dirichlet prior distribution, and N is used

to denote the total counts used for estimation.

The expressions of the derivatives of the G functions with respect to Q(chi|y),
Q(ti|y) and γ, together with the derivatives of IQ(CH,T;Y ), necessary to compute

the update step, are reported in Appendix A. Note that none of these expressions

require inference in the underlying Bayesian network.

8 Related Works

Learning statistical relational models containing hidden variables has been tackled

using either a variant of the EM algorithm or by gradient descent methods. With

the EM algorithm, the objective function L(2)[Q,P ] with γ = 1 (Equation (3) is

optimized, while with gradient descent methods the objective function is either the

likelihood or the mean squared error of the probability of a set of queries. In gradient

descent methods, the partial derivatives of the objective function with respect to the

parameters are computed and the parameters are updated accordingly.

Since the languages PRISM, ICL, LPADs and ProbLog are equally expressive and

one can be translated into another, a system for learning one of these languages can

be almost directly be used for the others. The PRISM system (Sato, 1995; Sato and

Kameya, 2001) includes one of the first learning algorithms based on EM. The system

however makes strong assumptions on the allowed program for inference and learning

to work correctly: the probability of a conjunction (A,B) is computed as the product

of the probabilities of A and B (independence assumption) and the probability of a

disjunction (A;B) is computed as the sum of the probabilities of A and B (exclusiveness

assumption). The latter condition in particular requires the body of ground clauses

with the same atom in the head to have mutually exclusive bodies. These assumption

significantly simplify the inference and learning problems. Differently from PRISM,

RIB does not make any assumption on the form of the programs.

These assumptions can be related to the framework of RIB by observing that, when

all the logical atoms are observed, the values of the logical atoms given the instance

identity are completely determined and so is the truth of clauses’ bodies. If the clauses

have mutually exclusive bodies then, for each atom, there exists at most one clause with

the body true and the atom in the head, so the Q distribution will assign mass 1 to the

value of the choice variable associated to the atom. So the E step in RIB in this case

would be strongly simplified and the naive Bayes assumption would be true. If some

atom variables are unobserved then the instance identity does not determine anymore

the truth of clauses’ bodies and so the distribution of a choice variable depends on
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that of its ancestor choice variables, even if the clauses are disjoint. In these cases, the

naive Bayes assumption is only an approximation. The experiment comparing RIB with

PRISM in the next section contains unseen atom variables so RIB can not exploit the

PRISM modeling assumptions. If all the atom variables are observed and the clauses

do not have mutually exclusive bodies, then two choice variables will be dependent

given the instance identity if the corresponding ground rules share a ground atom in

the head. In this case the näıve Bayes assumption is an approximation as well.

Another work that exploits the EM algorithm is (Koller and Pfeffer, 1997). The

authors use EM to learn the structure of first-order probabilistic logic (FOPL) rules

(first-order rules with associated probabilistic uncertainty parameters). The proba-

bilistic uncertainty parameters of the rules are adaptively learned using an extension

of standard EM that deals with an ensemble of networks of varying structure, and in

which the same parameters can appear several times. In this approach, a set of Horn

rules, with an associated uncertainty parameter, describes the ways in which first-order

atoms influence each other. Since more than one set of conditions can cause an atom

to be true, the authors use combining rules to indicate how the different possible cause

interact. The EM algorithm they propose is able to learn in presence of these combining

rules and missing data. In the distribution semantics multiple causes for the truth of

an atom are combined with a noisy-or rule, so the system of (Koller and Pfeffer, 1997)

can be used for these languages and RIB can be used for FOPL when the combining

rule is noisy-or.

The work of Koller and Pfeffer (1997) has been generalized and extended in (Natara-

jan et al, 2005) to multi-level combining rules, where the first level combines the in-

fluences due to different ground instances of the same statement, and the second level

combines the influences due to different statements. The authors propose a language

consisting of quantified conditional influence statements. This language captures most

relational probabilistic models based on directed graphs. Examples of combining rules

are mean, weighted-mean or noisy-or. The algorithms for parameter learning in the

presence of such combining rules are based on gradient descent and EM. Again, in RIB

we consider only the case where the combining rule for both levels is nosiy-or.

(Jaeger, 2007) considered a weighted combination or a nested combination of the

combining rules and used a gradient descent algorithm for optimizing the objective

function. The proposed technique focuses on the formalism of Relational Bayesian Net-

works (RBNs) but can also be applied to Probabilistic Relational Models (PRMs) or to

Bayesian Logic Programs (BLPs). The approach compiles the RBN model into a com-

putation graph for the likelihood function and uses this graph to perform the necessary

computations for a gradient descent likelihood optimization procedure. Adopting the

likelihood graph greatly reduces the number of computations needed for the gradient

computation.

LeProbLog (Gutmann et al, 2008, 2010) is another method that tackles the problem

of learning the parameters of models with hidden variables by using gradient descent. It

starts from a set of queries annotated with a probability and from a ProbLog program.

It tries to find the values of the parameters of the program that minimize the mean

squared error of the probability of the queries. LeProbLog applies a gradient descent

directly to the Binary Decision Diagrams that represent the queries.

As regards previous approaches specific to LPADs, the works (Blockeel and Meert,

2007; Meert et al, 2007, 2008) apply the EM algorithm directly to them. (Blockeel

and Meert, 2007) first syntactically transforms an LPAD into another LPAD that has

a direct correspondence with a Bayesian network. The resulting network is different
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from the one of Section 6. Blockeel and Meert then use EM for learning the parameters

of the network and to learn the structure by performing greedy search. (Meert et al,

2007, 2008) expand on the application of EM to LPADs and present the first results on

an artificial dataset, on which the authors obtained superior performance with respect

to a Bayesian network without hidden variables trained with Structural EM.

RIB is most similar to the EM approaches, as its final objective function is the same

as EM and it uses an iterative optimization approach as EM. Gradient descent methods

instead differ in the optimization method and, in some cases, also on the objective

function (e.g. LeProbLog). In the following section we compare the performances RIB

with the systems based on EM by using an implementation of it based on cplint

(Riguzzi, 2007b) and with the gradient descent systems by using LeProbLog.

Another system for LPADs is ALLPAD (Riguzzi, 2008a, 2007a) that learns a re-

stricted set of ground LPADs considering a constraint satisfaction approach. The pro-

grams are such that each couple of clauses that share an atom in the head have mutually

exclusive bodies. ALLPAD learns this class of LPADs by finding all the clauses satis-

fying certain properties, by estimating the parameters for each of them and then by

solving a mixed integer programming problem for identifying the subset of clauses to

be included in a solution.

9 Experiments

We tested RIB on two real world datasets, IMDB1 (Mihalkova and Mooney, 2007) and

Cora2 (Singla and Domingos, 2005), and on some synthetic datasets.

On IMDB and Cora we compare the performances of RIB with that of EM, LeP-

robLog3 and Alchemy4. We implemented both RIB and EM in Yap Prolog5. IMDB re-

gards movies, actors, directors and movie genres. It is divided into five mega-examples,

each containing all the information regarding four movies. It contains 10 predicates and

316 constants divided into 4 types. The number of possible ground atoms is 32,615, of

which 1,540 are true.

We used a methodology similar to the one in (Mihalkova and Mooney, 2007): we

train on four mega-examples and test on the remaining one. Then we draw a Precision-

Recall curve and we compute the Area Under the Curve (AUCPR) using the method

reported in (Davis and Goadrich, 2006).

We choose the following LPAD that predicts the value of the target predicate

sameperson/2.

sameperson(X,Y):t :- movie(M,X), movie(M,Y).

sameperson(X,Y):t :- actor(X), actor(Y),

workedunder(X,Z), workedunder(Y,Z).

sameperson(X,Y):t :- gender(X,Z),gender(Y,Z).

sameperson(X,Y):t :- director(X), director(Y), genre(X,Z), genre(Y,Z).

1 http://alchemy.cs.washington.edu/data/imdb
2 http://alchemy.cs.washington.edu/data/cora
3 http://dtai.cs.kuleuven.be/problog/, we used the version of LeProbLog included in

the git version of Yap downloaded as of the 1st of September 2010.
4 http://alchemy.cs.washington.edu/, we used the CVS version of Alchemy downloaded

as of the 16th of May 2010.
5 http://www.dcc.fc.up.pt/~vsc/Yap/
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This theory has a direct translation to ProbLog:

sameperson(X,Y) :- movie(M,X),movie(M,Y),f1(X,Y,M).

sameperson(X,Y) :- actor(X), actor(Y),

workedunder(X,Z),workedunder(Y,Z), f2(X,Y,Z).

sameperson(X,Y) :- gender(X,Z), gender(Y,Z), f3(X,Y,Z).

sameperson(X,Y) :- director(X), director(Y),

genre(X,Z), genre(Y,Z), f4(X,Y,Z).

where t stands for a “tunable” parameter and f1/3, f2/3, f3/3 and f4/3 are non-

ground probabilistic facts whose parameters are learned with LeProbLog.

Each mega-example has a different Herbrand base: it contains different constants

and thus many random variables would appear only in a single example. This may cause

a problem to RIB that exploits the dependency of random variables from individual

examples. Thus each fold has been divided into smaller examples on the basis of the

target predicate: each of the smaller examples is an interpretation that refers to an

instance sameperson(s, p) and contains the facts for all the other predicates where the

constants s and p appear. We have one positive example for each fact that is true in

the data, while we sampled from the complete set of false facts three times the number

of true instances in order to generate negative examples. In the small interpretations,

the constants from the mega-examples are replaced by dummy constants that are the

same for all the small examples.

In order to build the Gout network, a derivation for each atom for sameperson/2 is

built in each interpretation. The clauses and the atoms used in the derivation act as a

guide for generating Gout: only the network portion relevant to the query is built.

The annotated queries that LeProbLog takes as input are obtained by annotating

with 1.0 each positive example for sameperson/2 and with 0.0 each negative examples

for sameperson/2 obtained by random sampling.

To compare our results with Alchemy, we translated the above theory into an MLN

following an approach similar to the one used in (Gutmann et al, 2010) to convert a

MLN into ProbLog. Each LPAD clause h : t :- b1,...,bm was translated into the

MLN clause h v !b1 v ... v !bm. This theory is not semantically equivalent to the

LPAD/ProbLog one but each exploits the features of the languages.

Then RIB, EM, LeProbLog and Alchemy were used to learn the parameters of the

two theories. For RIB we used a minimum of 0.005 and a maximum of 0.1 for the γ up-

date step and 0.01 for ǫ, the fraction of IQ(T;Y ) for step rescaling. We run LeProbLog

for a maximum of 100 iterations or until the difference in Mean Squared Error (MSE)

between two iterations gets smaller than 10−5. We used the preconditioned rescaled

conjugate gradient discriminative algorithm (Lowd and Domingos, 2007) for Alchemy

and we specified sameperson/2 as the only non-evidence predicates.

Table 1 shows the area under the precision-recall curve averaged over the five

folds together with the standard deviation for RIB, LeProbLog, EM and Alchemy.

The p column shows the p-value of a two-tailed paired t-test of the significance of the

difference in AUCPR between RIB and LeProbLog/EM/Alchemy. Table 2 shows the

learning time in hours.

In order to investigate the performance of the algorithms when some atoms are

unseen, we also trained the following theory on the IMDB dataset:

sameperson_pos(X,Y):t :- movie(M,X), movie(M,Y).

sameperson_pos(X,Y):t :- actor(X), actor(Y),
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workedunder(X,Z), workedunder(Y,Z).

sameperson_pos(X,Y):t :- director(X),director(Y),genre(X,Z),genre(Y,Z).

sameperson_pos(X,Y):t :- movie(M,X), movie(M,Y).

sameperson_neg(X,Y):t :- movie(M,X), movie(M,Y).

sameperson_neg(X,Y):t :- actor(X), actor(Y),

workedunder(X,Z), workedunder(Y,Z).

sameperson_neg(X,Y):t :- director(X),director(Y),genre(X,Z),genre(Y,Z).

sameperson_neg(X,Y):t :- movie(M,X), movie(M,Y).

sameperson(X,Y):t :- \+ sameperson_pos(X,Y), sameperson_neg(X,Y).

sameperson(X,Y):t :- \+ sameperson_pos(X,Y), \+ sameperson_neg(X,Y).

sameperson(X,Y):t :- sameperson_pos(X,Y), sameperson_neg(X,Y).

sameperson(X,Y):t :- sameperson_pos(X,Y), \+ sameperson_neg(X,Y).

The sameperson_pos/2 and sameperson_neg/2 predicates are unseen in the data. In

this experiment Alchemy was run with the -withEM option that turns on EM learning.

The other parameters for Alchemy and for the other algorithms are set as for IMDB.

The results of this experiments are shown in Table 1 in the IMDBu row.

The Cora database contains 1295 different citations to 132 different computer sci-

ence research papers. For each citation, we have information about the title, the authors

and the venue. For each title, author and venue, we know which words appear in them.

The task is to deduplicate citations, i.e., to predict the predicate samebib(cit1,cit2).

The database contains also facts for the predicates sameauthor(aut1,aut2),

sametitle(tit1,tit2) and samevenue(ven1,ven2), together with facts for

haswordauthor(aut,wor), haswordtitle(tit,wor) and haswordvenue(ven,wor).

We took the MLN proposed in (Singla and Domingos, 2006)6 and we removed the

transitive closure rules because they would introduce cycles in the LPAD, obtaining

the MLN

!SameBib(b1,b2)

!SameAuthor(a1,a2)

!SameTitle(t1,t2)

!SameVenue(v1,v2)

Author(bc1,a1) ^ Author(bc2,a2) ^ SameAuthor(a1,a2) => SameBib(bc1,bc2)

Title(bc1,t1) ^ Title(bc2,t2) ^ SameTitle(t1,t2) => SameBib(bc1,bc2)

Venue(bc1,v1) ^ Venue(bc2,v2) ^ SameVenue(v1,v2) => SameBib(bc1,bc2)

HasWordAuthor(a1, +w) ^ HasWordAuthor(a2, +w) => SameAuthor(a1, a2)

!HasWordAuthor(a1, +w) ^ HasWordAuthor(a2, +w) => SameAuthor(a1, a2)

HasWordAuthor(a1, +w) ^ !HasWordAuthor(a2, +w) => SameAuthor(a1, a2)

HasWordTitle(a1, +w) ^ HasWordTitle(a2, +w) => SameTitle(a1, a2)

!HasWordTitle(a1, +w) ^ HasWordTitle(a2, +w) => SameTitle(a1, a2)

HasWordTitle(a1, +w) ^ !HasWordTitle(a2, +w) => SameTitle(a1, a2)

HasWordVenue(a1, +w) ^ HasWordVenue(a2, +w) => SameVenue(a1, a2)

!HasWordVenue(a1, +w) ^ HasWordVenue(a2, +w) => SameVenue(a1, a2)

HasWordVenue(a1, +w) ^ !HasWordVenue(a2, +w) => SameVenue(a1, a2)

For RIB, we used the following LPAD

samebib(B,C):t :- author(B,D), author(C,E), sameauthor(D,E).

samebib(B,C):t :- title(B,D), title(C,E), sametitle(D,E).

6 Available at http://alchemy.cs.washington.edu/mlns/er/.
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Table 1 Results of the experiments on the IMDB and Cora datasets. IMDBu refers to the
IMDB dataset with the theory containing unseen predicates. AUCPR is the area under the
precision-recall curve averaged over the five folds together with the standard deviation and p
is the p-value of a paired two-tailed t-test (significant differences at the 5% level in bold). R is
RIB, L is LeProbLog, E is EM and A is Alchemy.

AUCPR p
R L E A R-L R-E R-A

IMDB 0.199±0.036 0.096±0.039 0.202±0.042 0.107±0.022 0.009 0.545 0.011

IMDBu 0.166±0.027 0.134±0.041 0.120±0.018 0.020±0.005 0.321 0.012 0.000

Cora 0.939±0.021 0.905±0.074 0.995±0.004 0.469±0.203 0.535 0.073 0.016

Table 2 Execution time in hours of the experiments on the IMDB and Cora datasets. R is
RIB, L is LeProbLog, E is EM and A is Alchemy.

Dataset
Time (h)

R L E A
IMDB 0.02 0.35 0.01 1.54
IMDBu 0.01 0.23 0.01 1.54
Cora 2.49 13.25 1.11 1.30

samebib(B,C):t :- venue(B,D), venue(C,E), samevenue(D,E).

samevenue(B,C):t :- haswordvenue(B,word_06), haswordvenue(C,word_06).

...

sametitle(B,C):t :- haswordtitle(B,word_10), haswordtitle(C,word_10).

....

sameauthor(B,C):t :- haswordauthor(B,word_a), haswordauthor(C,word_a).

.....

where the dots stand for the rules for all the possible words. Overall, the LPAD contains

559 rules.

The Cora dataset contains five mega-example that have been converted as for IMDB

by having a separate interpretation for each samebib/2, samevenue/2, sametitle/2 and

sameauthor/2 fact. Moreover, we separately learned the definitions with RIB for the

four predicates and we combined the resulting theories at the end. The Gout network is

built in a way similar to IMDB. When building the network for samebib/2, we consider

the atoms for samevenue/2, sametitle/2 and sameauthor/2 as given. The parameters

of RIB were 0.01 for ǫ, 0.08 for the minimum step and 0.1 for the maximum step.

We separately learned the various predicates with LeProbLog as well because learn-

ing the whole theory at once would give a lack of memory error on our machines. LeP-

robLog was run for a maximum of 100 iterations or until the difference in MSE gets

smaller than 10−5.

For Alchemy, we used the preconditioned rescaled conjugate gradient discriminative

training algorithm specifying samebib/2, samevenue/2, sametitle/2 and sameauthor/2

as the only non-evidence predicates and using the defaults for the other parameters.

Table 1 shows the AUCPR obtained by training on four mega-examples and testing

on the remaining one while Table 2 shows the running times of the four systems.

From Table 1 we can observe that RIB achieves a higher AUCPR than both LeP-

robLog and Alchemy in all three experiments. The difference between RIB and Alchemy

is significant at the 5% level in all cases, while the difference between RIB and LeP-

robLog is statistically significant at the 5% level only on IMDB, even if it is nearly

significant on IMBDu. The AUCPR of RIB is lower than that of EM in IMDB and

Cora, even if the difference is not statistically significant at the 5% level in all datasets.
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On IMDBu, instead, RIB achieves a significantly higher AUCPR than EM. The aver-

age training time of RIB is lower than that of LeProbLog in all datasets, lower than

that of Alchemy and nearly equal to the one of EM on IMDB and IMBDu, while it is

higher than that of Alchemy and EM on Cora. We also tried Alchemy on Cora with

a maximum number of iterations of 20000 and a time limit of 20 hours but, despite a

longer training time (8.91 hours on average), we got a worse AUCPR (0.2904). When

unseen atoms are present, all algorithm do slightly worse than when all atoms are

observed, except LeProbLog that surprisingly improves its AUCPR. The improvement

of RIB with respect to EM can be explained by the general improvement of IB over

EM shown in (Elidan and Friedman, 2005) when hidden variables are present: EM can

get trapped in local maxima when to few information is present. Learning in the pres-

ence of unseen atoms seems to be still a difficult problem for Alchemy, even with the

-withEM option. The approach of LeProbLog, based on gradient descent rather than

EM, seem to exploit better the degrees of freedom introduced by unseen atoms, but it

still does not overcome RIB.

We also consider cases that should be more favorable to RIB, i.e., experiments in

which the example interpretations share the same Herbrand base and thus examples

do not have to be split up.

We obtain synthetic datasets by writing some LPADs and by generating training

sets from them. Four different LPADs have been considered: one of them is the shop

example taken from (Meert et al, 2008) containing 4 rules (shop4), while the others have

been obtained by progressively extending that example to 8 (shop8), 10 (shop10) and

12 (shop12) rules respectively. For each of these LPADs, all the possible interpretations

with a non-zero probability have been generated and inserted into the training set. The

probability of each interpretation was taken into account during learning by setting

Q(y) to that value, which is equivalent to having different cardinalities for the different

interpretations.

We also run experiments with the shop4 and shop12 theories in which the training

set was composed respectively by 1,000 and 10,000 examples (shop4s and shop12s)

obtained from the theories by random sampling.

Moreover, we consider two further datasets (shop12u1 and shop12u2) in which we

deleted respectively one and two ground atoms from the input interpretations, in order

to test the performances of RIB and EM when learning from data that contain unseen

atoms.

We compare RIB with EM, the best performing algorithm according to the IMDB

and Cora experiments. For RIB we used a value for ǫ of 0.01, a minimum step of 0.02

and a maximum step of 0.05.

The results are evaluated according to various metrics. The first is the Mean Ab-

solute Difference (MAD) between the learned parameters and the true ones computed

as MAD = n−1∑n
i=1 |θi − θtruei | as in (Gutmann et al, 2008). The other measures

are computed using a testing set composed by 10,000 randomly sampled interpreta-

tions. The second measure is the log likelihood assigned by the learned theory to the

test interpretations, where the probability of an interpretation is computed by asking

a query that is the conjunction of all the true atoms in the interpretations together

with the conjunction of the negation of all false atoms in the interpretation. The third

measure is obtained by considering individual atoms rather than whole interpretations:

the probability of each atom in the Herbrand base is computed for each interpretation

given its parent atoms (the atoms it directly depends on). From the probability of
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Table 3 Results of the experiments on the shop dataset. MAD is the mean absolute difference
of the parameters together with the standard deviation and p is the p-value of a paired two-
tailed t-test (significant differences at the 5% level in bold).

Dataset
MAD

RIB EM p

shop4 5.9e-5±3.5e-5 0.1500±0.1954 0.1189
shop4s 0.0444±0.0210 0.1564±0.1968 0.1817
shop8 0.0193±0.0273 0.1143±0.1388 0.0293

shop10 0.0220±0.0320 0.1371±0.1604 0.0156

shop12 0.0216±0.0297 0.0890±0.1307 0.0538
shop12s 0.0343±0.0380 0.1142±0.1282 0.0148

shop12u1 0.0472±0.0647 0.0904±0.1286 0.2504
shop12u2 0.0603±0.0793 0.1431±0.1360 0.0310

Table 4 Results of the experiments on the shop dataset. LL is the log likelihood of the test
interpretations, AUCPR is the area under the precision-recall curve averaged over all the atoms
in the Herbrand base of the theory together with the standard deviation. The last column gives
the learning time in seconds.

Dataset
LL AUCPR Time (s)

RIB EM RIB EM RIB EM
shop4 -14861 -18493 0.5707±0.1106 0.5667±0.1134 0.09 0.22
shop4s -53264 -55825 0.5707±0.1106 0.5666±0.1134 9.62 11.38
shop8 -30888 -36582 0.4423±0.1500 0.4413±0.1491 2.54 9.47
shop10 -32825 -40104 0.4701±0.1617 0.4539±0.1595 3.32 13.89
shop12 -35348 -41330 0.5028±0.1663 0.5016±0.1662 6.39 32.45
shop12s -81116 -84521 0.5030±0.1663 0.5018±0.1662 528.98 854.33
shop12u1 -35153 -39850 0.5029±0.1663 0.5016±0.1662 15.30 18.16
shop12u2 -35544 -40667 0.5028±0.1663 0.4977±0.1665 16.90 17.67

each atom in each interpretation, we draw a precision-recall curve and we compute the

AUCPR.

Table 3 shows the values of MAD together the standard deviation and the p-value

of a paired two-tailed t-test (significant differences in bold) while Table 4 lists the log

likelihood and the AUCPR together with the running time in seconds. The result show

that RIB achieves a much lower MAD with differences that are statistically significant

the 5% level in four cases out of eight. Moreover, RIB also obtains a much higher log

likelihood in each experiment while taking less time.

The AUCPR of RIB is also higher than that of EM in all cases but the differences

are not statistically significant at the 5% level. It must be noted, however, that in these

experiments all the ground atoms have a probability of being true significantly higher

than zero so this domain is more useful for testing descriptive learning rather than

discriminative leaning. LL and MAD are better measures than AUCPR in this case,

since the aim is not to perform classification.

These experiments show that RIB performs particularly well when learning from

interpretations that share the same Herbrand base, even when there are unseen atoms.

In these cases RIB can better exploit the regularities shared by different examples.

Finally, we compared RIB with PRISM. Since none of the above datasets respect

the modeling assumptions of PRISM, we considered a different artificial domain. We

selected the PRISM program encoding an Hidden Markov Model in (Sato et al, 2005),

we translated it into an LPAD and we generated 500 sequences with three states and

two output symbols. We gave as input to RIB and PRISM only the atoms encoding

the output sequences and we tried to learn the four parameters of the models. This

domain has unseen atom variables since the atoms describing partial state and output



22

sequences are unseen, RIB achieved a MAD of 0.1547±0.0864 while PRISM obtained

0.0420±0.0587 but the difference is not statistically significant (p-value of 0.0752).

Thus, even if RIB can not exploit the modeling assumption, it does not perform sig-

nificantly worse.

10 Conclusions

We have presented the RIB algorithm that applies the Information Bottleneck to the

problem of learning the parameters of LPADs, a language that is prototypical of the

distribution semantics family. RIB has been evaluated on real-life and artificial datasets.

Supplementary material can be found at http://sites.google.com/a/unife.it/rib.

RIB has good performances in particular when learning from datasets containing

unseen logical atoms and when the training interpretations share the same Herbrand

base.

In the future, we will investigate the development of a lifted version of RIB. This

should be possible by clustering group of variables with the same Q distribution. This

would start by assigning the same value of Q(t|y) to group of variables, for example to

all the choice variables that represent instantiations of the same rule. Then the algo-

rithm would keep the variable as a group until some of them are influenced differently

by the input data.

Moreover, we will investigate the possibility of having atoms that are unobserved

only in a subset of the examples. Finally, we plan to extend RIB for learning the

structure of languages reducible to Bayesian networks by using the techniques presented

in (Elidan and Friedman, 2005) and for dealing with networks with cycles.
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A Derivatives of the G Functions for LPADs

Theorem 1 The derivative of the G functions with respect to Q(chi|y), Q(ti|y) and γ are
given by

∂Gchi,y(Q, γ)

∂Q(chi|y)
= −

1

Q(chi|y)
+Q(y)(1−Q(chi|y)) ·

(

1− γ

Q(chi)
+ γEQ(CH,T|chi,y)

[D(y, cht(i,y,x[y],t), chi,pacht(i,y,x[y],t)
)]

)
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∂Gti,y(Q, γ)

∂Q(ti|y)
= −

1

Q(ti|y)
+Q(y)(1−Q(ti|y)) ·

(

1− γ

Q(ti)
+ γEQ(CH,T|ti,y)

[F(y, ech(ti), et(ti))]

)

∂Gchi,y(Q, γ)

∂γ
= − logQ(chi) + EP

′(chi, y)− EQ(ch′

i
|y)[EP

′(ch′
i, y)]− logQ(ch′

i)]

where

D(y0, cht(i,y0,x[y0],t), chi0,pacht(i,y0,x[y0],t)
) =

1

N (r(i))

∑

k∈t(i,y0,x[y0],t)

∏

tj∈tb(pachi0
) Q(tj |y0)1{chi0 = chk}

θHDr(i)=chk|true

F(y0, ech(ti0), et(ti0)) =
∑

k∈b(ti0,y0,x[y0],t)

∑

s∈i(r(k))

bt(pachs
[y0]) ·

∏

t′
j
∈tb(pachs

)\ti0
Q(t′j |y0)1{ti0 ∈ tb(pachs

)}

N (r(k))

(

Q(Ch′
s = chk|y0)

θHDr(k)=chk|true

+ 1

)

EP
′(chi, y) =
∏

tj∈body(i)

Q(tj |y) log θHDr(k)=chi|pachk
[y]1{body(i)[y] = true}+

δ(
∑

tj∈paT

chi

∏

tj∈paT

chi

Q(tj |y)1{body(i)[y] = false, chi 6= none}+

∑

j∈p(i),xj [y]=true,chi 6=xj [y]

∏

chs∈paxj
,s 6=i

Q(chs 6= xj [y]|y) +

∑

j∈p(i),tj=true,chi 6=tj

∏

chs∈patj
,s 6=i

Q(chs 6= tj |y)Q(Tj = true|y) +

1{chi = xj [y], val(chi)[y] = false}+Q(Tj = false|y)1{chi = tj , tj = false})

EP
′(ti, y) =
∑

k∈bb(ti,y)

∑

chk 6=none

Q(chk|y)
∏

tj∈body(k),tj 6=ti

Q(tj |y) log θHDr(k)=chk|true
+

δ





∑

k∈bb(ti,y)

Q(Chk = none|y)
∏

tj∈body(k),tj 6=ti

Q(tj |y) +

∑

k∈bb(ti,y)

Q(Chk 6= none|y)

(

1−
∏

tj∈body(k),tj 6=ti

Q(tj |y)

)

+

∑

k,body(k)[y]=true,ti∈body(k)

Q(Chk 6= none|y) +

∑

k,body(k)[y]=false,ti∈body(k)

Q(Chk 6= none|y) +

∏

Chs∈pati

Q(Chs 6= ti|y)1{ti = true}+
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(

1−
∏

Chs∈pati

Q(Chs 6= ti|y)

)

1{ti = false}





In these expressions r(i) is the non ground rule of which ci is an instance; t(i, y,x[y], t) is
the set of indexes k of choice variables chk that are instances of rule r(i) and such that the
instantiated rule ck has the body true with respect to (x[y], t); cht(i,y),x[y],t is the set of choice
variables chk with k ∈ t(i, y,x[y], t); val(chi) indicates the atom variable associated to the
value of chi; p(i) is the set of the indexes of the atom variables appearing in the head of rule
i; paT

chi
= pachi

∩T ; body(k) is the body of the rule for chk; body(k)[y] is the portion of body

restricted to X variables taking the values x[y]; bb(ti, y) = {k|body(k)[y] = true, ti ∈ body(k)};
b(ti, y,x[y], t) is the set of indexes of instantiations of rules for which ti appears in the body
with a matching truth value and such that the body is true with respect to (x[y], t); ech(ti) is
the set of chs where s ∈ b(ti, y0,x[y], t); et(ti) is the set of ti such that ti appears in the body
of a rule cs with s ∈ b(ti, y0,x[y], t) with a matching truth value. and δ is used to approximate
log 0 (e.g. δ = −10).

All these expressions do not require inference over the underlying Bayesian network.

Proof See Theorems 1 and 2 of (Riguzzi and Di Mauro, 2010).

In order to compute the step size we need also to compute expressions for IQ(CH,T;Y ) and
∇Q,γIQ(CH,T;Y )).

Theorem 2 IQ(CH,T;Y ) can be expressed as

IQ(CH,T;Y ) =
∑

i

∑

chi

∑

y

Q(y)Q(chi|y)(logQ(chi|y)− logQ(chi)) +

∑

i

∑

ti

∑

y

Q(y)Q(ti|y)(logQ(ti|y)− logQ(ti))

Proof See Theorems 3 of (Riguzzi and Di Mauro, 2010).

Theorem 3 The derivatives of IQ(CH,T;Y ) with respect to Q(chi|y) and Q(ti|y) are

∂IQ(CH,T;Y )

∂Q(chi|y)
= Q(y)(logQ(chi|y)− logQ(chi))

∂IQ(CH,T;Y )

∂Q(ti|y)
= Q(y)(logQ(ti|y)− logQ(ti))

Proof See Theorems 4 of (Riguzzi and Di Mauro, 2010).


