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Abstract. In Artificial Intelligence with Coalition Structure Gendian (CSG) one refers to those
cooperative complex problems that require to find an optjadition (maximizing a social welfare)
of a set of entities involved in a system. The solution of ti&SJproblem finds applications in many
fields such as Machine Learning (set covering machinestering), Data Mining (decision tree,
discretization), Graph Theory, Natural Language Proogs&ggregation), Semantic Web (service
composition), and Bioinformatics. The problem of finding thptimal coalition structure is NP-
complete. In this paper we present a greedy adaptive seevcbgure (GRASP) with path-relinking
to efficiently search the space of coalition structures. deixpents and comparisons to other algo-
rithms prove the validity of the proposed method in solvinig hard combinatorial problem.

Keywords: Coalition Structure Generation, Stochastic-Local-SeafBRASP procedure, Path-
Relinking

1. Introduction

An active area of research in Artificial Intelligence regards methodsadgatithms to solve complex
problems that require to find an optimal partition (maximizing a social welfare) s#t of entities in-
volved in a system into exhaustive and disjoint coalitions. This problem &éas studied a lot in the
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area of multi-agent systems (MASs) where it is named coalition structureageme(CSG) problem
(equivalent to the complete set partitioning problem). In particular it is iniegeso find coalition struc-
tures maximizing the sum of the values of the coalitions, that represent the nmpayoff the agents
belonging to the coalition can jointly receive through cooperation. A coalitiarcsire is defined as a
partition of the agents involved in a system into disjoint coalitions. The probfdinding the optimal
coalition structure is\"’P-complete [6, 25].

Coalition generation shares a similar structure with a number of common probleimsoiretical
computer science and atrtificial intelligence, such as in combinatorial auctiojub shop scheduling,
Machine Learning, Data Mining, Graph Theory, Natural Languagedasing, Semantic Web, and in
Bioinformatics. In this paper we will use the term coalition structure generatsoa general term to
refer to all these grouping problems.

Sometimes there is a time limit for finding a solution, the agents must be reactivesgrghtiuld act
as fast as possible. Hence for the specific task of CSG it is necesdaayd@pproximation algorithms
able to quickly find solutions that are within a specific factor of an optimal salutithe goal of this
paper is to propose a new algorithm for the CSG problem able to quickly fiediaoptimal solution.

The problem of CSG has been studied in the context of characteristiidnrgames (CFGs) in
which the value of each coalition is given by a characteristic function, amd/dlues of a coalition
structure are obtained by summing the values of the coalitions it contains. rohlem of coalition
structure generation j§P-hard, indeed as proved in [25], giverthe number of agents, the number of
possible coalition structures that can be generatédig') andw(n"/2). Moreover, in order to establish
any bound from the optimal, any algorithm must search at [ast 1 coalition structures. The CSG
process can be viewed as being composed of three activities [2%Joadi}ion structure generatign
corresponding to the process of generating coalitions such that agimits @ach coalition coordinate
their activities, but agents do not coordinate between coalitions. This rpadit®ning the set of agents
into exhaustive and disjoint coalitions. This partition is called a coalition stra¢€®); b)optimization
solving the optimization problem of each coalition. This means pooling the taskseaaurces of the
agents in the coalition, and solving this joint problem; angayoff distribution dividing the value
of the generated solution among agents. Albeit independent of each thibse activities have some
interactions. For example, the coalition that an agent wants to join deperitle portion of the value
that the agent would be allocated in each potential coalition. This papesdean the coalition structure
generation in settings where there are too many coalition structures to emeirmaedaevaluate due to
costly or bounded computation and limited time. Instead, agents have to seldueset of coalition
structures on which focusing their search.

In this paper we extend the work presented in [3] by adopting a stochastiicsearch (SLS) proce-
dure [9], named GRASP [4] improved with path-relinking [7], to solve thabjpem of coalition structure
generation in CFGs. The main advantage of using a stochastic local sefrevoid exploring an expo-
nential number of coalition structures providing a near optimal solution. [@orithm does not provide
guarantees about finding the global optimal solution. In particular theignesve would like to pose
are: Q1) can the metaheuristic GRASP with path-relinking be used as a valuable anglimiers for
the CSG problem? In many cases, as in CSG, it is necessary to terminate ttidmlgoior to com-
pletion due to time limits and to reactivity requirements. In this situation, it is possibkojot anytime
algorithms (i.e. algorithms that may be terminated prior to completion, returning@oxamation of
the correct answer) whose quality depends on the amount of comput@®rcan the metaheuristic
GRASP with path-relinking be adopted for the CSG problem to find optimal sokufiaster than the
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state of the art exact algorithms? In case of optimization combinatorial projgémehastic local search
algorithms have been proved to be very efficient in finding near optimaianli®]. In many cases, they
outperformed the deterministic algorithms in computing the optimal solution.

The paper is organized as follows: Section 2 introduces some applicaiansga common struc-
ture with the CSG problem, Section 3 presents basic concepts regardin§@préblem, and Section 4
reports the related works on the problem. In Sections 5 and 6 the metahgBR#BP and its extension
with path-relinking applied to the CSG problem is presented. Section 7 slaws snplementation
details and Section 9 concludes the paper.

2. Applications

In this section we report some commgiouping problemén theoretical computer science and artificial
intelligence that share a similar structure with the CSG problem.

2.1. Learning Bayesian prototype trees

In [18] the authors present a method to learn Bayesian networks, acdisally Bayesian prototype
trees, assuming that the data form clusters of similar vectors. The data qarthioned into clusters
and the maximum likelihood estimates of the partitioning can be computed. A data pat@tiermines
the corresponding Bayesian prototype tree model. Hence, given a ¢rdaia seD consisting ofV data
vectors, the authors propose to find the optimal Bayesian prototype tfgeding the optimal partition
vector among theV? different vectors.

2.2. Cluster ensemble problem with graph partitioning

Clustering and graph partitioning are two strongly related concepts. Ghgsisra data analysis tech-
nique adopted in statistics, data mining, and machine learning communities, astEdampartitioning

a set of instances into a given number of groups by optimizing an objecthaién. Recentlyclus-

ter ensembldechniques [27] improve clustering performance by generating multiple pagitbthe
given data set and then combining them to form a superior clustering sol{@&dn5] propose a graph
partitioning formulation for cluster ensembles. Given a datarset {X;, ..., X,}, a cluster ensem-
ble is a set of clustering solutions, represented’as {C,...,Cr}, whereR is the ensemble size.
Each clustering solutiofy; is a partition of the data set intl; disjoint clusters. The graph partitioning
problem consists in partitioning a weighted gra@hnto K parts by findingK disjoint clusters of its
vertices. GG is characterized by the sét of vertices and by a non negative and symmetric similarity
matrix W characterizing the similarity between each pair of vertices. The cut oftii@arP is defined
asCut(P,W) = > w(i, j), wherei andj are vertices not belonging to the same cluster. The general
goal of graph partitioning is to find a partition that maximizes the cut.

2.3. Aggregation for Natural Language Generation

Aggregationrepresents a main component of natural language generation systesmtasKls to merge
two or more linguistic structures into a single sentence. In [2] the authoseimiexd an automatic tool
for performing the semantic grouping task by formalizing it as a CSG problémraveach coalition
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corresponds to a sentence. The strength of the proposed appraashite ability to capture global
partitioning constraints by performing collective inference over localvwiag assignments. Pairwise
constraints capture the semantic compatibility between pairs of linguistic strsietiadocal level. The
global task is to search a semantic grouping that maximally agrees with the pajmeferences while
simultaneously satisfying constraints on the partitioning as a whole.

2.4. Feature set partitioning and privacy-preserving datamining

The concept of feature set partitioning [24, 23] has been proposediar to improve the accuracy of
supervised learning algorithms. Feature set partitioning methods condetahposing the original set
of features into several subsets and then combining the classificationsumégeall classifier models
trained for each subset. Privacy-preserving data mining [28] is a es@arch area that focuses on pre-
venting privacy violations that might arise during data mining operationsedorthis goal many tech-
niques modify the original datasets in order to preserve privacy etenthé mining process is activated
ensuring minimal data loss and obtaining qualitative data mining results. In [@3lutors presented a
technique considering anonymization for classification through feattiasitioning. Given a learner
1, a combination method’, and a training sef with input feature setl, the goal is to find an optimal
partitioning of the input feature set into w mutually exclusive subsets. Optimality is defined in terms
of minimization of the generalization error of the classifier combined using theoahéth

3. Definitions
In this section we present the basic notions about the CSG problem.

Definition 3.1. (Coalition)
Given a setV = {aj,as,...,a,} of n agents|V| = n), called thegrand coalition a coalition S is a
non-empty subset a¥, ) # .S C N.

Definition 3.2. (Coalition Structure)
A coalition structure(CS), orcollection C = {C4,Cs,...,Ci} C 2Nisa partition of the selv, andk
is its size, i.eVi,j : C;NC; = 0 andu¥_,C; = N.

GivenC = {Cy,Ca,...,Cr}, we defineuC = UE_,C;. We will denote the collection of all coalition
structures ofV asM (N).

As reported in [1], assuming a comparison relationd > B means that the wayl partitions /v,
whereN = UA = UB, is preferable to the wa partitionsN.

In this paper we consider the following rules that allow us to transform pansitxd the grand coali-
tion. GivenaC& = {C1,Cy, ..., Cy}:

SPLIT:. C—>C \ {Cl} U {C’k, Ch}, whereCy, U Cy, = C;, with Cy,, C, # 0;
MERGE: C — C \ {CI, Cj}i?ﬁj U {Ck}, whereCy, = C; U Cj;

SHIFT: C — C\ {C;, Cj}iz; U{C], Cj}, whereC; = C; \ {a;} andC} = C; U {a;}, with a; € C;.
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As in common practice [25, 19], we consider coalition structure generatichairacteristic function
games(CFGs). A CFG is a paifN,v), whereN = {aj,as,...,a,} andv is a functionv : 2V —
R. GivenC a coalition structurey(C) = > - .. v(C;), wherev(C;) is the value of the coalitiod;.
Intuitively, v(C;) represents the maximum payoff the member€'pfan jointly receive by cooperating.
As in [25], we assume that(C;) > 0. In case of negative values, it is possible to normalize the coalition
values, obtaining a game strategically equivalent to the original game p.8jldiracting a lower bound
value from all coalition values. For CFGs the comparison relation on coalifiootsres is induced in a
canonical wayA> B <= v(A) > v(B).

It is possible to prove the following results:

Lemma 3.3. ([11])
Given two coalition structured, B € M(N), with A # B, then.A can be transformed int8 by doing
at mostn — 1 applications of the SPLIT or MERGE rules.

Lemma 3.4. ([11])
Given two coalition structured, B € M(N), with A # B, then.A can be transformed int8 by doing
at mostn — 1 applications of the SHIFT rule.

Now we can define the coalition structure problem as follows.

Definition 3.5. (Coalition structure generation problem)
Given a set of agentd, the coalition structure generatioproblem consists in maximizing the social
welfare of the agents by finding a coalition structdre= arg maxce pq(4) v(C).

Formally, a CSG problem may be formulated as a set partitioning problems.(SRP)= {1,...,m}
be a set of objects, and IeP;, . . ., P, } be a collection of subsets &f with a cost:; € R™ associated to
each subseP;. Given an x m binary matrixA = {a;;}, wherea;; = 1if i € P; anda;; = 0 otherwise,
let J be a solution of SPP represented asithdimensional vectof = (x;,...,x,) Of binary decision
variables. An integer programming formulation of the set partitioning problem is

n
z(x) = maxz i
7=1

n
subject to Zaijxj =1l:i=1...m.
7j=1

Givenn agents, the size of the input to a CSG algorithm is exponential, since it cottiainalues
v(-) associated to each of tig* — 1) possible coalitions. Furthermore, the number of coalition structures
grows as the number of agents increases and correspoid$ toZ(n, ¢), whereZ(n, i), also known
as the Stirling number of the second kind, is the number of coalition structuties woalitions, and
may be computed using the following recurrenégn,i) = iZ(n — 1,i) + Z(n — 1,7 — 1), where
Z(n,n) = Z(n,1) = 1. As proved in [25], the number of coalition structuregié.") andw(n™/2),
and hence an exhaustive enumeration becomes prohibitive.

In this paper we focus on games that are neitlhugreradditivenor subadditivefor which the problem
of coalition structure generation is computationally complex. Indeed, foeradgitive games where
v(SUT) > v(S)+ v(T) (meaning any two disjoint coalitions are better off by merging together), and
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for subadditive games whet€S U T") < v(S) + v(T') for all disjoint coalitionsS, T" C A, the problem
of coalition structure generation is trivial. In particular, in superadditamegs, the agents are better off
forming the grand coalition where all agents operate togethier= { A}), while in subadditive games,
the agents are better off by operating alo@é & {{a1}, {a2}, ..., {an}}).

Instances of the CSG problem have been defined using the following digirib, as proposed in [14,
20], for the values of the characteristic functian

e Uniform (U): v(C) ~ U(a, b) wherea = 0 andb = 1;

e Uniform Scaled (US)»(C') ~ |C| - U(a, b) wherea = 0 andb = 1,

e Normal (N):v(C) ~ N(u,0?) wherep = 1 ando = 0.1;

e Normal Scaled (NS)y(C) ~ |C| - N(u,0?) wherey = 1 ando = 0.1;

e Normally Distributed (ND)(C) ~ N (u, 02) wherep = |C| ande = /|C].

Figure 1 plots the coalition structures’ values according to the previoudifitrébutions of the char-
acteristic function for 10 agents. Each graph plots on the x-axis the vitlie coalition structures whose
cardinality is represented by a point on the y-axis. As we can see, it ssayso find optimal solutions
in the case of normal and uniform distributions, while it becomes more complitmtéhe case of scaled
distributions. For the normal distribution, the optimal solution belongs to the tgadgted region cor-
responding to CSs with none or ten coalitions. The same scenario arigbe faniform distribution,
although here the region containing the optimal solution is more populated thae prahious case.
The CFGs with scaled distributions are very hard to solve since the optimébsotoay belong to very
populated regions. More formally, givenagents, let be the random variable of the value of a CS with
k coalitionsc;. For each distribution the expected value of ¢theariable may be computed as follows:
Ey(c) = Zf E(c;) = k/2 (maximum whenk = n, many coalitions)Eys(c) = Zf lcil/2 (maximum
with few coalitions where it is more likely to assign a high value to each dig)ic) = Zf 1=k
(maximum whenk = n); Exgs(c) = S.F|C;i| (maximum with few coalitions)Exp(c) = S2F|Cy]
(maximum with few coalitions).

4. Related Work

Previous works on CSG can be broadly divided into two main categoriast algorithms that return an
optimal solution, and approximate algorithms that find an approximate solution withdingis®urces.

A deterministic algorithm must systematically explore the search space of etmdmlutions. One
of the first algorithms returning an optimal solution is the dynamic programmingitdgo(DP) pro-
posed in [29] for the set partitioning problem.This algorithm is polynomial initeecf the input 2" —1)
and it runs inO(3™) time, which is significantly less than an exhaustive enumera@ign’()). However,
DP is not an anytime algorithm, and has tough memory requirements. Indeedclo coalitionC' it
computes the tabless (C') andte(C). It computes all the possible splits of coalitiéh assigning to
t1(C) the best split and te,(C) its value. In [19] the authors proposed an improved version of the
DP algorithm (IDP) performing fewer operations and requiring less methary DP. IDP, as shown by
the authors, is considered one of the fastest available exact algorithneslitethture for computing an
optimal solution.
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scaled, and Normally Distributed distributions of the eweristic function for 10 agents.
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Figure 2. Caoalition structure graph for a 4-agent game.

Given a coalitiorC, |C| = n, the number of splits af’ into two coalitions”; andCs, with |C| = s1
and|Cs| = so is computed as follows

S( ) C(S1+82,82)/2 if s1 =59
S1,89) = .
b2 C(s1 + s2,52) otherwise

whereC(n, k) = (}) is the binomial coefficient, i.e. the number/etombinations from a set made
up of n elements. Now, the total number of splits computed by DP is

n s—1
SDP:ZC(n7S) Z S(S_k7k)7
s=1 k=[5/2]

while those computed by IDP are

n s—1
Sipp = Z C(n,s) Z S(s =k, k)L ik<n—svs=n} | »
s=1 k=[s/2]

wherel <, _svs—n) IS 1if kK <n —sors=n,0 otherwise.

Neither DP nor IDP are anytime algorithms, they cannot be stopped be@ratnmal termination.
In [25], Sandholm et al. have presented the first anytime algorithm, sleéttorAlgorithm 1, that can be
stopped to obtain a solution (not guaranteed to be optimal) within a given time limitn Witestopped
before completion it returns the optimal solution. The CSG process can Wed/ias a search in a
coalition structure graph as reported in Figure 2. One desideratum isititg talguarantee that the CS
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is within a worst case bound from optimal, i.e. that searching through &si¥bsf coalition structures,

k = min{k’'} where k" > “//((SN)) is finite, and as small as possible, whéreis the best CS andy; is

the best CS that has been seen in the subNsdn [25] it was proved that: a) to bourid it suffices to
search the lowest two levels of the coalition structure graph (with this sgaecbound: = n, and the
number of nodes searchedis1); b) this bound is tight; and ¢) no other search algorithm can establish

any boundk while searching onl2”~! nodes or less.

Algorithm 1 Sandholm et al. algorithm

1. Search the bottom two levels of the coalition structures graph.

2. Continue with a breadth-first search from the top of the graph as btigeee is time left, or until
the entire graph has been searched (this occurs when this breatisieditsh completes level 3 of
the graph, i.e. depth n-3).

3. Return the coalition structure that has the highest welfare among trersecséar.

A new anytime algorithm has been proposed in [20], named IP, whose itiepastition the space
of possible solutions into sub-spaces such that it is possible to computeampbwer bounds on the
values of the best CSs they contain. Then, these bounds are usedéafirilne sub-spaces that cannot
contain the optimal solution. Finally, the algorithm searches through the remauispaces adopting
a branch-and-bound technique avoiding to examine all the solutions withge#drehed sub-spaces. IP
can be used to find optimal coalition structures avoiding to search most adahehsspace. As reported
in [20], IP finds optimal solutions much faster than any previous algorittsigded for this purpose.

As regards the approximate algorithms, [26] proposed a solution basederetic algorithm, which
performs well when there is some regularity in the search space. Inteeduthors assume, in order
to apply their algorithm, that the value of a coalition depends on other coalitidhg iGS, making the
algorithm not well suited for the general case. A new solution [11] isdasea Simulated Annealing
algorithm [12], a widely used stochastic local search method. At eachiderhe algorithm selects a
random neighbor solutios of a CSs. The search proceeds with an adjacentsC8&f the original CS
s if s’ yields a better social welfare than Otherwise, the search is continued withwith probability
eV(s)=V(s)/t \wheret is the temperature parameter that decreases according to the anneaditgjesch
t = at.

5. GRASP for the CSG problem

The resource limits posed by some intelligent systems, such as the time for fandwoigtion, require
to have approximation algorithms able to quickly find solutions that are within @fgpgactor of an
optimal solution. In this section we firstly present the anytime algorithm for C®@gsed in [3] with
some improvements, and then its extension with path-relinking.

A method to find high-quality solutions for a combinatorial problem is a two-spgpaach con-
sisting of a greedy construction phase followed by a perturbakbeal search [9]. Namely, the greedy

1A perturbative local search changes candidate solutions by modifyi@gomore of the corresponding solution components.
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Algorithm 2 GRASP CSG
Require: v: the characteristic function;
A: the set ofn agents;
maxIter: maximum number of iterations;
neighOp: neighborhood operator;
riiSteps: max non improving search steps for the RIl procedure;
wp: RIl walk probability
Ensure: solutionC € M(A)
1: C=0,vC)=—-00
2: iter=0
3: while iter < maxIter do
« = rand(0,1);
C=0;i=0
[* construction */
while i < n do
S ={C'|C" = add(C, A)}
s = max{v(T)|T € C}
10: s =min{v(T)|T € C}
11: RCL={C" € Sv(C") > s+ a(s—s)}
12: randomly select an eleme@tfrom RCL
13: 111+ 1
14:  [*local search */
15. C = RandomisedIterativeImprovement(C, wp,riiSteps,neighOP)

~

16: i v(C) > v(C) then

© o N a A

17: c=C
18: iter=iter+1
19: return C'

construction method starts the process from an empty candidate solutioh eexchaconstruction step
adds the best ranked component according to a heuristic selection fun&limcessively, a perturba-
tive local search algorithm is used to improve the candidate solution thus etitaitlvantages of this

search method, over other stochastic local search algorithms, are thebettehsolution quality and

fewer perturbative improvement steps to reach the local optimum. GreetwloRézed Adaptive Search
Procedures (GRASP) [4] solve the problem of the limited number of diftarandidate solutions gen-
erated by a greedy construction search methods by randomizing theuotiostmethod. GRASP is an
iterative process, in which each iteration consists of a construction pirasgkicing a feasible solution,
and a local search phase, finding a local optimum in the neighborhooe abtistructed solution. The
best overall solution is returned.

Algorithm 2 reports the outline of the GRASP procedure for the CSG proldemoted in the fol-
lowing with GRASP. In each iteration, it computes a solutiétby using a randomized constructive search
procedure and then applies a local search procedurestelding an improved solution. The main proce-
dure is made up of two components: a constructive phase (lines 7-18)laadl search phase (line 15).
The constructive search algorithm usedRASP iteratively adds a solution component by randomly se-
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lecting it, according to a uniform distribution, from a set, namexsdricted candidate lifRCL), of highly
ranked solution components with respect to a greedy fungtio@' — R. The probabilistic component
of GRASP is characterized by randomly choosing one of the best candidates in thdiR@ur case the
greedy functiory corresponds to the characteristic functiopresented in Section 3. In particular, given
v, the heuristic function, and, the set of feasible solution components= min{v(C)|C € C} and
s = max{v(C)|C € C} are computed. Then the RCL is defined by including in it all the components
C such thatv(C) > s + a(s — s). The parametet controls the amount of greediness and random-
ness. A valuex = 1 corresponds to a greedy construction procedure, whie 0 produces a random
construction. As reported in [17], GRASP with a fixed nonzero RCL patara is not asymptotically
convergent to a global optimum. The solution to make the algorithm asymptoticallgliylabnvergent,
could be to randomly select the parameter value from the continuous inférvaht the beginning of
each iteration and to use this value during the entire iteration, as we implemeGriSin

Given a set of nonempty subsetsmoagentsA, C = {C1,Cs, ..., C¢}, such thaC; N C; # 0 and
UC C A, the functionadd(C, A) used in the construction phase returns a refiner@ébtained from
C using one of the following operators:

1. ¢' — C\ {C;} U{C!} whereC! = C; U {a;} anda; ¢ UC, or
2. ¢! - CU{C;} whereC; = {a;} anda; ¢ UC.

Starting from the empty set, in the first iteration all the coalitions containing exac#dyagent are con-
sidered and the best one is selected for further specialization. At iteiatfmworking set of coalitions

C is refined by trying to add an agent to one of the coalitionS' ior a new coalition containing the new
agent is added t@'.

5.1. Local search: Randomized Iterative Improvement

To improve the solution generated by the construction phase, a locah$eased. It works by iteratively
replacing the current solution with a better solution taken from its neighlodriadnile there is a better
solution in the neighborhood. In order to build the neighborhood of a caalitinicture”’ we adopted the
previously reported operators SPLIT, MERGE and SHIFT, leading tdath@ving two neighborhood

relations:

o Nym(C) = {C’ € S|s' € SPLIT(s) UMERGE(s)}
o N,(C)={C' € S|s' € SHIFT(s)}

In particular, as a local search procedure&siRASP we used a Randomized lterative Improvement
(R technigue [9], as reported in Algorithm 3. The algorithm starts fribie solutions obtained in
the constructive phase GRASP, and then tries to improve the current candidate solution with respect
to v. RIl uses a parametesp € [0, 1], called walk probability, that corresponds to the probability of
performing a random walk step (line 12) instead of an improvement step {#@8). The uninformed
random walk randomly selects a solution from the complete neighborhoodL@nerhe improvement
step randomly selects one of the strictly improving neightd@€s (line 16) or a minimally worsening
neighbor if the sef(C) is empty (line 18). The search is terminated when a given number of seapsh s
(steps) has been performed without achieving any improvement (line 4).
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Algorithm 3 Randomized Iterative Improvement (RII)
Require: C: candidate solution;
neighOP: neighborhood operator;
steps: max non improving search steps;
wp: walk probability
Ensure: C: candidate solution
1. improvingSteps =0
2: bestValue =(C)
3:C=C
4: while improvingSteps< steps do
improvingSteps++
if neighOP == SPLIT/MERGEthen
compute the neighborhooud(C) = N,/,,,(C) of C
else
compute the neighborhooud(C) = N,(C) of C
10: u =rand([0,1])
11:  if w > wp then
12: randomly select’ from N(C)
13: else
14: I(C) ={S € N(O)|v(S) < v(C)}
15: if 1(C) # () then

16: randomly select’ from I(C)

17: else

18: selectC’ from N(C) such that/'S € N(C) : v(C") < v(S)
190 C=C

20: if v(C) < bestValughen

21: bestValue= v(C)

22: improvingSteps =0

23 C=C

24: return C

5.2. GRASP evaluation

Stochastic Local Search algorithms are typically incomplete when applied vemigstance of an opti-
mization problem and the time required for finding a solution may be considseethadom variable [9].
Given an optimization SLS algorithi$i for an optimization probleriil and a soluble instancec 11, let
P(Ts, <t ,Qsx < q) denote the probability thai applied tor finds a solution of quality less than or
equal tog in time less than or equal to Therun-time distribution(RTD) of S on the specific instance
7 is the probability distribution of the bivariate random varialilé -, 0s ), characterized by theun-
time distribution functiortd : RT x Rt — [0,1] defined astd(t,q) = P(Tsx < t,Qs~ < q) [9].
To empirically measure RTDs, lét be the total number of runs performed with a cutoff titheand
let ¥’ < k be the number of successful runs (i.e., runs during which a solutionauaslf. Letrt(j)
denote the run-time for thgth entry in the list of successful runs, ordered by increasing run-tires.
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cumulative empirical RTD is then defined B(T" < t) := #{j|rt(j) < t} /k.

A CPU time measurement is always based on specific implementations and rumtinoments.
It is often more appropriate to measure run-time in a way that abstracts fesa factors. This can
be done usingperation countsreflecting the number of operations that are considered to contribute
significantly towards an algorithm’s performance. Run-time measurememésponding to actual CPU
times and abstract run-times measured in operation counts may be distinduysieéetring to the latter
asrun-lengths We refer to RTDs obtained from run-times measured in terms of operatiomsas
run-length distribution®r RLDs [9].

In order to evaluate the proposed algorithms, we implemented them in C langodgecluded the
corresponding source code in the ELK systefLK includes also our implementation of the algorithm
proposed by Sandholm et al. in [25], DP [29], IDP [19], and IP [20]

All the following experimental results about the behavior of beRlASP and its extension with path-
relinking are obtained executing the algorithms included in ELK on a PC withtat(R) Core(TM) i5
CPU 670 @ 3.47GHz and 8GB of RAM, running GNU/Linux kernel 2.6.32s8Bver.

The first evaluation, whose results are reported in Figure 3 and Talvkgards the behavior of
GRASP adopting the SPLIT/MERGEX ,,,) or the SHIFT (V;) neighborhood relation in the local search
phase. We set the number of agents to 15, the walk probability of the Riéguoe to 0.7, and a cutoff
run-length to10” operations. In particular, for each instance of the problem we compugesbthtion
quality obtained withGRASP, computed as the ratio between the optimal solution value anGRrikgP
best solution value. The cutoff run-length limited the number of operatiotise®RASP algorithm. In
particular,GRASP ends either when the solution quality is 1 or when the number of computediopsra
is greater than the cutoff run-length. The operations taken into accoaitii@sum of the visited nodes
during the construction and local search phase. Hehggjter is set to+oo and theGRASP stop
criterion is based on the solution quality and number of operations.

We generated 100 problem instances for each distribution type (Unifoniforich scaled, Normal,
Normal scaled and Normally distributed) of the characteristic function. &dn énstance 10 different
runs of theGRASP algorithm were executed. Figure 3 plots the graphs of the RLIBEABP about each
distribution of the characteristic function. Each graph reports the canreesponding to the cumulative
empirical run-length distribution when the local search uses the SPLITMERNd SHIFT neighbor-
hood operators. As we can see the SPLIT/MERGE neighborhoodtoperanore robust than the SHIFT
operator and permitdRASP to find good solutions more quickly.

An insight of the experiment is reported in Table 1, where some descrigitwistics for the RDLs
shown in Figure 3 are indicated. The first column reports the adopted digdrilfor the characteristic
function (Uniform (U), Uniform scaled (US), Normal (N), Normal sc(®&S), and Normally distributed
(ND)); the second column indicates the neighborhood operator nsed; min, max andstddev indi-
cate, respectively, the mean, the minimum, the maximum and the standard devidtienamber of
operations over the 1000 runs (10 differ@RSP execution for problem instancejc denotes theari-
ational coefficien(vec = stddev/mean); qo.75/q0.25 IS @ quantile ratio; andopt is the number of runs
in which GRASP found the optimal solution within the cutoff run-length operations. From thegestics
the improvement obtained adopting the SPLIT/MERGE operator in the loaahsphase becomes more
evident.

2ELK is a system including many algorithms for the CSG problem whose eoenme is publicly available at
http://www.di.uniba.it/~ndm/elk/.
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Figure 3. Semi log-plot of RLDs fokRASP, with SHIFT and SPLIT/MERGE neighbourhood operators, igobl
to 100 Uniform, Uniform scaled, Normal, Normal scaled, Natmistributed CS instances, based on 10 runs per
instance.
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Dist | Op mean min max stddev vC q0.75/qo.25 ~ #opt

U S 20318.4 3698 279817 26048.4 1.28 3.46 1000
SIM 48909.2 1658 1127280 89177.1 1.82 6.64 1000
US S 8844716.9 33292 10006969 2565704.5 0.29 1.00 213
S/IM | 4422351.4 5958 10138012 3719544.2 0.84 7.76 781

N S 6737.1 4438 15017 2134.0 0.32 1.76 1000
S/IM 3057.6 2280 6683 600.5 0.20 1.23 1000

NS S 8100474.3 6249 10006889  3299610.4 0.41 1.34 307
S/IM | 3923760.0 2681 10076751  3496925.3 0.89 7.22 845
ND S 3461246.2 3637 10006795 38463734 1.11 22.78 803
S/IM | 2131138.6 1633 10004863 29032554 1.36 10.65 929

Table 1. Descriptive statistics for the RLDs shown in FigBrec = stddev/mean denotes the variation coeffi-

cient, andyo.75/90.25 the quantile ratio, where, denotes the:--quantile.

A second experiment was run in order to evaluate the impact of the wallalpitity value in the
Randomized lterative Improvement procedure adopted as local se@hehcorresponding results are
plotted in Figure 4. As in the previous experiment we GBASP 10 times over 100 problem instances for
distribution and taking fixed the neighborhood operator to SPLIT/MERGIE.Jest values are obtained
with a walk probability equal to 0.6 or 0.7. There is an increasing improvenoenafues ranging from
0.2 to 0.6/0.7; then the quality of the found solutions starts decreasing farsvedmging from 0.7 to
0.95.

6. GRASP with path-relinking for the CSG problem

Path-relinking is an intensification strategy, proposed in [7], that explvegectories connectinglite
solutions obtained by tabu search [8] or scatter search [21].

Given a set of elite solutions, paths among elite solutions in the solution spacer@erated and
traversed hoping to visit better solutions. Paths are generated taking@otaréithe moves incorporating
attributes of the guiding solution into the current one. Algorithm 4 reports dtie-gelinking procedure
applied to a pair of solutions, (starting solution) and; (target solution), assuming thatxs) < f(x),
wheref is the heuristic function computing the solution’s value.

The algorithm iteratively computes the symmetric differedde:, ;) between the current solution
x and the target ong; corresponding to the set of moves needed to raadtom x. At each step, the
algorithm considers all possible moves< A(z, z;) and selects the one whose result is the least cost
solution, i.e. the one which minimize&x & m), wherez & m is the solution resulting from applying
movem to solutionz. The best moven* is made, producing solutiong m*. The algorithm terminates
when z; is reached, i.e. whei\(z,z;) = (), and returns the best solutiari obtained during the
iterations.

Given two elite solutions andb, some of the alternatives to relinkandb [22, 21] considered in
this paper are:
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Figure 4. Semi log-plot of RLDs for GRASP with SPLIT/MERGEigieborhood operator, applied to 100 Uni-
form, Uniform scaled, Normal, Normal scaled, Normal dtatited CS instances, based on 10 runs per instance
with different values of the walk probability for the RII gzedure.



N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito/Grasp and Path-Retig for Coalition Structure Generation 267

Algorithm 4 PATH-RELINKING
Require: x, andz;: starting and target solution such thdtes) < f(z;)
Ensure: best solutionc* in path froma; to z;

1. x =x4

2. D= A(x,z4)

3: while D # () do

4. selectm* € D such thatf(x & m*) < f(xz & m;) forall m* # m; € D
5. D=D\{m*}

6: x=xdm"*

7. if f(z) < f*then

8: fr=f2)

9: ¥ =x

10: return x*

o forward relink usingz, = min, 3{f(a), f(b)} andz; = max, ,{f(a), f(b)};
¢ backward relinking adoptingz, = max, 3{f(a), f(b)} andz; = min, y{f(a), f(b)};
e back and forward relinkingboth different forward and backward trajectories are explored.

Path-relinking represents a major enhancement to the basic GRASPym®dedding to significant
improvements in solution time and quality, firstly proposed in [13]. The pathkialnintensification
strategy adopted in this paper is applied to each local optimum obtained aftecdélheearch phase.

The algorithm adopts a pool akxElite elite solutions that is originally empty. Then, each locally
optimal solution obtained by a local search is considered as a candidaténsebied into the pool if it
is different from every solution currently contained in the pool. The sisatelopted in this paper is the
following. If the pool already containsaxElite solutions, then the candidate is inserted into the pool if
it is better than the worst of them, that is then removed from the pool. If thegoot full, the candidate
is simply inserted.

Algorithm 5 reports GRASP with path-relinking for the CSG problem, retkimethe following as
GRASP+PR, where a new step to the construction and local search phase is addegath-relinking
algorithm is applied to the solution returned by local search and to all the swuiom the pool.
Improving solutions along the trajectories are considered as candidatesddion into the pool.

6.1. GRASP with path-relinking evaluation

The first part of the evaluation GRASP+PR for CSG regarded its effectiveness by varying the relinking
strategy and the size of the pool of elite solutions. In the first experimemwestigated th&RASP+PR
effectiveness by varying the relinking strategy. Figure 5 plots the graphresponding to the RLDs
for GRASP+PR adopting the SPLIT/MERGE neighborhood operator and different rielinktrategies.
The setup of the experiment is the same as that used in the pre3Ra8B evaluations, reported in
Section 5.2: 100 problem instances for each distribution arGRABP+PR runs per instance; the number
of agents was set to 15, the walk probability of RIl to 0.7, and the cutoffength to10” operations. For
each instance the solution quality obtained vdHASP+PR has been computed as the ratio between the
optimal solution value and théRASP+PR best solution value. As we can see from the graphs reported
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Algorithm 5 GRASP+PR
Require: v: the characteristic function;
A: the set ofn agents;
maxIter: maximum number of iterations;
neighOP: neighborhood operator;
maxElite: max pool dimension;
riiSteps: max non improving search steps for the RIl procedure;
wp: RIl walk probability
Ensure: solutionC € M(A)
1 iter=0
22 P=0
3: while iter < maxiter do

4: (' = GreedyRandomizedConstruction() /* lines 4-13 of the Alg. 2 */
5. (C =RandomizedIterativeImprovement (C, wp, riiSteps, neighOP)
6: if iter> 1 then

7 forall z € Pdo

8: determine which@ or z) is the initial and which is the target

9 xp = PathRelinking(zs, x¢)

10: update the elite set with,

11: if v(z,) > v(C) then

12: C=u,

13: update the elite s&? with C

14: else

15: insertC' into the elite se”

16;: iter=iter+1
17: return C

in Figure 5, the FORWARD/BACKWARD strategy is the most robust for all distions, while the
FORWARD strategy seems to be the less beneficial one. Table 2 reposriptiee statistics for the
search space nodes visited G§ASP+PR with a FORWARD relinking strategy, whenenodes is the
total number of visited nodegconstruction, #local and#relink are, respectively, the number of
nodes visited in the construction, local search and relinking phase; represents the mean value of
the iterations required by trGRASP+PR algorithm to end a single run.

In the second experiment @RASP+PR, we evaluated its effectiveness by varying the size of the
pool of elite solutions. Adopting the same setting as for the last experimentxaetie FORWARD
relinking strategy and let theaxE1lite parameter range on the valughd, 50, 100, 250, 500 Figure 6
plots the obtained RLDs showing that, for each distribution, the adoption ojenaxiter value allows
GRASP+PR to quickly find the best solution.

The third experiment compared the behavioGBASP to that of GRASP+PR by considering solution
gualities and the runtime performances. The experimental setting is the sathproblem instances
for each distribution and 1GRASP+PR runs per instance; the number of agents was set to 15, the walk
probability of RIl to 0.7, the cutoff run-length tt)” operations, the relinking strategy was FORWARD,
the neighborhood operator was SPLIT/MERGE, and the pool size ofiteeselutions to 10. Figure 7



N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito/Grasp and Path-Retig for Coalition Structure Generation 269

1 - 1
09 09
038 08 /
0.7 07
, /
06 06
o) z /
2 2 /
S 0.5 S 0.5 i
& : i i
04 i 04 7
03 03
02 02
0.1 F— 0.1 F—
B - B -
p FB - . FB
0 0 e
1e+03 1e+04 1e+05 1e+06 1e+03 1e+04 1e+05 1e+06 1e+07
run-time [search steps] run-time [search steps]
(a) Uniform (b) Uniform scaled
1 — 1
09 o 09 /
08 / 08 /
07 / 07
06 06 -
B B /
S 05 S 05
2 2 )
o o 7

04 }/ 04
03 A 03
I 02

, e
le+04 1e+03 le+04 1e+05 1e+06 1le+07
run-time [search steps] run-time [search steps]
(c) Normal (d) Normal scaled
1
0.9
0.8

P(solve)
o o
@ >

0.4
0.3
0.2
0.1 - F 4
B —memme
pae FB --
0
1e+03 le+04 1e+05 1le+06 1e+07

run-time [search steps]

(e) Normal distributed

Figure 5. Semi log-plot of RLDs fo&RASP-PR, with SPLIT/MERGE neighborhood operator and FORWARD
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Dis. #nodes #construction #local #relink iter
U 33109.5 6745.0 (20.4%) 25578.4 (77.2%) 786.0 (2.4%) 13.2
us 3789510.5 363175.4 (9.6%)  3334008.3 (88.0%) 92326.8 (2.4%) 893.3
N 3061.9 605.2 (19.8%) 2456.7 (80.2%) 0 (0.0%) 1
NS 2732970.0 350673.3 (12.8%) 2268367.5(83.0%) 113929.2 (4.17%) 853.0
ND 1528595.9 301562.6 (19.7%) 1105793.2 (72.3%) 121240.1 (7.9%) 699.0
Table 2. Descriptive statistics for the search space nadi#sd/byGRASP+PR with FORWARD relinking strategy

and SPLIT/MERGE neighborhood operator.

Dist.| Alg. mean min max stddev Ve q0.75/G0.25 #opt

U G 48909.2 1658 1127280 89177.1 1.82 6.64 1000
G+PR 33109.5 1697 826931 55954.2 1.69 4.49 100P0

US G 4422351.4 5958 10138012 3719544.2 0.84 7.76 781
G+PR 3789510.5 5579 10130711  3500039.9 0.92 7.45 848

N G 3057.6 2280 6683 600.5 0.20 1.23 1000
G+PR 3061.9 2123 6115 585.4 0.19 1.23 1000

NS G 3923760.0 2681 10076751  3496925.3 0.89 7.22 845
G+PR 2732969.9 13193 10014158 30485445 1.11 6.81 911

ND G 2131138.6 1633 10004863 2903255.4 1.36 10.65 929
G+PR 1528595.9 1144 10002688 2548228.5 1.67 12.00 949

Table 3. Descriptive statistics for the RLDs shown in Figlirec = stddev/mean denotes the variation coeffi-
cient, andyo 75/¢0.25 the quantile ratio, where, denotes the:--quantile.

plots the obtained RDLs and Table 3 reports the corresponding desespdiistics.

Finally, even ifGRASP+PR is not a complete algorithm returning the optimal solution, we compared
it to the two best performing algorithm able to return the optimal solution. Givéareint numbers
of agents, ranging fromO to 18, we comparedRASP+PR to IDP and IP reporting the time required
to find a solution whose value is at least the 95% (resp. 99%) of the optiralifi@o structure value.
SinceGRASP+PR is a stochastic algorithm, for each problem the corresponding value waisiet by
running it 10 times and then averaging the values for each run. As repoifiégure 8, where the time in
seconds is plotted in a log scai®ASP+PR outperforms botliDP andIP for non-scaled distributions. Its
effectiveness is comparable to thati®P andIP on scaled distributions. In particular, considering the
problems with 18 agents (rightmost points in the graf@®s)SP+PR is always able to obtain a solution
whose value is at least 95% of the optimal coalition structure value with a runtsseri¢han that
required by botiDP andIP. Increasing the accuracy of the required coalition structure value 9&%
to 99% the runtime ofiRASP+PR is at least comparable to, or better than, that requiredi®yand
IP. These results prove that for very hard proble¥RaSP+PR is a valuable choice to find near optimal
solutions.
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Figure 7. Semi log-plot of RLDs for GRASP and GRASP+PR withRWARD relinking strategy and
SPLIT/MERGE neighborhood operator, applied to 100 Unifddmiform scaled, Normal, Normal scaled, Normal
distributed CS instances, based on 10 runs per instance.
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10 runs per instance.
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7. Implementation details

7.1. The characteristic function

Concerning the representation of the characteristic function and thehsgzace, givem agentsN =
{a1,aq,...,a,}, we recall that the number of possible coalition®ts— 1. Hence, the characteristic
functionv : 2™ — R is represented as a vectr in the following way. Each subsét C A (coalition)

is described as a binary numbes = b1b, - -- b, where eacth; = 1 if a; € S, b; = 0 otherwise.

For instance, givem = 4, the coalition{as, a3} corresponds to the binary numb@&r10. Now, given

the binary representation of a coalitiéh its decimal value corresponds to the index in the vecCtor
where its corresponding valu€.S) is stored. This allows to have random access to the values of the
characteristic functions in order to efficiently compute the valoéa coalition structure.

7.2. Coalition structure

Given a coalition structuré = {C1,Cs, ..., C}}, assuming that th€’;'s are ordered by their smallest
elements, a convenient representation of the CS is an integer seqliépee- d,, whered; = j, if the
agenta; belongs to coalitior;. Such sequences are knownrestricted growth sequencé¢sg] in the
combinatorial literature. The binary representation of coalilpis b1b, - - - b, whereb; = 0if d; # 1,
andb; = 1 otherwise.

Forinstance, the sequence corresponding to the coalition stractargC'y, Co, Cs} = {{1, 2}, {3}, {4}}
is 1123. Now, in order to compute(C), we have to solve the sun{C;) +v(C3) +v(C3), whereC cor-
responds to the binary numbgr00, Cs corresponds to the binary numli#r10, andCs corresponds to
the binary numbe®001. Hencep(C) = v(Cy)+v(C2)+v(C3) = CF[11005]+ CF[00102]+CF [00015]
=CF[12]+CF[2]+CF[1], whereCF is the vector containing the values of the characteristic function.

8. Feature set partitioning as coalition structure generation: an example

Feature set partitioning [24, 23] is a generalization of the task of featleet®n that aims to partition
the feature set into subsets of features that are collectively usefut. ikegive an illustrative example
on how the feature set partitioning problem can be solved using the ELtEnsys

In a classification problem we have a training set of instadges {(x;, ;) }i=1,..n, Wherex; =
(i1, x40, - . ., Tin) IS the vector of the values assigned to the featutesdy; denotes the class value.
The projection of an instancg (resp. a training sef) onto a subset of featurés C A may be denoted
asmgx; (resp.mgS).

Solving the problem of partitioning an input feature set corresponds dinfirthe best partition-
ing such that the combination of the classifiers trained on each featuret suigssthe highest possible
accuracy. More formally:

Definition 8.1. (Feature set partitioning)

Given a learning algorithni, a combination method’, and a training se$ defined over a set of input
featuresA and a target featurg, thefeature set partitioning problemmorresponds to finding an optimal
partitioningZ = {G4,...,G,,} of the input feature set A into, mutually exclusive subsets; C A.
The optimality is defined in terms of minimization of the generalization error of thecedlglassifiers
L(G;) combined using method, whereL(G;) denotes the classifier induced on the projectigns.
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For instance, assuming the naive Bayes as a combination method, a clissifif@ new instance
is based on the product of the conditional probability of the target feagiven the values of the input
features in each subset:

m

Ivap(xi) = arg max P Yi = Cj
(i) ¢ Z0) 2 kl_[l Prs)(yi = ¢j)

Prrg, 09 Wi = ¢jlme,Xi)

In terms of coalition structure generation, the problem corresponds tochawcharacteristic func-
tion game(N,v), whereN = A = {aj,aq,...,a,} are the input features, andis the function
v : 24 — [0, 1] that computes for a subset of the input featutesC A the predictive accuracy of a
model learned with the projectior;,. The accuracy may be computed adopting a k-fold cross validation
on the projected training set. The only modification that is needed to our algdstthe construction of
the characteristic function Now, for each coalitiort¥; (a subset of the input features) we have to adopt
a classifier to compute its predictive accuracy on the trainingset

9. Conclusions

The paper presented an algorithm applicable to cooperative compleleqm®lthat require to find an
optimal partition, maximizing a social welfare, of a set of entities involved in gegysnto exhaustive
and disjoint coalitions. We present a greedy adaptive search pmecetth path-relinking to efficiently
search the space of coalition structures of those grouping problemsepasgted in the experimental
section the proposed algorithm outperforms in some cases the state of étgoathms in computing
optimal coalition structures.
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