
Applying the Information Bottleneck Approach
to SRL: Learning LPAD Parameters

Fabrizio Riguzzi1 and Nicola Di Mauro2

1 Dipartimento di Ingegneria, Università di Ferrara - Italy,
fabrizio.riguzzi@unife.it

2 Dipartimento di Informatica, Università di Bari “Aldo Moro”- Italy,
ndm@di.uniba.it

Abstract. In this paper, we propose to apply the Information Bot-
tleneck (IB) approach to a sub-class of Statistical Relational Learning
(SRL) languages. Learning parameters in SRL dealing with domains that
involve hidden variables requires the use of techniques for learning from
incomplete data such as the expectation maximization (EM) algorithm.
Recently, IB was shown to overcome well known problems of the EM
algorithm. Here we show that learning in SRL languages reducible to
Bayesian Networks can be obtained by applying the IB approach. In par-
ticular, our focus is on the problem of learning the parameters of Logic
Programs with Annotated Disjunction (LPADs). We adopt a reduction-
ist approach in which an acyclic LPAD is translated into a Bayesian
network. The reduction process introduces in the network some hidden
variables thus naturally requiring the use of the IB approach. The pa-
per illustrates the algorithm Relational Information Bottleneck (RIB)
that learns LPAD parameters and shows some promising experimental
results.

1 Introduction

Probabilistic Inductive Logic Programming [6] and Statistical Relational Learn-
ing (SRL) [3] have been recently proposed for overcoming the limitations of tra-
ditional and relational Machine Learning by integrating approaches for learning
graphical models with Inductive Logic Programming techniques. This combina-
tion has been proved highly successful in a variety of fields, from social networks
analysis to entity resolution, from collective classification to information extrac-
tion.

Learning parameters in SRL dealing with domains that involve hidden vari-
ables requires the use of techniques for learning from incomplete data such
as the expectation maximization (EM) algorithm. The Information Bottleneck
(IB) framework [2] was shown to be superior to EM for learning parameters of
Bayesian networks with hidden variables. Moreover, it can be easily extended for
inducing the structure of the network, including the number and cardinality of
hidden variables. Given the advantages of IB with respect to EM, it is interesting
to investigate its application to statistical relational languages. In this paper, we



2 Fabrizio Riguzzi and Nicola Di Mauro

discuss how IB can be applied to the problem of learning the parameters of Logic
Programs with Annotated Disjunction (LPADs) [9].

An LPAD can be translated into a Bayesian network with hidden variables [9],
thus an algorithm that handles incomplete data is necessary in order to perform
learning. Previous approaches for learning this language include: [4], that pro-
posed to use the EM algorithm for inducing the parameters and the Structural
EM algorithm for inducing the structure of ground LPADs, and [7], that adopts
constraint optimization techniques to learn a subclass of programs.

In this paper, we specialized the IB approach for the case of LPADs obtaining
the Relational Information Bottleneck (RIB) algorithm. RIB is tested on artifi-
cial datasets and on the IMDB dataset by comparing it with the EM algorithm.
The results on the artificial datasets show that RIB is more accurate in finding
the values of parameters, while the results on IMDB show that RIB achieves
higher area under the precision-recall curve in less time.

2 Information Bottleneck Framework

The Information Bottleneck [2] had its origin in clustering [8]. Given two vari-
ables X and Y and their joint distribution Q(X,Y ), the aim of clustering is
to group values of Y so that as much information as possible is preserved
about X. For example, if Y are the words appearing in a set of documents
and X are the documents’ topics, we want to cluster words in a way that is
most relevant to the documents’ topics. The information that Y contains about
X (and vice versa) is naturally measured in terms of the mutual information
IQ(X;Y ) ,

∑
x,y Q(x, y) log Q(x,y)

Q(x)Q(y) . To cluster Y ’s values, [8] introduces a
bottleneck variable T whose values identify the various clusters and the function
Q(T |Y ) represents the degree of membership of the values of Y to the clusters.
T must compress Y while capturing as much as possible the information about
X. Clustering in this case can be performed by finding the parameters of the Q
distribution such that the function

L[Q] = IQ(Y ;T )− βIQ(T ;X) (1)

is minimized, where β determines the trade-off between information compression
and preservation.

This approach has been applied in [2] to the problem of learning Bayesian
networks with hidden variables, where the hidden variables are treated as the
bottleneck variable. In other words, we are given some data D = {x[1], . . . ,x[M ]}
over the observed variables X and we want to find a generative model P over the
observed variables X and the hidden variable T that describes D. The variable
Y is used in this case to represents the instance identity and it takes values
from {1, . . . ,M}. We want to find the parameters (and possibly the structure)
of P so that T explains the observed data. T should compress the training data
while at the same time preserving information about the observed attributes.
We can model the problem with two Bayesian networks: Gin, representing the



Title Suppressed Due to Excessive Length 3

Fig. 1. Gin and Gout for the multivariate information bottleneck framework.

Q distribution (i.e., the required compression), and Gout, representing the P
distribution, the one we are trying to learn, see Figure 1. In the general case, we
may have a vector T of hidden variables.

Any distribution for Gin and Gout can be chosen, provided that T is inde-
pendent of X in Gin given Y , and Y is a leaf in Gout with T as its only parents.
In order to make the treatment feasible, a factorized form for Q(T|Y ) can be
used, for example a naive Bayes assumption can be made in which Q(T|Y ) is
factorized as

∏
iQ(Ti|Y ). Different factorizations correspond to different choices

for Gin. In this case, the objective function takes the following form

L+
EM =

∑
i

IQ(Ti;Y )− γ(EQ[logP (X, T )]−
∑
i

EQ[logQ(Ti)]). (2)

The Information Bottleneck EM algorithm (IB-EM) then consists of the repeti-
tion of the following two steps:

– E-step: maximize −L+
EM by varying Q(T|Y ) while holding P fixed;

– M-step: maximize −L+
EM by varying P while holding Q fixed.

The parameter γ balances between compression of the data and the fit of pa-
rameters to Gout: for γ = 1, (2) is equivalent to the objective function of the
EM algorithm. The IB-EM can bypass local maxima of EM by varying γ in (2)
using a deterministic annealing strategy: γ is initially set to 0, where a single,
easy to compute solution exists, and then it is gradually incremented towards
higher values, tracking the solution through various stages, hopefully bypassing
local maxima by staying close to the optimal solution at each value of γ. The
aim is to follow a smooth path from the trivial solution at γ = 0 to a good
solution at γ = 1. When the gradient of L+

EM is zero, the functions Gti,y(Q, γ)
(see [2]) for all ti and y take value 0. Hence the goal is to follow an equi-potential
path where all Gti,y(Q, γ) functions are zero starting from some small value of
γ up to the desired solution at γ = 1. Starting from a point (Q0, γ0), where
Gti,y(Q0, γ0) = 0 for all ti and y, we want to move in a direction ∆ = (dQ, dγ)
s.t. Gti,y(Q0 + dQ, γ0 + dγ) = 0. Hence, we want to find a direction ∆ s.t.

∀ti, y∇Q,γGti,y(Q0, γ0) ·∆T = 0, (3)

where ∇Q,γGti,y(Q0, γ0) is the gradient of Gti,y(Q0, γ0) with respect to the pa-
rameters Q(ti|y) and γ. In order to compute the derivatives of Gti,y(Q, γ), we



4 Fabrizio Riguzzi and Nicola Di Mauro

must express logP (x[y], t) as a function of the parameters Q(ti|y). In the M-step,
the parameters of P can be obtained from counts of the following form:

N (v,pav) =
X

y

Q(y)Q((vpav ∩T)|y)1{(vpav ∩X)[y] = (vpav ∩X)}+ α(v,pav)

N (pav) =
X

v

N (v,pav)

where v is a variable from X∪T, pav are its parents, α are the hyper-parameters
of the Dirichlet prior distribution, 1{} is the indicator function, the notation V[y]
indicates the values of the variables in the set V in instance y and with vV we
denote {v}∪V. The parameters of P can then be expressed as θv|pav

= N (v,pav)
N (pav)

for every variable V either observed or hidden.

3 Information Bottleneck for LPADs

In this section we briefly present the basics of LPADs and their conversion to
Bayesian networks, followed by a description of RIB.

3.1 Logic Programs with Annotated Disjunctions

A Logic Program with Annotated Disjunctions L consists of a finite set of for-
mulas of the form

(H1 : θ1) ∨ (H2 : θ2) ∨ . . . ∨ (Hn : θn)← B1, B2, . . . Bm,

called annotated disjunctive clauses. In such a clause the Hi are logical atoms,
the Bi are logical literals and the θi are real numbers in the interval [0, 1] such
that

∑n
i=1 θi ≤ 1. The head of the clause implicitly contains an extra atom null

whose annotation is 1 −
∑n
i=1 θi. For a clause C of the form above, we define

H(C, i) as Hi and θ(C, i) as θi.
The semantics of an LPAD was given in [9] for finite ground programs. A

non-ground program can be assigned a semantics only if its grounding is finite,
i.e., if it does not contain function symbols. The semantics is given in this case
in terms of its grounding.

Each ground annotated disjunctive clause represents a probabilistic choice
between a number of ground non-disjunctive clauses. By choosing a head atom
for each ground clause of an LPAD we get a normal logic program called an
instance of the LPAD. A probability distribution is defined over the space of
instances by assuming independence between the choices made for each clause.
The probability of a ground query φ is given by the sum of the probabilities of
the instances where the query is true.

An LPAD is acyclic if to the ground atoms can be assigned an integer level
so that the level of each atom in the head of each ground rule is the same and
it is higher than the level of each atom in the body. An acyclic LPAD L can be
translated into a Bayesian network β(L) [9] that has a Boolean random variable



Title Suppressed Due to Excessive Length 5

for each ground atom plus a random variable choiceCΘ for each grounding CΘ
of each clause C of L. choiceCΘ assumes value H(C, i)Θ with probability θ(C, i)
if the configuration of its parents makes the body true, while it assumes value
null with probability 1 if the configuration makes the body false. Ground atom
A has as parents all the choiceCΘ variables for which A appears in the head of
CΘ. A assumes value true with probability 1 if one of the parent choice variables
assumes value A, otherwise it assumes value false with probability 1. Note that
in order to convert an LPAD containing variables into a Bayesian network, its
grounding must be generated.

3.2 Relational Information Bottleneck

In order to apply IB to LPADs, the network Gout is the result of the translation
of the LPAD for which we want to learn the parameters plus the addition of
the Y variable. The set of hidden variables contains the vector of the choice
variables CH plus those atoms that are unobserved in the data, let us call them
T. With X we indicate the set of atom variables that are observed in the data.
For the Gin network, we consider a naive Bayes factorization, so Q(CH,T|Y ) =∏
iQ(CHi|Y )

∏
j Q(Tj |Y ).

Example 1. Consider the following LPAD L:

r1 : x1 ∨ x2. r2 : x2 ∨ x3.
r3 : x4 ∨ x5 ← x1. r4 : x5 ← x2, x3.
r5 : x6 ∨ x7 ← x2, x5.

Moreover, suppose that x5 is unseen in the data. The networks Gin and Gout for
this LPAD are shown in Figure 2. According to IB, the chosen Q distribution
must be such that unobserved variables are independent of observed ones given
Y . This requirement is satisfied by Gin in Figure 2. As regards P , CH and T
must be the only parents of Y . This requirement is also satisfied by Gout: in fact,
the observed variables are completely determined by knowing CH and T and so
it the instance identity.

Let us now sketch how to compute the direction ∆. We want to compute the
derivatives of Gchi,y(Q, γ) and Gtj ,y(Q, γ) for all chi, tj and y with respect to
the parameters and γ, and then use the orthogonal direction as the update step.
In the following, we will sketch the derivations.

Let us first express the parameters of P . Note that, if we want to be able
to translate the network back to an LPAD, some of them are fixed in advance:
those belonging to the CPTs for atoms and those in the rows corresponding
to the body false for the CPTs for choice variables. So we must minimize the
objective function by varying only a subset of the parameters. Moreover, some
parameters are “tied”: all the choice variables that refer to ground rules obtained
from the same non ground rule share the same parameters.

Let us indicate with θxj |paXj
the parameters of the CPT for atom Xj . Thus

θXj=1|paXj
= 1 if the atom Xj is among the values paXj

of its parents, and 0



6 Fabrizio Riguzzi and Nicola Di Mauro

Fig. 2. Gin = Q (left) and Gout = P (right)

otherwise. For a non ground rule r, let θhdr,bodyr be the probability that the head
hdr is selected given that the body has truth value bodyr. Thus θhdr|false = 1 if
hdr = null.

Moreover, let i(r) be the set of instances of r. Given the body paCHs
of

instantiated rule s, let bt(paCHs
) be 1 if the observed variables in paCHs

do not
make the body false and 0 otherwise. Let tb(paCHs) be a set of values for the
unobserved variables that are parents of CHs and that do not make the body
false.

The maximum likelihood parameters of the distribution of HDr with body
true are

θhdr|true =
N (r, hdr) + α(r, hdr, true)
N (r) + α(r, true)

N (r, hdr) =
∑
s∈i(r)

∑
y

Q(y)Q(CHs = hdr|y)bt(pachs
[y])

∏
tj∈tb(pachs )

Q(tj |y)

N (r) =
∑
hdr

N (r, hdr)

where α() are the hyper-parameters of the Dirichlet prior distribution, and N is
used to denote the total counts used for estimation.

4 Evaluation

We tested RIB on some synthetic datasets and on the IMDB dataset [5]3.
The synthetic datasets have been obtained by writing some LPADs and by

generating training sets from them. Four different LPADs have been considered:
one of them is the shop example from [4] and contains 4 rules, while the others
have been obtained by progressively extending that example to 8, 10 and 12
rules respectively. For each of these LPADs, all the possible interpretations with
3 Available at http://alchemy.cs.washington.edu/data/imdb.

http://alchemy.cs.washington.edu/data/imdb


Title Suppressed Due to Excessive Length 7

a non-zero probability have been generated and inserted into the training set.
The probability of each interpretation was taken into account during learning by
setting Q(y) to that value, which is equivalent to having different cardinalities
for the different interpretations.

Then the parameters of the programs are learned by RIB and EM, both
implemented in Yap Prolog. The parameters obtained are compared with the
true ones by computing a mean squared error (MSE). The result show that
RIB achieves a much lower MSE in each experiment while taking less time: the
average MSE over the four experiments was 0.00218 for RIB and 0.03929 for
EM, the total time for RIB was 15.563 seconds against a total time of 56.026
seconds for EM.

We also run experiments with the smallest and the largest theory in which the
training set was composed respectively by 1,000 and 10,000 examples obtained
from the theories by random sampling. These results confirmed the previous
ones: the average MSE was 0.00376 for RIB and 0.04398 for EM and the total
time was 538.597 seconds for RIB and 865.709 seconds for EM.

IMDB is a real world database that we used to compare the performances of
RIB with that of EM in terms of area under the precision-recall curve. IMDB
regards movies, actors, directors and movie genres. It is divided into five mega-
examples, each containing all the information regarding four movies. It contains
10 predicates and 316 constants divided into 4 types. The number of possible
ground atoms is 32,615, of which only 1,540 are true.

We used a methodology similar to the one in [5]: we trained on four mega-
examples and tested on the remaining one. We choose an LPAD that predicts
the value of the target predicate sameperson(A,B).

Each mega-example contains different constants and thus many random vari-
ables would appear only in a single example. This may cause a problem to RIB
that exploits the dependency of random variables from individual examples.
Thus each fold has been divided into smaller examples on the basis of the target
predicate: each of the smaller example is an interpretation that refers to an in-
stance sameperson(s, p) and contains the facts for all the other predicates where
the constants s and p appear. We have one positive example for each instance
that is true in the data, while we sampled from the complete set of false instances
three times the number of true instances in order to generate negative examples.
In the interpretation, the constants s and p are replaced respectively with two
dummy constants that are the same for all the examples, so that the overall
number of different constants representing persons is reduced to two while the
constants for the other types are kept intact.

Our implementation of the EM algorithm was able to complete the first
fold, while reporting a memory resource limit error on the remaining folds. The
learned parameters were then used to generate the precision-recall curves by
drawing the points corresponding to the testing set and by interpolating among
them, using the technique described in [1]. On the first fold, RIB achieved an area
under the precision-recall curve of 0.2695, while EM achieved an area of 0.2399.



8 Fabrizio Riguzzi and Nicola Di Mauro

Learning took 599.4 seconds for RIB and 1091.1 seconds for EM. Overall, the
average area for RIB was 0.3316 obtained in 470.4 seconds on average.

The experiments discussed in [2] that showed IB-EM superior to EM are thus
confirmed by the results.

5 Conclusions

We have presented the RIB algorithm that applies the Information Bottleneck
to the problem of learning the parameters of an LPAD. Experimental evaluation
proves the validity of RIB on artificial and real-life datasets. Supplementary
material can be found at http://sites.google.com/a/unife.it/rib.

In the future, we plan to extend RIB for learning the structure of LPADs by
using the techniques presented in [2]. Furthermore we plan to extend the work
to deal with networks with cycles.

References

1. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Machine Learning, Proceedings of the Twenty-Third International Conference
(ICML 2006). pp. 233–240. ACM (2006)

2. Elidan, G., Friedman, N.: Learning hidden variable networks: The information bot-
tleneck approach. Journal of Machine Learning Research 6, 81–127 (2005)

3. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press (2007)

4. Meert, W., Struyf, J., Blockeel, H.: Learning ground cp-logic theories by leverag-
ing bayesian network learning techniques. Fundamenta Informaticae 89(1), 131–160
(2008)

5. Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network structure.
In: Machine Learning, Proceedings of the Twenty-Fourth International Conference
(ICML 2007). pp. 625–632. ACM (2007)

6. Raedt, L.D., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Inductive
Logic Programming - Theory and Applications, Lecture Notes in Computer Science,
vol. 4911. Springer (2008)

7. Riguzzi, F.: ALLPAD: approximate learning of logic programs with annotated dis-
junctions. Machine Learning 70(2-3), 207–223 (2008)

8. Tishby, N., Pereira, F., Bialek, W.: The information bottleneck method. In: Pro-
ceedings of the 37-th Annual Allerton Conference on Communication, Control and
Computing. pp. 368–377 (1999)

9. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated dis-
junctions. In: The 20th International Conference on Logic Programming (ICLP
2004). LNCS, vol. 3131, pp. 195–209. Springer (2004)

http://sites.google.com/a/unife.it/rib

	Applying the Information Bottleneck Approach to SRL: Learning LPAD Parameters
	Introduction
	Information Bottleneck Framework
	Information Bottleneck for LPADs
	Logic Programs with Annotated Disjunctions
	Relational Information Bottleneck

	Evaluation
	Conclusions


