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Abstract The need to deal with the inherent uncertainty in real-world relational
or networked data leads to the proposal of new probabilistic models, such as proba-
bilistic graphs. Every edge in a probabilistic graph is associated with a probability
whose value represents the likelihood of its existence, or the strength of the relation
between the entities it connects.

The aim of this paper is to propose two machine learning techniques for the
link classification problem in relational data exploiting the probabilistic graph
representation. Both the proposed methods will exploit a language-constrained
reachability method to infer the probability of possible hidden relationships that
may exists between two nodes in a probabilistic graph.

Each hidden relationships between two nodes may be viewed as a feature (or
a factor), and its corresponding probability as its weight, while an observed rela-
tionship is considered as a positive instance for its corresponding link label. Given
a training set of observed links, the first learning approach is to use a proposition-
alization technique adopting a L2-regularized Logistic Regression to learn a model
able to predict unobserved link labels. Since in some cases the edges’ probability
may be not known in advance or they could not be precisely defined for a classifi-
cation task, the second proposed approach is to exploit the inference method and
to use a mean squared technique to learn the edges’ probabilities. Both the pro-
posed methods have been evaluated on real world data sets and the corresponding
results proved their validity.
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1 Introduction

Many real-world relational/networked domains, such as biological and social net-
works, need tools able to deal with both the inherent uncertainty of the data and
their complex relational structure. Traditional approaches for structured domains
do no allow one to deal with uncertainty and hence their probabilistic extensions
are necessary for handling and mining such data. This need leads in the last years to
the proposal of Statistical Relational Learning (SRL) (Getoor and Taskar, 2007)
and Probabilistic Inductive Logic Programming (PILP) (De Raedt et al, 2008)
methods that combine the expressive power of relational representations with sta-
tistical tools to handle the uncertainty. Another important research topic, strongly
connected to SRL, emerged in the last few years is the extension of graph struc-
tures with uncertainty (Potamias et al, 2010; Zou et al, 2010a; Pfeiffer III and
Neville, 2011), leading to the probabilistic graph model.

With probabilistic graphs one can model structured domain, as with the clas-
sical graph structure, but with the advantage to also handle uncertain data. Un-
certainty is modeled by means of probabilistic edges whose value quantifies the
likelihood of the edge existence, or the strength of the link between the nodes it
connects. Here the edges are not assumed to absolutely exist, but, adopting the
possible world semantics, it may exist according to its own probability. Since we
have to deal with probabilistic edges, then arises the problem of transposing the
tasks in classical graph structure to this probabilistic setting.

Computing the connectivity of the network represents one of the main issues
in probabilistic graphs. A generalization of the pairwise reachability is the network
reliability problem (Colbourn, 1987), where the aim is to determine the probabil-
ity that all pairs of nodes are reachable from one another. However, unlike in a
deterministic graph in which the reachability function returns a binary value rep-
resenting the existence of a path connecting two nodes, in the case of probabilistic
graphs this existence assumes a probabilistic value.

The concept of reachability, along with its specializations, used to compute how
two nodes are likely to be connected, represents one of the main tool in probabilistic
graphs (entities not directly linked may be related by chains of links). It is quite
similar to the concept of link prediction (Getoor and Diehl, 2005), whose task may
be formalized as follows. Given a networked structure (V,E) made up of a set
of data instances V and a set of observed links E among some nodes in V , the
task corresponds to predict how likely should exist an unobserved link between
two nodes. Extending the concept of link prediction to probabilistic graphs adds
an important ingredient that should be adequately exploited. Indeed, the key
difference with respect to classical link prediction is that in a probabilistic graph
the observed links between two nodes cannot be considered always true, and hence
methods exploiting probabilistic links are needed. When the edges are labeled they
may describe different kind of links among the nodes and hence link classification

methods, returning a categorical value and not just a binary value as in link
prediction, are needed to identify the correct unobserved link.

In this paper we provide two machine learning methods to predict the most
likely link between two nodes in probabilistic graphs. Given a probabilistic graph,
in both the approaches we exploited the reachability tool to infer the probability
of some possible interconnections that may exists between two nodes, as already
reported in (Taranto et al, 2013).
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In the first proposed machine learning approach, each of these unobserved
connections may be viewed as a feature, or a factor, between the two nodes and the
corresponding probability as its weight. Each observed labeled link is considered
as a positive instance for the label it represents. The link label may be viewed
as the value of the output random variable yi, while, the features between two
nodes, computed with the inference tool, correspond to the components of the
corresponding input vector xi. Hence, given the constructed training set D =
{(xi, yi)}

n
i=1, obtained from a set of n observed links, a L2-regularized Logistic

Regression has been adopted to learn a model to be used to predict unobserved
link labels. This approach is quite similar to that of propositionalization (Kramer
et al, 2000) proposed in the fields of PILP and SRL, where the relational data
are flattened to a propositional representation using relational features in order to
have efficient learning results. Here, the further problem that we have to handle
is that the relational representation is associated with uncertainty.

Another problem that we have to consider is that in many real world domains
the data are provided with a flat representation and not with a relational one, or
that the links among the involved entities are hidden. In particular, we are in the
case where we have not an observed graph structure of the domain. Hence, in order
to apply the proposed learning approach, based on probabilistic graphs, we used
a method that elicits, from a flat data set, the hidden relational structure with its
corresponding probabilistic information, by exploiting similarity functions.

In many cases the relational structure of the domain is known, but the edges’
probabilities could not be observed or they are not precisely computable by a
similarity function. The second proposed machine learning approach, extending
that proposed in (Taranto et al, 2013), try to overcome this problem by exploiting
the inference method and using a mean squared technique to learn the edges’
probabilities. Given the training set D, we proposed a stochastic gradient descent
method (Bottou, 1998) to learn the edge probabilities in order to minimize a given
objective function.

We used as application domains to validate the proposed techniques that of
recommender systems (Desrosiers and Karypis, 2011), where the aim is to predict
the unknown rating between an user and an item, and that of classification of web
pages, a benchmark data set that has been the subject of prior study in machine
learning. Experiments proved that the proposed approaches achieves significant
results when compared to state-of-the-art methods for the recommendation task
(for the domain of recommender systems) and to state-of-the-art SRL systems (for
the case of web pages classification).

The rest of this paper is organized as follows. The next section reports some
related works. Section 3 introduces the probabilistic graph framework. Section 4
describes how the link classification problem is solved adopting the two proposed
learning methods. Then, Section 5 shows the method we used to elicit the hidden
relations and their corresponding probabilities from flat data (Section 5.1), and
the corresponding results of the proposed learning approaches on some real world
problems. Lastly, Section 6 concludes the paper.
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2 Related Works

Given a graph (or a network), the goal we are dealing with is to predict edges
(or links) that could be most likely added to the graph in the future, sometimes
called link prediction problem (Getoor and Diehl, 2005). In particular, we focus
on the task of link classification, where we try to both predict and classify a set
of links (Taskar et al, 2003). Applications where the link prediction can be used
are those such as identifying the structure of a criminal network, overcoming the
data-sparsity problem in recommender systems using collaborative filtering (Zan
et al, 2005), analyzing users navigation history to generate users tools that increase
navigational efficiency (Zhu, 2003). The link prediction problem is also related to
the problem of inferring missing links from an observed network. One constructs a
network of interactions based on observable data and then tries to infer additional
links that are most likely to exist (Goldberg and Roth, 2003; Popescul and Ungar,
2003; Taskar et al, 2003).

The methods that solve this problem assign a connection weight to pairs of
nodes, based on the input graph, and then produce a ranked list in decreasing order
of such connections. This could correspond to compute a measure of proximity or
a similarity between nodes, by using the length of their shortest path in the graph.
Such a measure follows the notion that collaboration networks are small worlds,
in which individuals are related through short chains (Newman, 2001b).

Other methods try to compute the similarity between two nodes by looking
their corresponding neighborhoods. Given two nodes, if the set of their correspond-
ing neighbors have a large overlapping then the nodes should be very similar. It
has been shown in (Newman, 2001a) that there is a correlation between the num-
ber of common neighbors between two nodes at a given time, and the probability
they will be similar in the future.

Another method uses random walks on the graph (von Luxburg et al, 2011),
where starting from a node, the selection of the next node to visit is randomly
chosen among its neighbors. Adopting this approach it is possible to compute the
hitting time between two nodes x and y as the expected number of steps required
for a random walk starting at x to reach y.

All the methods described above consider the space of representation as a graph
with the nodes of the network indicating the objects of the world and the edges
with a numeric value that indicates their weight.

Over the last few years uncertain graphs have become an important research
topic (Potamias et al, 2010; Zou et al, 2010a,b). In these graphs each edge is associ-
ated with an edge existence probability that quantifies the likelihood that the edge
exists in the graphs. Using this representation it is possible to adopt the possible

world semantics to model it. One of the main issue in uncertain graphs is how to
compute the connectivity of the network. As already said, unlike in a deterministic
graph in which the reachability function is a binary function indicating whether
or not there is a path that connects two nodes, in the case of the reachability
on uncertain graphs the function assumes probabilistic values. In (Potamias et al,
2010), the authors provide a list of alternative shortest-path distance measures for
uncertain graphs in order to discover the k closest nodes to a given node. Another
work (Jin et al, 2011) tries to deal with the concept of x − y distance-constraint
reachability problem. In particular, given two nodes x and y, they try to solve the
problem of computing the probability that the distance from x to y is lesser than



Link Classification with Probabilistic Graphs 5

or equal to a user-defined threshold. In order to solve this problem, they proposed
an exact algorithm and two reachability estimators.

As regards the need to elicit hidden relations, research in the past decade on
SRL has shown the power of the underlying network of relations in relational data.
However, many data sets do not contain explicit relations. Trying to elicit and to
exploit structured information, instead of applying machine learning methods on
flat descriptions has been investigated in recent years, such as in (Witsenburg
and Blockeel, 2011; Macskassy, 2011). In (Witsenburg and Blockeel, 2011) the
authors proposed a method that exploiting the graph structure, by including link
information, yields a more relevant similarity measure to cluster the nodes of the
graph. (Macskassy, 2011) investigated the possibility of constructing relations, by
using simple similarity-based rules, such that relational inference results in better
classification performance than non-relational inference.

3 Probabilistic Graphs

Let G = (V,E), be a graph where V is a collection of nodes and E ⊆ V ×V is the
set of edges, or relationships, between the nodes.

Definition 1 (Probabilistic graph) A probabilistic graph is a system G =
(V,E, Σ, lV , lE , s, t, p), where (V,E) is an directed graph, V is the set of nodes, E
is the set of ordered pairs of nodes where e=(s,t), Σ is a set of labels, lV : V → Σ
is a function assigning labels to nodes, lE : E → Σ is a function assigning labels to
the edges, s : E → V is a function returning the source node of an edge, t : E → V
is a function returning the target node of an edge, p : E → [0, 1] is a function
assigning existence probability values to the edges.

The existence probability p(a) of an edge a = (u, v) ∈ E is the probability
that the edge a, connecting the node u to the node v, can exist in the graph. A
particular case of probabilistic graph is the discrete graph1, where binary edges
between nodes represent the presence or the absence of a relationship between
them, i.e., the existence probability value on all observed edges is 1.

The possible world semantics, specifying a probability distribution on discrete
graphs and formalized in the distribution semantics of Sato (Sato, 1995) for the
first order logic, is usually used for probabilistic graphs. We can imagine a prob-
abilistic graph G as a sampler of worlds, where each world is an instance of G.
A discrete graph G′ is sampled from G according to the probability distribution
P , and denoted as G′ ⊑ G, when each edge a ∈ E is selected to be an edge of
G′ with probability p(a). Edges labeled with probabilities are treated as mutually
independent random variables indicating whether or not the corresponding edge
belongs to a discrete graph.

Assuming independence among edges, the probability distribution over discrete
graphs G′ = (V,E′) ⊑ G = (V,E) is given by

P (G′|G) =
∏

a∈E′

p(a)
∏

a∈E\E′

(1− p(a)). (1)

1 Sometimes called certain graph.
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Definition 2 (Simple path) Given an uncertain graph G = (V,E), a simple

path of length k from u to v in G, expressed as π ∈ G, is a sequence of edges
denoted as π = 〈e1, e2, . . . ek〉, where e1 = (u, v1), ek = (vk−1, v), ei = (vi−1, vi)

for 1 < i < k − 1, ei ∈ E and u, v, vi ∈ V , or equivalently as π = u
e1−→ v1

e2−→
v2 · · · vk−1

ek−→ v.

Given an uncertain graph G, and π = 〈e1, e2, . . . ek〉 a path in G from the node
u to the node v, ℓ(π) = lE(e1)lE(e2) · · · lE(ek) denotes the ordered concatenation
of the labels of all the edges belonging to π.

We will adopt a regular expression R to denote what is the exact sequence of
the labels that the path must contain.

Definition 3 (Language-constrained simple path) Given a probabilistic graph
G and a regular expression R, a language constrained simple path is a simple path
π ∈ G such that ℓ(π) ∈ L(R), where L(R) is the language described by R. We also
say that π satisfies R in G.

3.1 Inference

Given a probabilistic graph G, a main task corresponds to compute the probability
that there exists a simple path between two nodes u and v, that is, querying for
the probability that a randomly sampled discrete graph contains a simple path
between u and v. More formally, the existence probability P (π|G) of a simple path
π in a probabilistic graph G corresponds to the marginal P (π,G′|G) with respect
to π:

P (π|G) =
∑

G′⊑G

I{π ∈ G′} · P (G′|G), (2)

where I{π ∈ G′} = 1 if there exits the simple path π in G′, and I{π ∈ G′} = 0
otherwise2. In other words, the existence probability of the simple path π is the
probability that the simple path π exists in a randomly sampled discrete graph.

Definition 4 (Language-constrained simple path probability) Given a prob-
abilistic graphG and a regular expression R, the probability of a language-constrained
simple path π ∈ G is

P (π|G, R) =
∑

G′⊑G

I{π ∈ G′|R} · P (G′|G), (3)

where I{π ∈ G′|R} = 1 if there exists a simple path π in G′ such that ℓ(π) ∈ L(R),
and I{π ∈ G′|R} = 0 otherwise.

The previous definition give us the possibility to compute the probability of a
set of simple path queries, or patterns, fulfilling the structure imposed by a regular
expression. In this way we are interested in discrete graphs that contain at least
one simple path belonging to the language denoted by the regular expression.

2 In the rest of the paper, if not otherwise specified, I{C} denotes the indicator function
returning 1 if the condition C is true, and 0 otherwise.
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Computing the existence probability directly using (2) or (3) is intensive and
intractable for large graphs since the number of discrete graphs to be checked is ex-
ponential in the number of probabilistic edges. It involves computing the existence
of the simple path in every discrete graph and accumulating their probability.

A natural way to overcome the intractability of computing the existence prob-
ability of a simple path is to approximate it using a Monte Carlo sampling ap-
proach (Jin et al, 2011):

1. we sample n possible discrete graphs, G1, G2, . . . Gn from the probabilistic
graph G by sampling the edges of each discrete graph uniformly at random
according to their existence probabilities; and

2. we check if the simple path exists in each sampled graph Gi.

This process provides the following basic sampling estimator for P (π|G):

P (π|G) ≈ P̂ (π|G) =

∑n
i=1

I{π ∈ Gi}

n
. (4)

Note that it is not necessary to sample all the edges to check whether the
graph contains the path. For instance, assuming to use an iterative depth first
search (DFS) procedure to check the path existence. When a node is just visited,
we will sample all its adjacent edges and pushing them into the stack used by
the iterative procedure. We will stop the procedure either when the target node is
reached or when the stack is empty (non existence).

Algorithm 1 reports the algorithm to solve the inference step. The function
sampledAsTrue implements a memoization technique in order to sample the edges.
If the function is called for the first time on a given edge e, then it samples the edge
and returns true whether the edge has been sampled as true and false otherwise.
All successive calls on the same already sampled edge consist in returning the
previous sampled value. The algorithm corresponds to a DFS starting from the
node u and ending to the node v if possible. If the search ends in v a positive
count is accumulated. Then the estimated probability is computed by dividing the
accumulated positive counts by the number of samplings n.

Given a probabilistic graph G with d the mean degree of its node, and k the
length of a path π, then the complexity of the Algorithm 1 is O(pdk), where p is
the mean probability of the edges.

4 Link Classification

After having defined the probabilistic graph framework, we can adopt language-
constrained simple paths in order to extract probabilistic features (i.e., patterns)
to describe the correlation between two nodes in the graph.

Given a probabilistic graph G, with V the set of nodes, E the set of edges, Σ
the set of edges’ labels, and Y ⊆ Σ, we have a set of edges D ⊆ E such that for
each element e ∈ D: lE(e) ∈ Y . In particular, D represents the set of observed
links whose label belongs to the set Y , and we are interested in learning how the
lE function should assign the subset of the label Y to unobserved edges.

Given the set of training links D and the set of labels Y we want to learn a
model able to correctly classify unobserved links. A way to solve the classifica-
tion task can be that of using a language based classification approach. Given an
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Algorithm 1 INFER(G, π, R, n)

Require: G: the probabilistic graph; π: the path u
e1−−→ v1

e2−−→ v2 · · · vk−1

ek−−→ v; R: the regular
expression; n: the number of samplings;

Ensure: ̂P (π|G, R)
1: c = 0
2: for i = 1 to n do

3: visited = { u }
4: S.clear()
5: sampler.clear()
6: depth = 1
7: prevNode[0] = u

8: proven = false

9: for all adjacent node aj of the node u do

10: S.push((aj ,depth))
11: while not S.empty() and not proven do

12: (a, depth) = S.top()
13: S.pop()
14: e = (prevNode[depth-1],a)
15: prevNode[depth] = a

16: if a 6∈ visited and ℓ(e) == edepth then

17: sampled = sampledAsTrue(e, sampler)
18: if depth == k then

19: c++
20: proven = true

21: visited.add(a)
22: for all adjacent node a′j of the node a do

23: S.push((a′j ,depth+1))

24: return c/n

unobserved edge ei = (ui, vi), in order to predict its class ŷi ∈ Y (i.e., correctly
predicting its label lE(ei)) we have to solve the following maximization problem:

ŷi = argmax
qj

P (qj(ui, vi)|G), (5)

where qj(ui, vi) is the unknown link with label qj ∈ Y between the nodes ui

and vi. In particular, the maximization problem corresponds to compute the link
prediction for each qj ∈ Y and then choosing that label with maximum likelihood.
In other ways, this should correspond to learn how the function lE : E → Σ assigns
labels to the edges in D in order to predict the label of unobserved links.

4.1 Propositionalization of probabilistic graphs

The previous link prediction task can be solved by querying the probability of some
language-constrained simple path. In particular, predicting the probability for each
label qj as P (qj(ui, vi)|G) in (5) corresponds to compute the probability P (π|G)
for a query simple path π ∈ G satisfying the language L(Rj), i.e., computing
P (π|G) as in (3):

ŷj = argmax
qj

P (qj(ui, vi)|G) ≈ argmax
qj

P (π|G, Rj). (6)

This query based approach consider the languages used to compute the (6) as
independent form each other without considering any correlation between them.
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This is the approach used in (Taranto et al, 2012a,b). A more interesting approach
that we want to investigate in this paper is to learn from the probabilistic graph a
linear model of classification combining the prediction of each language constrained
simple path.

In particular, given an edge ei and a set of k languages L = {L(R1), . . . , L(Rk)},
we can generate k real valued features xij where xij = P (π|G, Ri), 1 ≤ j ≤ k. The
original training set of observed links D can hence be transformed into the set
of instances D = {(xi, yi)}i=1,...,n, where xi is a k-component vector of features
xij ∈ [0, 1], and yi is the class label of the corresponding example xi.

Linear classification represents one of the most promising learning technique
for problems with a huge number of instances and features aiming at learning a
weight vector w as a model. L2-regularized Logistic Regression belongs to the class
of linear classifiers and solves the following unconstrained optimization problem:

min
w

f(w) =

(
wTw

2
+ C

n∑

i=1

log(1 + exp(−yiw
Txi))

)
, (7)

where log(1 + exp(−yiw
Txi)) = ξ(w;xi, yi) denotes the specific loss function,

1

2
wTw is the regularized term, and C > 0 is a penalty parameter. The decision

function corresponds to sgn(wTxi). In case of binary classification yi ∈ {−1,+1},
while for multiclass problems the one vs the rest strategy can be used.

Among many methods for training logistic regression models, such as iterative
scaling, nonlinear conjugate gradient, quasi Newton, a new efficient and robust
truncated Newton, called trust region Newton method, has been proposed in (Lin
et al, 2008), whose corresponding algorithm has been implemented in the LIBLIN-

EAR
3 system that we used in this paper.

Having the set D of observed links for which we want to learn how the lE
function labels them, and setting the set L = {L(R1), . . . , L(Rk)} of languages
(done by the expert of the domain), for each observed link ei ∈ D, whose observed
label is yi, we compute its corresponding feature vector representation xi as xij =
P (π|G, Ri), 1 ≤ j ≤ k. The pair (xi, yi) represents the propositionalized instance
corresponding to ei of the new training set D that the LIBLINEAR will use to learn
the weight vector w as a model. Then, for each new unobserved link we firstly
compute its feature vector representation as above and then we use the learned
model w with LIBLINEAR in order to predict the corresponding label.

An example of the propositionalization approach is reported in Table 1. We
are supposing to have a data set of rating values between a set of users and a set
of items. Each rating is a link between a user node and an item node labeled as
low, medium, or high. Now supposing to have an edge between two user, named
similar, denoting whether they have rated the same items in the same way, then
a possible simple path that we can use to predict that a user u will rate a low an

item i could be π = u
similar
−−−−→ uj

low
−−→ i. The probability P (π|G) will be the value

of the corresponding feature.

3 http://www.csie.ntu.edu.tw/~cjlin/liblinear.
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Table 1 Propositionalization of the observed links.

edge label x1 x2 · · · xk y

e1 low 0.1 0.4 · · · 0.9 1
e2 medium 0.2 0.1 · · · 0.3 2
e2 high 0.3 0.5 · · · 0.1 3
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
en low 0.7 0.6 · · · 0.5 1

4.2 Learning probabilistic graphs parameters

In this section we present a least mean squared method that is able to learn the
parameters of a probabilistic graph. In particular, we know the structure of the
graph and we want to learn the edges’ probabilities minimizing a loss function
with respect to a set of queries.

In a multiclass learning setting, supposing to have a set R of k regular expres-
sions, if the probability P (π|G, Ri) is very high, where Ri ∈ R, then a query path
π may be labeled as belonging to the class ci. If P (π|G, Ri) ≥ P (π|G, Rj) for each
j 6= i then we assume that the class of π is ci.

Given a data set {(xi, yi)}
M
i=1, where xi is the observation and yi is the state

of nature, or the corresponding class, the decision rule is

ŷ = argmax
yj

P (yj |xi).

In our case the class to associate to the query π is

ĉ = argmax
ci

P (π|G, Ri).

Here the goal is to learn the edges’ probabilities (i.e., the parameters) of the
probabilistic graph in order to correctly predict the class for each query.

For a multiclass problem, we can define the following cost function:

J(p) =
1

2

M∑

i=1

C∑

j=1

(P (yi|xi)− I(yi = j))2 , (8)

where M is the number of training examples, C is the number of distinct classes,
and p is the vector of the edges’ probabilities. The aim is to choose p so as
to minimize J(p). This is often obtained by using an iterative process applying
changes to the parameters ∆p at each iteration. Denoting the parameters at the
j-th iteration as pj , the simple update rule becomes:

pj+1 = pj +∆pj .

Lets consider the gradient descent algorithm, which starts with some initial
p and attempt to optimize the objective function by following the steepest de-
scent direction given by the negative of the gradient of the parameters at the j-th
iteration ∂

∂pj
J(pj) by repeatedly performing the following update:

pj+1 = pj − µ
∂

∂pj
J(pj). (9)
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Algorithm 2 SGD(X, µ, e)

Require: µ: global learning rate; e: number of epochs; X: the set of training observations;
1: j = 1
2: initialize p0

3: for epoch = 1 to e do

4: X′ = randomShuffle(X);
5: for i = 0 to |X| do
6: for all parameters l do

7: pj+1,l = pj,l −
µ

√

∑j
k=1

g2
k,l

gj,l

8: j = j + 1

Here, µ is called the learning rate controlling how large the step in the direction
of the negative gradient must be taken.

Since the pi must be probabilities, we can represent them using a sigmoid
function as

pi = (1 + e−wi)−1 = σ(wi)

and then minimizing the cost function with respect to the weights wi.

In order to minimize the function in (8), instead of using a standard gradi-
ent descent performing the update in Equation 9, we use a stochastic gradient
descent (Robbins and Monro, 1951), that approximate the true gradient of J(pj)
by a gradient at a single observation giving a local estimate of which direction
minimizes the cost using the following update:

pj+1 = pj − µ
∂

∂pj
Ji(pj), (10)

where

Ji(p) =
1

2

k∑

j=1

(P (yi|xi)− I(yi = j))2 , (11)

is the cost function applied to the single observation i.

We used an adaptive learning rate recently proposed in (Duchi et al, 2010),
in an approach called AdaGrad, whose update rule, for each problem dimension l,
takes the form

∆pj,l = −
µ√∑j
k=1

g2k,l

gj,l, (12)

where pk,l is the lth component (parameter) of the vector pk, and gj,l =
∂

∂pj,l
Ji(pj)

is the gradient of the lth parameter at iteration j. In particular, we have a dy-
namic learning rate for each parameter proportional to the l2 norm of all previous
gradients for that parameter.

Since we are minimizing the cost function with respect to the weights wi, we
need to compute the gradients ∂

∂wj,l
Ji(wj). The modification to the cost function

is simple and it gives us the following gradient:
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∂

∂wj
Ji(w) =

∂

∂wj

1

2

C∑

k=1

(P (yk|xi)− I(yi = ck))
2 =

C∑

k=1

(
(P (yk|xi)− I(yi = ck))

∂

∂wj
(P (yk|xi)− I(yk = ck))

)
=

C∑

k=1


(P (yk|xi)− I(yi = ck))

∂

∂wj


 ∑

G′⊑G

∏

eh∈E′

peh

∏

eh∈E\E′

(1− peh
)




 =

C∑

k=1


(P (yk|xi)− I(yi = ck))

∂

∂wj


 ∑

G′⊑G

∏

eh∈E′

σ(weh
)

∏

eh∈E\E′

(1− σ(weh
))






Being ∂
∂x

σ(x) = σ(x)(1− σ(x)), then:

∂

∂wj
Ji(w) =

C∑

k=1

(P (yk|xi)− I(yi = ck))σ(wj)(1− σ(wj))



∑

G′⊑G

ej∈G′

∏

eh∈G′

eh 6=ej

σ(wh)
∏

eh 6∈G′

(1− σ(wh))−
∑

G′⊑G

ej 6∈G′

∏

eh∈G′

σ(wh)
∏

eh 6∈G′

ej 6=eh

(1− σ(wh))




(13)

Algorithm 2 reports the corresponding algorithm for the parameter learning.
The update process can be done for a fixed number of epochs, where an epoch
corresponds to update the parameters after having considered all the training ob-
servations. Before to start the update process we have to inizialize the parameters
(row 2), and for each epoch the training examples are randomly shuffled.

If we set:

Ak = (P (yk|xi)− I(yi = ck))σ(wj)(1− σ(wj))

Bk =
∑

G′⊑G

ej∈G′

∏

eh∈G′

eh 6=ej

σ(wh)
∏

eh 6∈G′

(1− σ(wh))

Ck =
∑

G′⊑G

ej 6∈G′

∏

eh∈G′

σ(wh)
∏

eh 6∈G′

ej 6=eh

(1− σ(wh)) (14)

then

∂

∂wj
Ji(p) =

M∑

k=1

AkBkCk
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The component Bk regards all the worlds (i.e., a discrete graph) proving the
query and containing the edge ej whose probability is pj . On the contrary, the
component Ck regards all the worlds proving the query but that are not required
to contain the edge ej . Both the quantities can be estimated using a Monte Carlo
approach. In particular, if we sample m worlds, then

Bk =
#(ej = true)

m ∗ pj
,

Ck =
#(ej = false)

m ∗ (1− pj)
.

5 Experimental evaluation

We used as application domains to validate the proposed techniques that of rec-
ommender systems (Desrosiers and Karypis, 2011), where the aim is to predict
the unknown rating between a user and an item, and that of classification of web
pages, a benchmark data set that has been the subject of prior study in machine
learning.

In order to validate the proposed approach in recommender systems the first
data set we used is the MovieLens data set4, made available by the GroupLens
research group at University of Minnesota for the 2nd International Workshop
on Information Heterogeneity and Fusion in Recommender Systems. We used the
MovieLens 100K version consisting of 100000 ratings (ranging from 1 to 5) re-
garding 943 users and 1682 movies, divided into five folds. Each user has rated at
least 20 movies and there are simple demographic info for the users (such as age,
gender, occupation, and zip code). In this paper we used the ratings only without
considering the demographic information.

The Hetrec2011-lastfm (Cantador et al, 2011) data set, related to recommender
systems domain (music recommendation), is the second data set we used to vali-
date the proposed method. This data set contains social networking, tagging, and
music artist listening information from a set of 2K users from Last.fm online music
system5. In this data set we have 1892 users, 17632 artists, 12717 bi-directional
user friend relations and 92834 user-artist relations. We have discretized the user-
listened artist relations into three (equal bins) classes (play1, play2 and play3,
where play1 < play2 < play3) indicating the frequency with which a user has lis-
tened to a specific artist. Hetrec2011-lastfm data set has been divided into 4 fold
made up of ∼70000 training ratings and ∼20000 testing ratings.

For these two data sets the goal is to predict the user’s interest with respect to
an unknown object. In Movielens data set, we want to predict the user’s interest
with respect to a new film, while in the Hetrec2011-lastfm data set the goal is to
predict the frequency with which a user may listen to a new artist.

For both the data set it is necessary to elicit the uncertain relationships among
the given evidence. The next section proposes a method to solve this task.

4 http://ir.ii.uam.es/hetrec2011/datasets.html
5 http://www.lastfm.com
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5.1 Probabilistic graph creation in recommender system domain

When we work with a set of data, in which the probabilistic relationships between
data are hidden, a common approach to elicit these connections is based on us-
ing similarity measures. To model the data with a graph we can adopt different
similarity measures for each type of node involved in the relationships.

In a recommender system domain we have two types of entities: the users
and the items, and the only observed relationship corresponds to the ratings that
a user has assigned to a set of items. The goal is to predict the rating a user
could assign to an object that he never rated in the past. In the collaborative
filtering approach there are two methods to predict unknown rating exploiting
users or items similarity. User-oriented methods estimate unknown ratings based
on previous ratings of similar users, while in item-oriented approaches ratings are
estimated using previous ratings given by the same user on similar items.

Let U be a set of n users and I a set of m items. A rating rui indicates the
preference degree the user u expressed for the item i, where high values mean
stronger preference. Let Su be the set of items rated from user u. A user-based
approach predicts an unobserved rating r̂ui as follows:

r̂ui = ru +

∑
v∈U|i∈Su

σu(u, v) · (rvi − rv)∑
v∈U|i∈Su

|σu(u, v)|
, (15)

where ru represents the mean rating of user u, and σu(u, v) stands for the similarity
between users u and v, computed, for instance, using the Pearson correlation:

σu(u, v) =

∑
a∈Su∩Sv

(rua − ru) · (rva − rv)√∑
a∈Su∩Sv

(rua − ru)2
∑

a∈Su∩Sv
(rva − rv)2

.

On the other side, item-based approaches predict the rating of a given item
using the following formula:

r̂ui =

∑
j∈Su|j 6=i σi(i, j) · ruj∑

j∈Su|j 6=i |σi(i, j)|
, (16)

where σi(i, j) is the similarity between the item i and j.
These neighborhood approaches see each user connected to other users or con-

sider each item related to other items as in a network structure. In particular they
rely on the direct connections among the entities involved in the domain. However,
as recently proved, techniques able to consider complex relationships among the
entities, leveraging the information already present in the network, involves an
improvement in the processes of querying and mining (Witsenburg and Blockeel,
2011; Taranto et al, 2011).

Given the set of observed ratings K = {(u, i, rui)|rui is known}, we add a node
with label user for each user in K, and a node with label item for each item in
K. The next step is to add the edges among the nodes. Each edge is characterized
by a label and a probability value, which should indicate the degree of similarity
between the two nodes.

Two kind of connections between nodes are added. For each user u, we added an
edge, labeled as simU, between u and the k most similar users to u. The similarity
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between two users u and v is computed adopting a weighted Pearson correlation
between the items rated by both u and v.

In particular, the probability of the edge simU connecting two users u and v is
computed as:

P (simU(u, v)) = σu(u, v) · wu(u, v),

where σu(u, v) is the Pearson correlation between the vectors of ratings corre-
sponding to the set of items rated by both user u and user v, and wu(u, v) =
|Su ∩ Sv|/|Su ∪ Sv|.

For each item i, we added an edge, with label simI, between i and the most k
similar items to i. In particular, the probability of the edge simI connecting the
item i to the item j has been computed as:

P (simI(i, j)) = σi(i, j) · wi(i, j),

where σi(i, j) is the Pearson correlation between the vectors corresponding to
the histogram of the set of ratings for the item i and the item j, and wi(i, j) =
|Si ∩ Sj |/|Si ∪ Sj |, where Si is the set of users rating the item i.

Finally, edges with probability equal to 1, and with label rk between the user
u and the item i, denoting the user u has rated the item i with a score equal to k,
are added for each element (u, i, rk) belonging to K.

5.2 Propositionalization validation

After having constructed the probabilistic graph, the next step to validate the
propositionalization approach corresponds to the features construction that will
serve as input to the LIBLINEAR classification model.

5.2.1 Feature construction

Adopting a recommender system data set we can assume that the values of rui
are discrete and belonging to a set R. Given the recommender probabilistic graph
G, the query path based classification approach try to solve the problem

r̂ui = argmax
rj

P (rj(u, i)|G),

where rj(u, i) is the unknown link with label rj between the user u and the item
i.

This link prediction task is based on querying the probability of some language
constrained simple path. For instance, a user-based collaborative filtering approach
may be obtained by querying the probability of the edges, starting from a user node
and ending to an item node, denoted by the regular expression Ri = {simU1r1i },

corresponding to use the simple path π = u
simU
−−−→ ui

ri−→ i.
In particular, predicting the probability of the rating j as P (rj(u, i)) corre-

sponds to compute the probability P (π|G) for a query path in L(Rj), i.e.,

r̂ui = argmax
rj

P (rj(u, i)|G) ≈ argmax
rj

P (π|G, Rj).

In the same way, item-based approach could be obtained by computing the prob-
ability of the paths constrained by the language L(Ri), where Ri = {r1i simI

1}.
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The power of the proposed framework is evident when the labels of the edges
are heterogeneous. In such a situation our approach gives us the possibility to
construct more complex queries such as that constrained by the regular expression
Ri = {risimI

n : 1 ≤ n ≤ 2}, that gives us the possibility to explore the graph by
considering not only direct connections. Hybrid queries, such as those constrained
by the regular expression Ri = {risimI

n : 1 ≤ n ≤ 2} ∪ {simUmr1i : 1 ≤ m ≤ 2},
give us the possibility to combine the user information with item information.

In order to use the feature based classification approach proposed in this pa-
per we can define a set of regular expression R and then computing for each
language L(Ri), with Ri ∈ R, the probability P (π|G, Ri) between two nodes in
the graph. In particular in recommender system case, the set of observed ratings
K = {(u, i, rui)|rui is known} is mapped to the training set D = {(xi, yi)}i=1,...,n,
where xij is the probability P (π|G, Rj) between the nodes u and i, and yi is equal
to rui. The proposed link classification method has been implemented in the Eagle
system6 that provides a set of tools to deal with probabilistic graphs.

5.2.2 Results

For each data set, given the training/testing set, the validation procedure followed
the steps:

1. creating the probabilistic graph from the training ratings data set as reported
in Section 5.1;

2. defining a set R of regular expressions to be used to construct a specific set of
features as described in Section 5.2.1;

3. learning the L2-regularized Logistic Regression model; and,
4. testing the links reported in the testing data set T by computing, for each pair

(u, i) ∈ T the predicted value adopting the learned classification model and
comparing the result with the true prediction reported in T .

In order to learn the classification model as reported in Section 4.1, we used
the L2-regularized Logistic Regression implementation included in the LIBLINEAR
system (Lin et al, 2008). Given a set T of testing instances, the accuracy of the
proposed framework has been evaluated according to the Mean Absolute Error

(MAE), which measures the deviation of the predicted ratings from their true
values as specified by the users. For each pair of a true user-specified rating rui
and a predicted rating r̂ui, the absolute difference |rui− r̂ui| is calculated between
them as the error for that pair. Then MAE is computed as the average error over
all pairs in T :

MAE =

L∑

i

|rui − r̂ui|

|T |
.

Sometimes, the accuracy is also computed using the macroaveraging mean ab-

solute error (Baccianella et al, 2009), for the recommender case,

MAEM (r̂ui, T ) =
1

k

k∑

j=1

1

|Tj |

∑

xi∈Tj

|r̂ui − rui|,

6 http://www.di.uniba.it/~claudiotaranto/eagle.html
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Table 2 Regular expressions for the language constrained simple paths used for the MovieLens
data set.

ml1 = {simU1r1k}
ml2 = {r1ksimF

1}
ml3 = {r1

k
simFn : 1 ≤ n ≤ 2}

ml4 = {simUnr1k : 1 ≤ n ≤ 2}
ml5 = {simUnr1k : 1 ≤ n ≤ 2} ∪ {r1ksimF

n : 1 ≤ n ≤ 2}
ml6 = {r1

k
simFn : 1 ≤ n ≤ 3}

ml7 = {simUnr1k : 1 ≤ n ≤ 3}
ml8 = {simUnr1k : 1 ≤ n ≤ 3} ∪ {r1ksimF

n : 1 ≤ n ≤ 3}
ml9 = {simUnr1k : 1 ≤ n ≤ 4} ∪ {r1ksimF

n : 1 ≤ n ≤ 4}

where Tj ⊂ T denotes the set of test rating whose true class is j.

For the MovieLens graph construction, edges are added using the procedure
presented in Section 5.1, where we set the parameter n = 30, indicating that
an user (resp., a film) is connected, respectively, to 30 most similar users (resp.,
films). The value of each feature have been obtained with the Monte Carlo inference
procedure by sampling M discrete graphs. In order to construct the set of features,
we proposed to query the paths constrained by the set of regular expressions
reported in Table 2.

The first language-constrained simple paths L(ml1) corresponds to adopt a
user-based approach, while the second language L(ml2) gives us the possibility
to simulate an item-based approach. Then, we propose to extend these two ba-
sic languages, L(ml1) and L(ml2), in order to construct features that consider a
neighborhood with many nested levels. Finally, we constructed hybrid features by
combining both the user-based and item-based methods and the large neighbor-
hood explored with paths whose length is greater than one (ml5, ml8 and ml9).

We defined two sets of features: the set F1 based on simple languages and
corresponding to the probabilities of the paths constrained by the set of regular
expressions {ml1, ml2, ml3, ml4, ml5}; and the set F2 consisting of querying more
complex paths constrained by the set of regular expressions {ml3, ml4, ml5, ml6,
ml7, ml8, ml9}.

Table 3 shows the results on the MovieLens data set obtained adopting the
proposed approach implemented in the Eagle system. The last row reports the
mean value of the MAEM averaged on the five folds obtained with the proposed
method. The results improve when we use the set F2 of features. The last two
columns report the results of two baseline methods. The second last column reports
the results obtained with a system that predicts a rating adopting a uniform
distribution, while the last column reports the results of a system that uses a
categorical distribution that predicts the value k of a rating with probability pk =
|Dk|/N , where Dk is the number of ratings belonging to the data set having value
k, and N is the total number of ratings.

In Table 4 we can see the errors committed for each rating. The rows for the
methods U and C report the mean of the MAEM value for each fold using a system
adopting a uniform or a categorical distribution. The data set is not balanced and
the method adhere more to the categorical distribution proving that they are able
to recognize the unbalanced distribution of the data set.

We compared the prediction quality achieved by our model to that of previous
work that used the MovieLens 100k data set, whose results are reported in Table 5.
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Table 3 MAEM values obtained with Eagle on the MovieLens data set.

Fold Eagle@F1 Eagle@F2 U C

1 0.8372 0.8044
2 0.8323 0.8055
3 0.8429 0.8256
4 0.8494 0.8231
5 0.8507 0.8270

Mean 0.842±0.007 0.817±0.011 1.6 1.51

Table 4 MAEM values for each class obtained with Eagle on the MovieLens data set.

Method r1 r2 r3 r4 r5

U 2.0 1.4 1.2 1.4 2.0
C 2.53 1.65 1.00 0.89 1.47

Eagle@F1 1.14 0.80 0.65 0.65 0.93
Eagle@F2 1.03 0.73 0.66 0.66 0.96

Table 5 Comparison on the MovieLens 100k data set of the prediction quality of various CF
models and our model.

CF Model MAE

SVD PCA (Vozalis et al, 2010) 0.793
H-NLPCA (Vozalis et al, 2010) 0.784
Eagle 0.763
UI-RBM (Georgiev and Nakov, 2013) 0.690
Latent CF (Langseth and Nielsen, 2012) 0.685

Table 6 Regular expressions for the language constrained simple paths used for the
hetrec2011-lastfm data set.

lfm1 = {simUser1r1k}
lfm2 = {r1

k
simArtist1}

lfm3 = {simUsernr1k : 1 ≤ n ≤ 2}
lfm4 = {r1ksimArtist

n : 1 ≤ n ≤ 2}
lfm5 = {simUser1r1ksimArtist

1}
lfm6 = {friend1r1k}
lfm7 = {simUser1friend1r1k}
lfm8 = {friend1r1ksimArtist

1}

We can see that our approach performs better than two strong models from the
literature: the SVD- and the PCA-based approaches of (Vozalis et al, 2010). Our
final result gets close to the state-of-the-art results of a probabilistic collaborative
filtering model that explicitly represents all items and users simultaneously in the
model (Georgiev and Nakov, 2013), and of a framework for collaborative filtering
based on Restricted Boltzmann Machines (Langseth and Nielsen, 2012).

For the Hetrec2011-lastfm graph construction, edges are added using the pro-
cedure presented in Section 5.1, where we set the parameter n = 1500, indicating
that an user or an artist is connected, respectively, to 1500 most similar users, resp.
artists. Hetrec2011-lastfm data set is composed by two types of edges: similarity
edges (simUser and simArtist) and social relationship edges (friend). Here, we
want to evaluate whether adopting the social connections improves the classifica-
tion performances (He and Chu, 2010).
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Table 7 MAEM values for each class obtained with Eagle on the Hetrec2011-lastfm data set.

Fold Method play1 play2 play3 All

1 Eagle@M1 0.6315 0.5686 0.4216 0.5405
Eagle@M2 0.6047 0.2524 0.5946 0.4839

2 Eagle@M1 0.6090 0.5975 0.4460 0.5508
Eagle@M2 0.5794 0.2326 0.6268 0.4796

3 Eagle@M1 0.6194 0.5875 0.4542 0.5537
Eagle@M2 0.6062 0.1963 0.6796 0.4940

4 Eagle@M1 0.6295 0.6077 0.4181 0.5517
Eagle@M2 0.5976 0.2432 0.5840 0.4749

Average Eagle@M1 0.6223 0.5903 0.4349 0.5492
Eagle@M2 0.5969 0.2311 0.6212 0.4831

We defined two sets of features using the set of regular expression reported in
Table 6: the set M1 corresponding to the probabilities of the paths constrained
by the set of regular expressions {lfm1, lfm2, lfm3, lfm4, lfm5} do not consider-
ing the social relationships among the elements in the network; and the set M2

corresponding to the probabilities of the paths constrained by the set of regular
expressions {lfm1, lfm2, lfm3, lfm4, lfm5, lfm6, lfm7, lfm8} where the social con-
nections are taken into account.

Table 7 shows the Hetrec2011-lastfm results for each class comparing Eagle@M1

and Eagle@M2. We can see that Eagle@M1 that adopt social relationship edges
achieves better results than Eagle@M2 that does not use these connections.

5.3 Parameter learning evaluation

In this section we report the results of learning the edges’ probability on two
different application domains: that of recommender systems, already used in the
propositionalization method, and that of classification of web pages.

5.3.1 Recommender systems domain

Here we want to investigate whether it is possible to learn the edges’ probability
without using any similarity function and obtaining results at least comparable as
those reported in the previous section.

In particular, given the regular expressions Rj , we firstly used the graph with
the probabilities computed with the similarity function and the inference to solve
the maximization

r̂ui = argmax
rj

P (rj(u, i)|G) ≈ argmax
rj

P (π|G, Rj).

Then, we tried to solve the same maximization but after having learned the prob-
abilities with respect to the regular expressions Rj .

For the Hetrec2011-lastfm data set we defined a set of regular expressions as
reported in Table 8. Each language has been used individually for each experiment.
Before to start the learning process all the edges have been initialized with values
uniformly chosen from the interval [0.01− 0.1]. The learning rate has been set to
0.1.
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Table 8 Regular expressions for the language constrained simple paths used to learn the
graph parameters in the case of Hetrec2011-lastfm data set.

L1 = {simU1r1k}
L2 = {r1ksimArtist

1}
L3 = {simUnr1k : 1 ≤ n ≤ 2}
L4 = {r1ksimArtist

n : 1 ≤ n ≤ 2}

Table 9 The difference of the MAE value for each adopted regular expression on the
Hetrec2011-lastfm data set with and without learning the graph parameters.

Language w learning w/o learning p-value

L1 0.756±0.005 0.825±0.004 0.0000006
L2 0.570±0.003 0.575±0.004 0.0924
L3 0.687±0.078 0.783±0.136 0.2666
L4 0.513±0.006 0.641±0.004 0.00000003

Table 10 The difference of the MAEM value for each adopted regular expression on the
Hetrec2011-lastfm data set with and without learning the graph parameters.

Language w learning w/o learning p-value

L1 0.761±0.005 0.830±0.003 0.00000037
L2 0.571±0.003 0.576±0.004 0.0924
L3 0.691±0.080 0.787±0.138 0.274
L4 0.513±0.006 0.645±0.004 0.00000003

Table 11 Language constrained simple paths used to learn the graph parameters in the case
of MovieLens data set.

L1 = {simU1r1k}
L2 = {r1ksimF

1}
L3 = {simUnr1k : 1 ≤ n ≤ 2}
L4 = {r1ksimF

n : 1 ≤ n ≤ 2}

Tables 9 and 10 reports, respectively, the difference of the MAE and the
MAEM , value for each adopted regular expression when learning the parame-
ters (w learning) and when we use the similarity function to set the parameters
(w/o learning). The algorithm has been run for 1 epoch for each of the four fold.
The third row reports the results when we do inference by using the probability
assigned by using the similarity function. As we can see, we always improve the
results obtained without learning the parameters.

An insight of the behavior on the optimization phase is reported in Figure 1
where we plotted the curves of the progressive training squared error. In particular,
for each observation, before to update the parameters, we computed the squared
error. At a given iteration, the accumulated squared error is averaged by the
number of observed observations. As we can see, the average error go down near
to a minimum proving the validity of the method.

The second experiment has been done on the MovieLens data set. We defined
a set of regular expressions as reported in Table 11. Each regular expression has
been used individually for each experiment. Before to start the learning process
all the edges have been initialized with values uniformly chosen from the interval
[0.49− 0.51]. The learning rate has been set to 0.1.
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Fig. 1 Progressive training squared error curves, as a function of the number of training
observations, for the four query languages of Table 8 applied to the Hetrec2011-lastfm data
set.

Table 12 The difference of the MAE value for each adopted language on the MovieLens data
set with and without learning the graph parameters.

Language w learning w/o learning p-value

L1 0.9287±0.0154 0.9455±0.0139 0.1078
L2 0.8493±0.0137 0.8425±0.0156 0.4848
L3 0.8532±0.0052 0.8592±0.0089 0.2293
L4 0.7810±0.0114 0.7863±0.0034 0.3483

Figure 2 shows the progressive testing squared error curves for each language
used to learn the parameters. As we can see, the algorithm does not make overfit-
ting to the training data since the error go down on the test observation too.

Figure 3 and 4 reports, respectively, the progressive testing MAE and MAEM ,
curves. The horizontal line represent the error obtained with the probability set
by using the similarity function without learning the parameters. While, the other
curve, with its corresponding error bars, in the same graph corresponds to the
error obtained for each epoch after having learned the parameters. We obtained
good results when using the languages L1 and L2 and comparable results when
using the remaining two languages.

Table 12 (resp., Table 13) reports the mean and the standard deviation after
the last epoch (the tenth) of the MAE (resp. the MAEM ) values averaged over the
five folds. As we can see from the p-values, the difference is statistically significant
for the languages L1 and L3.
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Fig. 2 Progressive testing squared error curves, as a function of the number of training epochs,
for the four query languages of Table 11 applied to the MovieLens data set.
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Fig. 3 Progressive testing MAE value curves, as a function of the number of training epochs,
for the four query languages of Table 11 applied to the MovieLens data set.
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Fig. 4 Progressive testing MAEM value curves, as a function of the number of training epochs,
for the four query languages of Table 11 applied to the MovieLens data set.

Table 13 The difference of the MAEM value for each adopted language on the MovieLens
data set with and without learning the graph parameters.

Language w learning w/o learning p-value

L1 1.1640±0.0152 1.1811±0.0143 0.1043
L2 1.0477±0.0122 1.0426±0.0199 0.6382
L3 1.1328±0.0138 1.1274±0.0074 0.4628
L4 1.0232±0.0084 1.0281±0.0074 0.3564

5.3.2 Web pages classification domain

In order to demonstrate the generality of our proposed approach we compared
it to other existing state-of-the-art SRL approaches. In this experiment, we used
the WebKB data set (Craven and Slattery, 2001), a classical example of collective
classification task. The data set is divided into four folds, each describing the link
structure of web pages from the computer science departments of four universities
(i.e., Cornell, Texas, Washington and Wisconsin). Here the aim is to predict the
class of a page depending on the classes of the pages that link to it and depending
on the words being used in the text.

Following (Domingos and Lowd, 2009) and (Gutmann et al, 2011), we used the
relational version of the data set from (Craven and Slattery, 2001), consisting of
4165 web pages and 10935 web links. Each web page is marked with one of the fol-
lowing six classes: course, faculty, other, student, staff, or researchproject.
As done in (Gutmann et al, 2011), the class person has not been considered.

The graph constructed starting from the WebKB data set contains nodes de-
noting specific pages (pagei), words (wordi) and classes (classi, there are six class



24 Nicola Di Mauro et al.

nodes), the links connecting the words that a page contains (pagei
hasword
−−−−→ wordj),

the connections among the pages (pagei
linkto
−−−−→ pagej), and the links from a page

to its corresponding class (pagei
isclass
−−−−→ classj). Then, there are two probabilistic

edges, whose probabilities have to be learned, that are the following: pwordclass,
for each pair of word and class, denoting the probability that a page of a specific

class contain a given word (wordi
pwordclass
−−−−−−→ classj), and pclass, for each pair of

classes, (classi
pclass
−−−−→ classj), denoting the probability that a page of a class i

link to a page of a class j.
In order to predict the class of a given page, the following regular expression

has been used: R = { linkto1isclass1pclass1}∪{ hasword1pwordclass1}. Given
a web page p, this regular expression corresponds to use the simple paths π1 =

p
linkto
−−−−→ p’

isclass
−−−−→ ck

pclass
−−−−→ ci or π2 = p

hasword
−−−−→ w

pwordclass
−−−−−−→ ci to predict

the class ci of the page p. As already said, the class ci of the page p is predicted
solving argmaxci P (π1, π2|G, R).

We performed a 4-fold cross validation, that is, we trained the model on three
universities and then tested it on the fourth one. We repeated this for all four
universities and averaged the results. We measured the area under the receiver
operating characteristic (AUC-ROC) and the area under the precision-recall curve
(AUC-PR).

We compared our approach with LeProbLog (Gutmann et al, 2008), LFI-
ProbLog (Gutmann et al, 2011), and Alchemy (Domingos and Lowd, 2009). LeP-
robLog is a regression-based parameter learning algorithm for ProbLog programs
(i.e., a probabilistic Prolog), LFI-ProbLog is a parameter estimation algorithm
for ProbLog programs from partial interpretations via a Soft-EM algorithm, while
Alchemy is an implementation of Markov Logic Networks. On this data set LeP-
robLog achieves an an AUC-ROC of 0.738 ± 0.014 and an AUC-PR of 0.419 ±
0.014, LFI-ProbLog reaches an AUC-ROC of 0.886 ± 0.01 and an AUC-PR of
0.654±0.03, and Alchemy obtains an AUC-ROC of 0.923±0.016 and an AUC-PR
of 0.788± 0.036 (Gutmann et al, 2011). Before to start the learning process with
Eagle, all the edges have been initialized with values uniformly chosen from the in-
terval [0.01−0.1], and the learning rate has been set to 0.2. After 24 epochs, Eagle
obtains an AUC-ROC of 0.705 ± 0.134 and an AUC-PR of 0.853 ± 0.094. Hence,
it performs better than the other evaluated systems on this data set in terms of
AUC-PR that gives a more informative picture of an algorithm performance when
compared to the AUC-ROC (Davis and Goadrich, 2006).

6 Conclusions

In this paper we adopt the probabilistic graphs framework to deal with uncertain
relational domains exploiting both edges probabilistic values and edges labels de-
noting the type of relationships among nodes. We proposed a language-constrained
reachability method to infer the probability of possible hidden link that may ex-
ists between two nodes. Exploiting this inference method two machine learning
approaches to link classification in a framework based on probabilistic graphs
have been proposed. The first learning approach is to use a propositionalization
technique adopting a L2-regularized Logistic Regression to learn a model able to
predict unobserved link labels. Since in some cases the edges’ probability may be
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not known or not precisely defined for a classification task, the second approach is
to exploit the inference method and to use a mean squared technique to learn the
edges’ probabilities. Both the proposed methods are been evaluated on real world
data sets and the corresponding results proved their validity.
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