
Learning Bayesian Random Cutset Forests

Nicola Di Mauro (B)1, Antonio Vergari1, and Teresa M.A. Basile2

1 Department of Computer Science, University of Bari “Aldo Moro”
Via E. Orabona 4, I-70125 Bari, Italy

2 Department of Physics, University of Bari “Aldo Moro”
Via G. Amendola 173, I-70126 Bari, Italy

{nicola.dimauro,antonio.vergari,teresamaria.basile}@uniba.it

Abstract. In the Probabilistic Graphical Model (PGM) community
there is an interest around tractable models, i.e., those that can guaran-
tee exact inference even at the price of expressiveness. Structure learning
algorithms are interesting tools to automatically infer both these archi-
tectures and their parameters from data. Even if the resulting models
are efficient at inference time, learning them can be very slow in prac-
tice. Here we focus on Cutset Networks (CNets), a recently introduced
tractable PGM representing weighted probabilistic model trees with tree-
structured models as leaves. CNets have been shown to be easy to learn,
and yet fairly accurate. We propose a learning algorithm that aims to im-
prove their average test log-likelihood while preserving efficiency during
learning by adopting a random forest approach. We combine more CNets,
learned in a generative Bayesian framework, into a generative mixture
model. A thorough empirical comparison on real word datasets, against
the original learning algorithms extended to our ensembling approach,
proves the validity of our approach.

1 Introduction

A key task in Probabilistic Graphical Models (PGMs) [11] is inference, i.e., the
possibility to answer queries about the probability of observing some states of the
random variables whose joint distribution is compactly represented in the model.
Exact inference is known to be a hard task in general, but even approximate
inference routines are unfeasible sometimes [22]. In order to gain efficiency, and
preserving exactness, one has to renounce expressiveness, that is coping with the
possibility of not capturing all the independencies among random variables. The
growing data availability demands PGMs able to guarantee tractable inference
leading to tractable PGMs, an accepted trade-off in the AI community.

Works on learning tractable models structure from data date back to tree-
structured models, like those inferred by the classical Chow-Liu algorithm [4]. Re-
cently, more accurate tractable PGMs have been proposed such as extensions of
tree-structured models by composing them in mixtures [16] or by introducing la-
tent variables [3], Arithmetic Circuits (ACs) capturing the expressiveness of more
complex Bayesian and Markov Networks [13,14], or by compacting latent inter-
actions in a deep architecture as done by Sum-Product Networks (SPNs) [18].

As the expressiveness of these models increases, the complexity of learning their
structure increases as well, being, in general, the problem formulated as a search
in the structure space guided by complex statistical independence tests.

With the objective of making structure learning efficient, Cutset Networks
(CNets) have been recently introduced in [19] as tractable PGMs embedding
Pearl’s conditioning algorithm [17]. They are weighted probabilistic model trees
in the form of OR-trees having tree-structured models as leaves, and non-negative
weights on inner edges emanating from inner OR nodes, representing condition-
ing on the values of the random variables associated to those nodes. Structure
learning in [19] corresponds to a greedy top-down search process in the OR trees
space that leverages decision tree learning heuristics to determine the random
variable to condition on at each step. The corresponding proposed algorithm,
CNet, recursively partitions the data instances into subsets by selecting heuristi-
cally the best variable that maximizes an approximation of a reformulation of the
information gain based on the joint entropy. Once this variable has been found,
the algorithm creates a corresponding inner OR node and proceeds until no more
splits can be done, in which case a tree learned with the Chow-Liu algorithm [4]
is introduced as a leaf node to approximate the distribution on the current data
partition. The cheap computation of an entropy based heuristic makes learning
efficient, however the resulting models are far from being accurate as density
estimators compared to other PGM structure learners [16,21]. Introducing mix-
tures of CNets learned via the Expectation Maximization algorithm (EM) lead
to really competitive results. Such results shed light on the trade-off between the
simplicity of such models and their accuracy: to effectively make them accurate
one cannot ignore direct likelihood maximization and shall recur to ensemble
techniques, making, in the end, learning more expensive if not complex.

In [7] a more principled way to learn CNets has been proposed. Struc-
ture learning is reformulated in a Bayesian framework as a likelihood-principled
search guided by the Bayesian Information Criterion (BIC). A tractable model
score, obtained by exploiting the decomposability of the likelihood of such mod-
els, enables the feasibility of finding the best feature for an OR split by directly
evaluating part of the model on a portion of the data. Regularization is achieved
both by the introduction of the BIC score and by putting informative Dirichlet
priors on the probability parameters. The introduced algorithm, dCSN, proved
to be more accurate than the original one. As expected, mixtures of models
learned in this way, ensembled via bagging [10], outperformed both CNet and
dCSN, again at the expense of learning time.

Here we extend the work in [7], by learning ensembles of CNets as density
estimators by adopting a random forest approach [2]. Our main objective is to
greatly reduce the evaluation time to choose the best variable to split on in dCSN
by considering only a fraction of all candidates variables. Nevertheless, such state
space reduction could potentially lead to less than optimal models, likelihood-
wise, in our framework. We devised a fair and thorough set of experiments to
test our proposed approach along the two dimensions of accuracy and time.
We evaluated our mixture models on 18 real world datasets against the original

algorithm as proposed in [19] extended to our ensemble framework, proving that
not only learning times are reduced, but also the model accuracy increased.

2 Cutset Networks

Let D = {ξ1, . . . , ξM} be a set of M i.i.d. instances over X = {X1, . . . , Xn}
discrete random variables (features), whose domains are the sets Val(Xi) =
{xji}

ki
j=1, i = 1, . . . , n. We denote as ξm[Xi] the value assumed by an instance ξm

in correspondence to a particular variable Xi .
A Cutset Network (CNet) is a pair 〈G,γ〉, where G = O∪{T1, . . . , TL} is the

graphical structure, composed by a rooted OR tree, O, and by leaf trees Tl; and
γ = w∪{θ1, . . . ,θL} is the parameter set containing the OR tree weights w and
the leaf tree parameters θl. The scope of a CNet G (resp. a leaf tree Tl), denoted
as scope(G) (resp. scope(Tl)), is the set of random variables that appear in it.
Each node in the OR tree is labeled by a variable Xi, and each edge emanating
from it represents the conditioning of Xi by a value xji ∈ V al(Xi), weighted by

the conditional probability wi,j of conditioning the variable Xi to the value xji .
A CNet can be thought of a model tree associating to each instance a weighted

probabilistic leaf model. From now on, for the sake of simplicity, we will refer
to the leaf trees as CLtrees as they may be learned by the classical Chow-Liu
algorithm [4] as the trees best approximating a probability distribution from
data in the terms of the Kullback-Leibler divergence, as done in [19].

In [7] a recursive definition of a CNet has been proposed along with the
resulting log-likelihood and BIC score decomposition, leading to the principled
dCSN algorithm for learning the structure of CNets, that we briefly review here.

Definition 1 (Cutset network [7]). Let X be a set of discrete variables, a
Cutset Network is defined as follows:

1. a CLtree, with scope X, is a CNet;
2. given Xi ∈ X a variable with |V al(Xi)| = k, graphically conditioned in an

OR node, a weighted disjunction of k CNets Gi with same scope X\i is a
CNet, where all weights wi,j, j = 1, . . . , k, sum up to one, and X\i denotes
the set X minus the variable Xi.

Following this definition, the computation of the log-likelihood of a CNet can
be decomposed as follows [7]. Given a CNet 〈G,γ〉 over variables X and a set of
instances D, its log-likelihood `D(〈G,γ〉) can be computed as:

`D(〈G,γ〉) =

{∑
ξ∈D

∑n
i=1 logP (ξ[Xi]|ξ[Pai]), if G = {T }∑k

j=1Mj logwi,j + `Dj
(〈Gj ,γGj

〉), otherwise,
(1)

where the first equation refers to the case of a CNet composed by a single CLtree,
while the second one specifies the the case of an OR tree rooted on the variable
Xi, with |V al(Xi)| = k, where, for each j = 1, . . . , k, Gj is the CNet involved in

the disjunction with parameters γGj
, Dj = {ξ ∈ D : ξ[Xi] = xji} is the slice of D

after conditioning on Xi, and Mj = |Dj | its cardinality. `Dj
(〈Gj ,γGj

〉) denotes
the log-likelihood of the sub-CNet Gj on Dj .

The dCSN algorithm, proposed in [7], exploits a different approach from that
in [19], avoiding decision tree heuristics and instead choosing the best variable
by directly maximizing the data log-likelihood. By exploiting the recursive na-
ture of Definition 1, a CNet is grown top-down allowing further expansion, i.e.,
substituting a CLtree with an OR node only if it improves the log-likelihood (it
is clear that maximizing the second term in Equation 1 results in maximizing
the global score). In detail, dCSN starts with a single CLtree, for variables X,
learned from D and it checks whether there is a decomposition, i.e. an OR node
applied on as many CLtrees as the values of the best variable Xi, providing a
better log-likelihood than that scored by the initial tree. If a such decomposition
exists, than the decomposition process is recursively applied to the sub-slices Di,
testing each leaf for a possible substitution.

In order to penalize complex structures and thus avoiding overfitting, a
Bayesian Information Criterion (BIC) [8] has been adopted. The BIC score
of a CNet 〈G,γ〉 on data D is defined as scoreBIC(〈G,γ〉) = logPD(〈G,γ〉) −
logM

2 Dim(G), where Dim(G) is the model dimension, set to the number of OR
nodes appearing in G, and M is the size of the dataset D. Given G and G′
be two CNets, where G′ has been obtained from G substituting a leaf tree
by adding a new sub-CNet rooted in an OR node, then: scoreBIC(〈G′,γ′〉) −
scoreBIC(〈G,γ〉) = `D(〈G′,γ′〉)− `D(〈G,γ〉)− logM

2 . Hence, G′ is accepted when

`D(〈G′,γ′〉)− `D(〈G,γ〉) > logM
2 , i.e., a leaf node may be decomposed when the

improvement on the global loglikelihood is greater than logM
2 .

Proposition 1 (CNet BIC score decomposition [7]). Given a CNet 〈G,γ〉,
over variables X and instances D, made up of {Tl}Ll=1 CLtrees, a decomposition
of a tree Tl, having scope Xl ⊂ X, with parameters θl, with a sub-CNet Gi rooted
in a OR node associated to the variable Xi ∈ Xl with parameters γi, leading to
a new CNet 〈G′,γ′〉, is accepted iff `Dl

(〈Gi,γi〉) − `Dl
(〈Tl,θl〉) > logM

2 , where
M = |D|, and Dl is the slice of D containing only instances associated to Tl.

Again, due to the decomposability of the likelihood score, instead of recomputing
it on the complete dataset D, we can evaluate only the local improvements.

A Bayesian approach to learn a CLtrees T with parameters θ from data
D has been adopted, by exploiting as scoring function P (θ|D) ≈ P (D|θ)P (θ).
Considering Dirichlet priors, and indicating with Pai the parent variable of Xi,
the regularized model parameter estimates are:

θxi|Pai ≈ EP (θxi|Pai
|D,T)[θxi|Pai] =

Mxi,Pai + αxi|Pai
MPai + αPai

,

where Mz is the number of entries in a dataset Dz having the set of variables
Z instatiated to z. As pointed out in [8], a different Dirichlet prior for each
distribution of Xi given a particular value of its parents may be used, leading to

choosing the regularized parameter estimates as:

θ̂Xi|Pai =
M · P (Pai)P (Xi|Pai)

M · P (Pai) +αXi|Pai
+

αXi|Paiθ
0(Xi|Pai)

M · P (Pai) +αXi|Pai
,

where θ0(Xi|Pai) is the prior estimate of P (Xi|Pai) and αXi|Pai is the confidence
associated with that prior. A reasonable choice uses the marginal probability of
Xi in the data as the prior probability. Thus, θ0(Xi|Pai) has been set to PD(Xi),

and with fixed αxi|Pai = α, then θ̂Xi|Pai has been set to
Mxi,Pai

+αPD(Xi)

MPai
+α .

The dCSN algorithm starts by learning a single CLTree on the whole dataset
D, and then calls a decomposition procedure on this tree. Two input parameters,
δ and σ, act as regularizers, halting the decomposition process by requiring a
minimum number of instances, resp. of features, in a slice to split it. The aim
of dCSN is to attempt to extend the model by replacing one of the CLtree leaf
nodes with a new CNet on the same variables. In particular, the decomposition
prodecure checks for each variable Xi on the slice D, whether the OR decom-
position associated to that variable (a new CNet) has a better score than that
of the input CLtree. If a better decomposition is found, it then recursively tries
to decompose the sub-CLtrees of the newly introduced CNet. It is clear that
the evaluation of all possible decompositions, i.e. of all possible Xi, even if the
likelihood score is decomposable, extends learning time.

3 Random Forests of CNets

The joint probability distribution defined by a mixture K of probabilistic models
can be formulated as P (X) =

∑K
i=1 µiP (X : Qi), where {Qi}Ki=1 are the mixture

components and {µi}ki=1 are their responsibilities, i.e. the positive weights sum-
ming to one representing the contribution of each component to the final model.
In our context, the components would be CNets, i.e. Qi = 〈Gi,γi〉; instead,
for MT [16], a highly accurate algorithm learning mixtures of tree structured
models, they would be CLTrees.

The most common algorithmic choice when learning the structure of a mix-
ture of PGMs is the Expectation Maximization algorithm EM [6]. In a nutshell,
by considering the mixture responsibilities as the probabilities of observing as
many values of a latent variable, the optimization carried out by EM involves the
iteration of two steps: the computation of the expected mixture components from
the current distribution, followed by the maximization of the likelihood as a func-
tion of the responsibilities given the previously computed components [16,19].
To shorten unfeasible learning times, since learning the components structure
from zero is quite expensive, in practice, only the responsibilities are updated,
having the components structures being learned only once, at the first iteration.

In [7] we explored another direction in mixture structure learning, ensem-
bling techniques exploiting bagging [10]. Each component is learned once on
bootstrapped sample DBi

of the initial data D, with |DBi
| = |D|, and their

responsibilities are computed as being proportional to the likelihood score they

Algorithm 1 dCSN-RF(D, X, αf , δ, σ, K)

1: Input: instances D over features X; αf ∈ [0, 1]: ESS factor; δ min num of instances
to split, σ min num of features to split, K num of the mixture components

2: Output: a mixture of K CNets components {〈Gi,γi〉}Ki=1 with responsibilities
{µi}Ki=1, encoding a pdf over X learned from D

3: α← αf |D|, µ̂← 0
4: for i = 1, . . . ,K do
5: DBi ← bootstrapSample(D)
6: 〈T ,θ〉 ← LearnCLTree(DBi ,X, α)
7: w ← ∅
8: 〈Gi,γi〉 ← decompose-RF(DBi ,X, α, T ,θ,w, δ, σ)
9: µi ← `D(〈Gi,γi〉), µ̂← µ̂+ µi

10: for i = 1, . . . ,K do
11: µi ← µi/µ̂

got on DBi
, resulting in the more robust estimate for each instance: P̂ (ξ) =∑K

i=1 µiP (ξ : 〈Gi,γi〉), where µi = `D(〈Gi,γi〉)/
∑K
j=1 `D(〈Gj ,γj〉). A sketch of

our bagged approach in dCSN-RF is visible in Algorithm 1, where LearnCLTree
is the procedure, as already reported in [7], learning leaf trees implementing the
Chow-Liu algorithm [4] and smoothing (α) probability estimations.

As the complexity of such approach grows linearly in the number of compo-
nents, a natural time saving extension would be to consider only a portion of
the features while growing the CNet, and then select the best one among them.
The extension of the decompose procedure used in dCSN [7], as described in the
previous section, to dCSN-RF is outlined in Algorithm 2. The difference now lies
in line 5, where only a random subset of X is evaluated. We choose to sample√
|X| as suggested in [10]. While this can clearly lead to sub optimal structures

when a single component is involved, it would derive a better density estimation
by forcing each of them to specialize on a particular, partial, view of the joint dis-
tribution as the number of components increases. Adopting this strategy within
the bagging framework equals to a random forest approach [2] translated in a
Bayesian generative framework. Random forests have been successfully applied
in discriminative tasks like classification and regression, leading to accurate, low
variance ensembles [10]. They have also recently being proposed as density esti-
mators in [5]. More in general, our approach is affine to those shown in [20,1],
where mixtures of tree structured density estimators are learned by perturbing
their components via bagging and random subspace combination. Here we are
willingly to trade off accuracy for shorter learning times.

4 Experiments

We evaluated dCSN-RF against the mixture version in our Bayesian framework,
using only bagging, dCSN-B, and the mixture extensions of the original single
CNet learning algorithms, as presented in [19]: CNet-B and CNet-RF for the

Algorithm 2 decompose-RF(D, X, α, T ,θ,w, δ, σ)

1: Input: instances D over X; α: ESS; T : a tree structured model and its parameters
θ; δ min num of instances to split, σ min num of features to split

2: Output: a CNet encoding a pdf over X learned from D
3: if |D| > δ and |X| > σ then
4: `best ← −∞, XR ← randomSubset(X,

√
|X|)

5: for Xi ∈ XR do
6: Gi ← ∅,wi ← ∅,θi ← ∅, Ci is the OR Node associate to Xi

7: for xji ∈ V al(Xi) do
8: Dj ← {ξ ∈ D : ξ[Xs] = xjs}, wij ← |Dj |/|D|
9: 〈Tj ,θij〉 ← LearnCLTree(Dj ,XR\s, αwij)

10: Gi ← addSubTree(Ci, Tj)
11: wi ← wi ∪ {wij},θi ← θi ∪ {θij}
12: `i ← `Di(〈Gi,wi ∪ θi〉)
13: if `i > `best and `i > `Di(〈T ,θ〉) then
14: `best ← `i, Xbest ← Xi, Gbest ← Gi, θbest ← θi,wbest ← wi

15: if `best − `D(〈T ,θ〉) > (log|D|)/2 then
16: substitute T with Gi and set w ← w ∪wbest

17: for xjb ∈ V al(Xbest) do
18: Dj ← {ξ ∈ D : ξ[Xb] = xjb}
19: decompose-RF(Dj ,X\best, αwij , Tj ,θj ,w, δ, σ)

bagged and random forest variants without pruning and CNetP-B and CNetP-
RF for those including post pruning, the technique used in [19] to cope with
the risk of overfitting. In addition to these, we employed MT [16] as one of the
more solid mixture learning competitors[21,19]. We implemented all algorithms
in Python3, while for MT we used the implementation available in the Libra
toolkit [15]. We tested them on an array of 18 real world datasets introduced
in [12] and [9] as binary variants of frequent itemset mining, recommendation
and classification datasets4.

For all CNet learners, and for each dataset, we bootstrapped 40 dataset
samples, then we learned mixture models incrementally, by adding components
whose number K ranged from 5 to 40, by steps of 5, looking for the best average
log-likelihood on the validation set. For CNet-B, CNet-RF, CNetP-B and CNetP-
RF we set α = 1.0 as done in [19]. For dCSN-B and dCSN-RF we employed
a grid search on the validation sets for the parameters αf ∈ {5, 10} and δ ∈
{100, 200, 300, 400, 500, 1000}, while fixing σ = 3. For MT we reproduced the
experiment in [21], setting K from 2 to 30 by steps of 2. We found out that
while all bagged models achieved the best validation scores with K = 40, the
best value for this parameter for MT greatly oscillates from 2 to 30, highlighting
how EM could lead to different local optima.

3 Source code is available at http://www.di.uniba.it/~ndm/dcsn/.
4 All experiments have been run on a 4-core Intel Xeon E312xx (Sandy Bridge) @2.0

GHz with 8Gb of RAM and Ubuntu 14.04.1, kernel 3.13.0-39.

http://www.di.uniba.it/~ndm/dcsn/.

CNet-B CNet-RF CNetP-B CNetP-RF dCSN-B dCSN-RF MT

NLTCS 154 111 224 138 144 87 290
MSNBC 2458 1911 2997 1825 2887 1783 8645

Plants 724 345 847 361 2247 441 7414
Audio 1789 571 1903 658 4992 760 6566
Jester 1375 436 1993 691 4798 551 3064

Netflix 2716 861 3604 1184 9681 1177 11402
Accidents 1308 402 1413 405 6844 859 14073

Retail 2822 585 2776 591 1838 924 320
Pumsb-star 2421 495 2480 561 12274 1257 18533

DNA 305 102 388 119 2892 254 228
Kosarek 10565 1927 10119 1888 7248 1616 18782
MSWeb 17667 2331 19425 2028 23168 3509 36076

Book 17209 1488 18028 1552 16111 2385 5918
EachMovie 8056 801 9127 978 18060 941 12100

WebKB 9610 917 11589 843 14109 1195 931
Reuters-52 34170 2381 36106 2392 68296 3256 15082

BBC 8583 415 8473 467 14144 1637 1324
Ad 7499 791 7436 829 42707 1930 6850

Table 1: Times (in seconds) taken to learn the best models on each dataset for
all algorithms.

Concerning learning times (see Table 1), as expected, random forest variants
were up to one magnitude order faster than the bagged versions. For instance
for K = 40, on EachMovie the times in seconds are: 8056, 801, 9127, 978, 18060,
941 for CNet-B, CNet-RF, CNetP-B CNetP-RF, dCSN-B, dCSN-RF respectively.
For all the implemented versions, we run a pairwise Wilcoxon signed rank test to

CNet-B CNet-RF CNetP-B CNetP-RF dCSN-B dCSN-RF MT

NLTCS -6.09 -6.05 -6.02 -6.01 -6.02 -6.01 -6.01
MSNBC -6.06 -6.06 -6.04 -6.05 -6.04 -6.04 -6.08

Plants -12.31 -12.18 -12.38 -12.25 -12.21 -12.27 -12.93
Audio -42.14 -41.64 -40.68 -40.06 -40.17 -39.96 -40.14
Jester -57.60 -57.43 -53.08 -52.85 -52.99 -52.89 -53.06

Netflix -63.03 -62.15 -57.54 -56.89 -56.63 -56.53 -56.71
Accidents -30.26 -29.75 -30.26 -29.84 -28.99 -29.00 -29.69

Retail -11.00 -10.84 -10.88 -10.90 -10.87 -10.82 -10.84
Pumsb-star -24.37 -23.98 -24.20 -23.93 -23.32 -23.32 -23.70

DNA -91.13 -87.61 -86.88 -87.26 -84.93 -84.83 -85.57
Kosarek -10.97 -10.68 -10.85 -10.66 -10.85 -10.67 -10.62
MSWeb -9.96 -9.88 -9.91 -9.93 -9.86 -9.71 -9.82

Book -35.91 -35.81 -35.60 -35.92 -35.92 -35.94 -34.69
EachMovie -54.35 -53.35 -54.02 -53.20 -53.91 -53.84 -54.51

WebKB -156.43 -155.47 -156.68 -158.59 -155.20 -155.10 -157.00
Reuters-52 -86.36 -84.83 -86.89 -85.24 -85.69 -84.58 -86.53

BBC -252.26 -251.12 -257.09 -257.08 -251.14 -249.56 -259.96
Ad -15.98 -16.04 -16.04 -16.04 -13.73 -14.35 -16.01

Table 2: Empirical risk for all algorithms.

assess the statistical significance of the scores, even if a correction to counteract
the problem of multiple comparisons should be used. For instance, adopting the
Bonferroni correction and testing the single six hypotheses with a significance

CNet-B CNet-RF CNetP-B CNetP-RF dCSN-B dCSN-RF MT

CNet-B - 2 3 3 0 1 5
CNet-RF 15 - 9 8 3 3 4
CNetP-B 13 7 - 6 3 1 4

CNetP-RF 12 9 9 - 5 5 5
dCSN-B 16 10 14 11 - 4 11

dCSN-RF 17 14 15 12 9 - 15
MT 12 12 11 11 5 2 -

Table 3: Numbers of statistically significant victories for the algorithms on the
rows compared to those on columns

level of 0.05 corresponds to use a whole significance level of 0.3. In Table 2,
in bold are reported the best values (round off to two decimal places), com-
pared to all others, for each dataset (p-value= 0.05). As expected, the principled
Bayesian learning of dCSN-B and dCSN-RF produces more accurate models than
entropy based structure learners (those are the only two algorithms performing
consistently better than MT, see Table 3). Moreover, it is clearly visible that
the random forest approach generally outperforms all algorithmic variants us-
ing bagging, even in our Bayesian framework, becoming the significantly best
performer on 10 datasets.

5 Conclusions

We extended the principled Bayesian approach to learn the structure of CNets
proposed in [7] to a random forest ensemble framework with the main aim of
reducing learning times considerably while preserving test accuracy. We proved
empirically that such an approach leads to significantly more accurate models
than a simple bagging scheme with the same number of components on entropy
based models as well as on the Bayesian one. This, combined with the great time
reduction, substantially proves our approach, making bayesian random Cutset
forests an even more attractive tractable PGM.

Acknowledgements

Work supported by the project PUGLIA@SERVICE (PON02 00563 3489339)
financed by the Italian Ministry of University and Research (MIUR) and by the
European Commission through the project MAESTRA, grant no. ICT-2013-
612944.

References

1. S. Ammar, P. Leray, B. Defourny, and L. Wehenkel. Probability density estimation
by perturbing and combining tree structured Markov networks. In Proceedings of
the 10th ECSQARU, pages 156–167. Springer, 2009.

2. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

3. M. J. Choi, V. Y. F. Tan, A. Anandkumar, and A. S. Willsky. Learning latent tree
graphical models. Journal of Machine Learning Research, 12:1771–1812, 2011.

4. C. Chow and C. Liu. Approximating discrete probability distributions with de-
pendence trees. IEEE Transactions on Information Theory, 14(3):462–467, 1968.

5. A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified frame-
work for classification, regression, density estimation, manifold learning and semi-
supervised learning. Foundations and Trends R© in Computer Graphics and Vision,
(7):81–227, 2011.

6. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the royal statistical society, pages 1–38,
1977.

7. N. Di Mauro, A. Vergari, and F. Esposito. Learning accurate cutset networks by
exploiting decomposability. In M. Gavanelli, E. Lamma, and F. Riguzzi, editors,
AI*IA 2015: Advances in Artificial Intelligence, 2015.

8. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine
learning, 29(2-3):131–163, 1997.

9. J. V. Haaren and J. Davis. Markov network structure learning: A randomized
feature generation approach. In Proceedings of the 26th Conference on Artificial
Intelligence. AAAI Press, 2012.

10. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2009.

11. D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

12. D. Lowd and J. Davis. Learning Markov network structure with decision trees.
In Proceedings of the 10th IEEE International Conference on Data Mining, pages
334–343. IEEE Computer Society Press, 2010.

13. D. Lowd and P. Domingos. Learning arithmetic circuits. CoRR, abs/1206.3271,
2012.

14. D. Lowd and A. Rooshenas. Learning Markov networks with arithmetic circuits.
In Proceedings of the 16th International Conference on Artificial Intelligence and
Statistics, volume 31 of JMLR Workshop Proceedings, pages 406–414, 2013.

15. D. Lowd and A. Rooshenas. The Libra Toolkit for Probabilistic Models. CoRR,
abs/1504.00110, 2015.

16. M. Meilă and M. I. Jordan. Learning with mixtures of trees. Journal of Machine
Learning Research, 1:1–48, 2000.

17. J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

18. H. Poon and P. Domingos. Sum-product network: a new deep architecture. NIPS
2010 Workshop on Deep Learning and Unsupervised Feature Learning, 2011.

19. T. Rahman, P. Kothalkar, and V. Gogate. Cutset networks: A simple, tractable,
and scalable approach for improving the accuracy of Chow-Liu trees. In Machine
Learning and Knowledge Discovery in Databases, volume 8725 of LNCS, pages
630–645. Springer, 2014.

20. G. Ridgeway. Looking for lumps: Boosting and bagging for density estimation.
Computational Statistics & Data Analysis, 38(4):379–392, 2002.

21. A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indi-
rect variable interactions. In Proceedings of the 31st International Conference on
Machine Learning, pages 710–718. JMLR Workshop and Conference Proceedings,
2014.

22. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1–2):273–302, 1996.

	Learning Bayesian Random Cutset Forests

