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Abstract. In Artificial Intelligence with Coalition Structure Generation (CSG) one refers to those
cooperative complex problems that require to find an optimalpartition (maximizing a social welfare)
of a set of entities involved in a system. The solution of the CSG problem finds applications in many
fields such as Machine Learning (set covering machines, clustering), Data Mining (decision tree,
discretization), Graph Theory, Natural Language Processing (aggregation), Semantic Web (service
composition), and Bioinformatics. The problem of finding the optimal coalition structure is NP-
complete. In this paper we present a greedy adaptive search procedure (GRASP) with path-relinking
to efficiently search the space of coalition structures. Experiments and comparisons to other algo-
rithms prove the validity of the proposed method in solving this hard combinatorial problem.

Keywords: Coalition Structure Generation, Stochastic-Local-Search, GRASP procedure, Path-
Relinking

1. Introduction

An active area of research in Artificial Intelligence regards methods andalgorithms to solve complex
problems that require to find an optimal partition (maximizing a social welfare) ofa set of entities in-
volved in a system into exhaustive and disjoint coalitions. This problem has been studied a lot in the
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area of multi-agent systems (MASs) where it is named coalition structure generation (CSG) problem
(equivalent to the complete set partitioning problem). In particular it is interesting to find coalition struc-
tures maximizing the sum of the values of the coalitions, that represent the maximum payoff the agents
belonging to the coalition can jointly receive through cooperation. A coalition structure is defined as a
partition of the agents involved in a system into disjoint coalitions. The problem of finding the optimal
coalition structure isNP-complete [6, 25].

Coalition generation shares a similar structure with a number of common problems intheoretical
computer science and artificial intelligence, such as in combinatorial auctions; in job shop scheduling,
Machine Learning, Data Mining, Graph Theory, Natural Language Processing, Semantic Web, and in
Bioinformatics. In this paper we will use the term coalition structure generationas a general term to
refer to all these grouping problems.

Sometimes there is a time limit for finding a solution, the agents must be reactive and they should act
as fast as possible. Hence for the specific task of CSG it is necessary tohave approximation algorithms
able to quickly find solutions that are within a specific factor of an optimal solution. The goal of this
paper is to propose a new algorithm for the CSG problem able to quickly find anear optimal solution.

The problem of CSG has been studied in the context of characteristic function games (CFGs) in
which the value of each coalition is given by a characteristic function, and the values of a coalition
structure are obtained by summing the values of the coalitions it contains. The problem of coalition
structure generation isNP-hard, indeed as proved in [25], givenn the number of agents, the number of
possible coalition structures that can be generated isO(nn) andω(nn/2). Moreover, in order to establish
any bound from the optimal, any algorithm must search at least2n − 1 coalition structures. The CSG
process can be viewed as being composed of three activities [25]: a)coalition structure generation,
corresponding to the process of generating coalitions such that agents within each coalition coordinate
their activities, but agents do not coordinate between coalitions. This meanspartitioning the set of agents
into exhaustive and disjoint coalitions. This partition is called a coalition structure (CS); b)optimization:
solving the optimization problem of each coalition. This means pooling the tasks and resources of the
agents in the coalition, and solving this joint problem; and c)payoff distribution: dividing the value
of the generated solution among agents. Albeit independent of each other, these activities have some
interactions. For example, the coalition that an agent wants to join depends onthe portion of the value
that the agent would be allocated in each potential coalition. This paper focuses on the coalition structure
generation in settings where there are too many coalition structures to enumerate and evaluate due to
costly or bounded computation and limited time. Instead, agents have to select a subset of coalition
structures on which focusing their search.

In this paper we extend the work presented in [3] by adopting a stochastic local search (SLS) proce-
dure [9], named GRASP [4] improved with path-relinking [7], to solve the problem of coalition structure
generation in CFGs. The main advantage of using a stochastic local searchis to avoid exploring an expo-
nential number of coalition structures providing a near optimal solution. Our algorithm does not provide
guarantees about finding the global optimal solution. In particular the questions we would like to pose
are: Q1) can the metaheuristic GRASP with path-relinking be used as a valuable anytime solution for
the CSG problem? In many cases, as in CSG, it is necessary to terminate the algorithm prior to com-
pletion due to time limits and to reactivity requirements. In this situation, it is possible to adopt anytime
algorithms (i.e. algorithms that may be terminated prior to completion, returning an approximation of
the correct answer) whose quality depends on the amount of computation;Q2) can the metaheuristic
GRASP with path-relinking be adopted for the CSG problem to find optimal solutions faster than the



N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito / Grasp and Path-Relinking for Coalition Structure Generation 253

state of the art exact algorithms? In case of optimization combinatorial problems, stochastic local search
algorithms have been proved to be very efficient in finding near optimal solution [9]. In many cases, they
outperformed the deterministic algorithms in computing the optimal solution.

The paper is organized as follows: Section 2 introduces some applications sharing a common struc-
ture with the CSG problem, Section 3 presents basic concepts regarding the CSG problem, and Section 4
reports the related works on the problem. In Sections 5 and 6 the metaheuristicGRASP and its extension
with path-relinking applied to the CSG problem is presented. Section 7 shows some implementation
details and Section 9 concludes the paper.

2. Applications

In this section we report some commongrouping problemsin theoretical computer science and artificial
intelligence that share a similar structure with the CSG problem.

2.1. Learning Bayesian prototype trees

In [18] the authors present a method to learn Bayesian networks, and specifically Bayesian prototype
trees, assuming that the data form clusters of similar vectors. The data can be partitioned into clusters
and the maximum likelihood estimates of the partitioning can be computed. A data partition determines
the corresponding Bayesian prototype tree model. Hence, given a training data setD consisting ofN data
vectors, the authors propose to find the optimal Bayesian prototype tree byfinding the optimal partition
vector among theNN different vectors.

2.2. Cluster ensemble problem with graph partitioning

Clustering and graph partitioning are two strongly related concepts. Clustering is a data analysis tech-
nique adopted in statistics, data mining, and machine learning communities, and consists in partitioning
a set of instances into a given number of groups by optimizing an objective function. Recently,clus-
ter ensembletechniques [27] improve clustering performance by generating multiple partitions of the
given data set and then combining them to form a superior clustering solution. [27, 5] propose a graph
partitioning formulation for cluster ensembles. Given a data setx = {Xi, . . . , Xn}, a cluster ensem-
ble is a set of clustering solutions, represented asC = {C1, . . . , CR}, whereR is the ensemble size.
Each clustering solutionCi is a partition of the data set intoKi disjoint clusters. The graph partitioning
problem consists in partitioning a weighted graphG into K parts by findingK disjoint clusters of its
vertices. G is characterized by the setV of vertices and by a non negative and symmetric similarity
matrixW characterizing the similarity between each pair of vertices. The cut of a partition P is defined
asCut(P,W ) =

∑
w(i, j), wherei andj are vertices not belonging to the same cluster. The general

goal of graph partitioning is to find a partition that maximizes the cut.

2.3. Aggregation for Natural Language Generation

Aggregationrepresents a main component of natural language generation systems. The task is to merge
two or more linguistic structures into a single sentence. In [2] the authors presented an automatic tool
for performing the semantic grouping task by formalizing it as a CSG problem, where each coalition
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corresponds to a sentence. The strength of the proposed approach lies in its ability to capture global
partitioning constraints by performing collective inference over local pairwise assignments. Pairwise
constraints capture the semantic compatibility between pairs of linguistic structures at a local level. The
global task is to search a semantic grouping that maximally agrees with the pairwise preferences while
simultaneously satisfying constraints on the partitioning as a whole.

2.4. Feature set partitioning and privacy-preserving datamining

The concept of feature set partitioning [24, 23] has been proposed inorder to improve the accuracy of
supervised learning algorithms. Feature set partitioning methods consist ofdecomposing the original set
of features into several subsets and then combining the classifications madeup by all classifier models
trained for each subset. Privacy-preserving data mining [28] is a new research area that focuses on pre-
venting privacy violations that might arise during data mining operations. To reach this goal many tech-
niques modify the original datasets in order to preserve privacy even after the mining process is activated
ensuring minimal data loss and obtaining qualitative data mining results. In [15] the authors presented a
technique considering anonymization for classification through feature set partitioning. Given a learner
I, a combination methodC, and a training setS with input feature setA, the goal is to find an optimal
partitioning of the input feature setA into w mutually exclusive subsets. Optimality is defined in terms
of minimization of the generalization error of the classifier combined using the methodC.

3. Definitions

In this section we present the basic notions about the CSG problem.

Definition 3.1. (Coalition)
Given a setN = {a1, a2, . . . , an} of n agents (|N | = n), called thegrand coalition, a coalitionS is a
non-empty subset ofN , ∅ 6= S ⊆ N .

Definition 3.2. (Coalition Structure)
A coalition structure(CS), orcollection, C = {C1, C2, . . . , Ck} ⊆ 2N is a partition of the setN , andk
is its size, i.e.∀i, j : Ci ∩ Cj = ∅ and∪ki=1Ci = N .

GivenC = {C1, C2, . . . , Ck}, we define∪C , ∪ki=1Ci. We will denote the collection of all coalition
structures ofN asM(N).

As reported in [1], assuming a comparison relation⊲, A ⊲ B means that the wayA partitionsN ,
whereN = ∪A = ∪B, is preferable to the wayB partitionsN .

In this paper we consider the following rules that allow us to transform partitions of the grand coali-
tion. Given a CSC = {C1, C2, . . . , Ct}:

SPLIT: C → C \ {Ci} ∪ {Ck, Ch}, whereCk ∪ Ch = Ci, with Ck, Ch 6= ∅;

MERGE: C → C \ {Ci, Cj}i 6=j ∪ {Ck}, whereCk = Ci ∪ Cj ;

SHIFT: C → C \ {Ci, Cj}i 6=j ∪ {C
′
i, C

′
j}, whereC ′

i = Ci \ {ai} andC ′
j = Cj ∪ {ai}, with ai ∈ Ci.
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As in common practice [25, 19], we consider coalition structure generation incharacteristic function
games(CFGs). A CFG is a pair(N, v), whereN = {a1, a2, . . . , an} andv is a functionv : 2N →
R. GivenC a coalition structure,v(C) =

∑
Ci∈C

v(Ci), wherev(Ci) is the value of the coalitionCi.
Intuitively, v(Ci) represents the maximum payoff the members ofCi can jointly receive by cooperating.
As in [25], we assume thatv(Ci) ≥ 0. In case of negative values, it is possible to normalize the coalition
values, obtaining a game strategically equivalent to the original game [10], by subtracting a lower bound
value from all coalition values. For CFGs the comparison relation on coalition structures is induced in a
canonical way,A ⊲ B ⇐⇒ v(A) ⊲ v(B).

It is possible to prove the following results:

Lemma 3.3. ([11])
Given two coalition structuresA,B ∈ M(N), withA 6= B, thenA can be transformed intoB by doing
at mostn− 1 applications of the SPLIT or MERGE rules.

Lemma 3.4. ([11])
Given two coalition structuresA,B ∈ M(N), withA 6= B, thenA can be transformed intoB by doing
at mostn− 1 applications of the SHIFT rule.

Now we can define the coalition structure problem as follows.

Definition 3.5. (Coalition structure generation problem)
Given a set of agentsA, thecoalition structure generationproblem consists in maximizing the social
welfare of the agents by finding a coalition structureC∗ = argmaxC∈M(A) v(C).

Formally, a CSG problem may be formulated as a set partitioning problems (SPP). LetI = {1, . . . ,m}
be a set of objects, and let{P1, . . . , Pn} be a collection of subsets ofI, with a costcj ∈ R

+ associated to
each subsetPj . Given an×m binary matrixA = {aij}, whereaij = 1 if i ∈ Pj andaij = 0 otherwise,
let Ĵ be a solution of SPP represented as then-dimensional vector~x = 〈xi, . . . , xn〉 of binary decision
variables. An integer programming formulation of the set partitioning problem is

z(x) = max
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj = 1, i = 1 . . .m.

Givenn agents, the size of the input to a CSG algorithm is exponential, since it containsthe values
v(·) associated to each of the(2n−1) possible coalitions. Furthermore, the number of coalition structures
grows as the number of agents increases and corresponds to

∑n
i=1 Z(n, i), whereZ(n, i), also known

as the Stirling number of the second kind, is the number of coalition structures with i coalitions, and
may be computed using the following recurrence:Z(n, i) = iZ(n − 1, i) + Z(n − 1, i − 1), where
Z(n, n) = Z(n, 1) = 1. As proved in [25], the number of coalition structures isO(nn) andω(nn/2),
and hence an exhaustive enumeration becomes prohibitive.

In this paper we focus on games that are neithersuperadditivenorsubadditivefor which the problem
of coalition structure generation is computationally complex. Indeed, for superadditive games where
v(S ∪ T ) ≥ v(S) + v(T ) (meaning any two disjoint coalitions are better off by merging together), and
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for subadditive games wherev(S ∪ T ) < v(S) + v(T ) for all disjoint coalitionsS, T ⊆ A, the problem
of coalition structure generation is trivial. In particular, in superadditive games, the agents are better off
forming the grand coalition where all agents operate together (C∗ = {A}), while in subadditive games,
the agents are better off by operating alone (C∗ = {{a1}, {a2}, . . . , {an}}).

Instances of the CSG problem have been defined using the following distributions, as proposed in [14,
20], for the values of the characteristic functionv:

• Uniform (U): v(C) ∼ U(a, b) wherea = 0 andb = 1;

• Uniform Scaled (US):v(C) ∼ |C| · U(a, b) wherea = 0 andb = 1;

• Normal (N):v(C) ∼ N(µ, σ2) whereµ = 1 andσ = 0.1;

• Normal Scaled (NS):v(C) ∼ |C| ·N(µ, σ2) whereµ = 1 andσ = 0.1;

• Normally Distributed (ND):v(C) ∼ N(µ, σ2) whereµ = |C| andσ =
√
|C|.

Figure 1 plots the coalition structures’ values according to the previous fivedistributions of the char-
acteristic function for 10 agents. Each graph plots on the x-axis the value of the coalition structures whose
cardinality is represented by a point on the y-axis. As we can see, it seemseasy to find optimal solutions
in the case of normal and uniform distributions, while it becomes more complicated for the case of scaled
distributions. For the normal distribution, the optimal solution belongs to the less populated region cor-
responding to CSs with none or ten coalitions. The same scenario arises forthe uniform distribution,
although here the region containing the optimal solution is more populated than in the previous case.
The CFGs with scaled distributions are very hard to solve since the optimal solution may belong to very
populated regions. More formally, givenn agents, letc be the random variable of the value of a CS with
k coalitionsci. For each distribution the expected value of thec variable may be computed as follows:
EU (c) =

∑k
i E(ci) = k/2 (maximum whenk = n, many coalitions);EUS(c) =

∑k
i |ci|/2 (maximum

with few coalitions where it is more likely to assign a high value to each one);EN (c) =
∑k

i 1 = k

(maximum whenk = n); ENS(c) =
∑k

i |Ci| (maximum with few coalitions);END(c) =
∑k

i |Ci|
(maximum with few coalitions).

4. Related Work

Previous works on CSG can be broadly divided into two main categories: exact algorithms that return an
optimal solution, and approximate algorithms that find an approximate solution with limited resources.

A deterministic algorithm must systematically explore the search space of candidate solutions. One
of the first algorithms returning an optimal solution is the dynamic programming algorithm (DP) pro-
posed in [29] for the set partitioning problem.This algorithm is polynomial in the size of the input (2n−1)
and it runs inO(3n) time, which is significantly less than an exhaustive enumeration (O(nn)). However,
DP is not an anytime algorithm, and has tough memory requirements. Indeed, for each coalitionC it
computes the tablest1(C) and t2(C). It computes all the possible splits of coalitionC, assigning to
t1(C) the best split and tot2(C) its value. In [19] the authors proposed an improved version of the
DP algorithm (IDP) performing fewer operations and requiring less memorythan DP. IDP, as shown by
the authors, is considered one of the fastest available exact algorithms in the literature for computing an
optimal solution.



N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito / Grasp and Path-Relinking for Coalition Structure Generation 257

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1  2  3  4  5  6

co
al

iti
on

s

value

(a) Uniform

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  1  2  3  4  5  6  7  8  9  10

co
al

iti
on

s

value

(b) Uniform scaled

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1  2  3  4  5  6  7  8  9  10  11

co
al

iti
on

s

value

(c) Normal

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 7  8  9  10  11  12  13

co
al

iti
on

s

value

(d) Normal scaled

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  5  10  15  20  25

co
al

iti
on

s

value

(e) Normally distributed

Figure 1. Plots of the coalition structures’ values according to the Uniform, Uniform scaled, Normal, Normal
scaled, and Normally Distributed distributions of the characteristic function for 10 agents.
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Figure 2. Coalition structure graph for a 4-agent game.

Given a coalitionC, |C| = n, the number of splits ofC into two coalitionsC1 andC2, with |C1| = s1
and|C2| = s2 is computed as follows

S(s1, s2) =

{
C(s1 + s2, s2)/2 if s1 = s2

C(s1 + s2, s2) otherwise

whereC(n, k) =
(
n
k

)
is the binomial coefficient, i.e. the number ofk-combinations from a set made

up ofn elements. Now, the total number of splits computed by DP is

SDP =
n∑

s=1

C(n, s)
s−1∑

k=⌈s/2⌉

S(s− k, k),

while those computed by IDP are

SIDP =
n∑

s=1

C(n, s)




s−1∑

k=⌈s/2⌉

S(s− k, k)1{k≤n−s∨s=n}


 ,

where1{k≤n−s∨s=n} is 1 if k ≤ n− s or s = n, 0 otherwise.
Neither DP nor IDP are anytime algorithms, they cannot be stopped before their normal termination.

In [25], Sandholm et al. have presented the first anytime algorithm, sketched in Algorithm 1, that can be
stopped to obtain a solution (not guaranteed to be optimal) within a given time limit. When not stopped
before completion it returns the optimal solution. The CSG process can be viewed as a search in a
coalition structure graph as reported in Figure 2. One desideratum is the ability to guarantee that the CS
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is within a worst case bound from optimal, i.e. that searching through a subsetN of coalition structures,
k = min{k′} where k′ ≥ V (S∗)

V (S∗

N
) is finite, and as small as possible, whereS∗ is the best CS andS∗

N is

the best CS that has been seen in the subsetN . In [25] it was proved that: a) to boundk, it suffices to
search the lowest two levels of the coalition structure graph (with this search, the boundk = n, and the
number of nodes searched is2n−1); b) this bound is tight; and c) no other search algorithm can establish
any boundk while searching only2n−1 nodes or less.

Algorithm 1 Sandholm et al. algorithm

1. Search the bottom two levels of the coalition structures graph.

2. Continue with a breadth-first search from the top of the graph as long as there is time left, or until
the entire graph has been searched (this occurs when this breadth-first search completes level 3 of
the graph, i.e. depth n-3).

3. Return the coalition structure that has the highest welfare among those seen so far.

A new anytime algorithm has been proposed in [20], named IP, whose idea isto partition the space
of possible solutions into sub-spaces such that it is possible to compute upper and lower bounds on the
values of the best CSs they contain. Then, these bounds are used to prune all the sub-spaces that cannot
contain the optimal solution. Finally, the algorithm searches through the remaining sub-spaces adopting
a branch-and-bound technique avoiding to examine all the solutions within thesearched sub-spaces. IP
can be used to find optimal coalition structures avoiding to search most of the search space. As reported
in [20], IP finds optimal solutions much faster than any previous algorithm designed for this purpose.

As regards the approximate algorithms, [26] proposed a solution based ona genetic algorithm, which
performs well when there is some regularity in the search space. Indeed,the authors assume, in order
to apply their algorithm, that the value of a coalition depends on other coalitions inthe CS, making the
algorithm not well suited for the general case. A new solution [11] is based on a Simulated Annealing
algorithm [12], a widely used stochastic local search method. At each iteration the algorithm selects a
random neighbor solutions′ of a CSs. The search proceeds with an adjacent CSs′ of the original CS
s if s′ yields a better social welfare thans. Otherwise, the search is continued withs′ with probability
e(V (s′)−V (s))/t, wheret is the temperature parameter that decreases according to the annealing schedule
t = αt.

5. GRASP for the CSG problem

The resource limits posed by some intelligent systems, such as the time for findinga solution, require
to have approximation algorithms able to quickly find solutions that are within a specific factor of an
optimal solution. In this section we firstly present the anytime algorithm for CSG proposed in [3] with
some improvements, and then its extension with path-relinking.

A method to find high-quality solutions for a combinatorial problem is a two-step approach con-
sisting of a greedy construction phase followed by a perturbative1 local search [9]. Namely, the greedy

1A perturbative local search changes candidate solutions by modifying one or more of the corresponding solution components.
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Algorithm 2 GRASP CSG
Require: v: the characteristic function;

A: the set ofn agents;
maxIter: maximum number of iterations;
neighOp: neighborhood operator;
riiSteps: max non improving search steps for the RII procedure;
wp: RII walk probability

Ensure: solutionĈ ∈M(A)
1: Ĉ = ∅, v(Ĉ) = −∞
2: iter= 0
3: while iter< maxIter do
4: α = rand(0,1);
5: C = ∅; i = 0
6: /* construction */
7: while i < n do
8: S = {C ′|C ′ = add(C,A)}
9: s = max{v(T )|T ∈ C}

10: s = min{v(T )|T ∈ C}
11: RCL = {C ′ ∈ S|v(C ′) ≥ s+ α(s− s)}
12: randomly select an elementC from RCL
13: i← i+ 1
14: /* local search */
15: C = RandomisedIterativeImprovement(C, wp, riiSteps, neighOP)
16: if v(C) > v(Ĉ) then
17: Ĉ = C
18: iter = iter + 1
19: return Ĉ

construction method starts the process from an empty candidate solution and at each construction step
adds the best ranked component according to a heuristic selection function. Successively, a perturba-
tive local search algorithm is used to improve the candidate solution thus obtained. Advantages of this
search method, over other stochastic local search algorithms, are the muchbetter solution quality and
fewer perturbative improvement steps to reach the local optimum. Greedy Randomized Adaptive Search
Procedures (GRASP) [4] solve the problem of the limited number of different candidate solutions gen-
erated by a greedy construction search methods by randomizing the construction method. GRASP is an
iterative process, in which each iteration consists of a construction phase, producing a feasible solution,
and a local search phase, finding a local optimum in the neighborhood of the constructed solution. The
best overall solution is returned.

Algorithm 2 reports the outline of the GRASP procedure for the CSG problem,denoted in the fol-
lowing withGRASP. In each iteration, it computes a solutionC by using a randomized constructive search
procedure and then applies a local search procedure toC yielding an improved solution. The main proce-
dure is made up of two components: a constructive phase (lines 7-13) anda local search phase (line 15).
The constructive search algorithm used inGRASP iteratively adds a solution component by randomly se-
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lecting it, according to a uniform distribution, from a set, namedrestricted candidate list(RCL), of highly
ranked solution components with respect to a greedy functiong : C → R. The probabilistic component
of GRASP is characterized by randomly choosing one of the best candidates in the RCL. In our case the
greedy functiong corresponds to the characteristic functionv presented in Section 3. In particular, given
v, the heuristic function, andC, the set of feasible solution components,s = min{v(C)|C ∈ C} and
s = max{v(C)|C ∈ C} are computed. Then the RCL is defined by including in it all the components
C such thatv(C) ≥ s + α(s − s). The parameterα controls the amount of greediness and random-
ness. A valueα = 1 corresponds to a greedy construction procedure, whileα = 0 produces a random
construction. As reported in [17], GRASP with a fixed nonzero RCL parameterα is not asymptotically
convergent to a global optimum. The solution to make the algorithm asymptotically globally convergent,
could be to randomly select the parameter value from the continuous interval[0, 1] at the beginning of
each iteration and to use this value during the entire iteration, as we implemented inGRASP.

Given a set of nonempty subsets ofn agentsA, C = {C1, C2, . . . , Ct}, such thatCi ∩ Cj 6= ∅ and
∪C ⊂ A, the functionadd(C,A) used in the construction phase returns a refinementC ′ obtained from
C using one of the following operators:

1. C ′ → C \ {Ci} ∪ {C
′
i} whereC ′

i = Ci ∪ {ai} andai 6∈ ∪C, or

2. C ′ → C ∪ {Ci} whereCi = {ai} andai 6∈ ∪C.

Starting from the empty set, in the first iteration all the coalitions containing exactlyone agent are con-
sidered and the best one is selected for further specialization. At iterationi, the working set of coalitions
C is refined by trying to add an agent to one of the coalitions inC or a new coalition containing the new
agent is added toC.

5.1. Local search: Randomized Iterative Improvement

To improve the solution generated by the construction phase, a local search is used. It works by iteratively
replacing the current solution with a better solution taken from its neighborhood while there is a better
solution in the neighborhood. In order to build the neighborhood of a coalition structureC we adopted the
previously reported operators SPLIT, MERGE and SHIFT, leading to thefollowing two neighborhood
relations:

• Ns/m(C) = {C ′ ∈ S|s′ ∈ SPLIT(s) ∪MERGE(s)}

• Ns(C) = {C
′ ∈ S|s′ ∈ SHIFT(s)}

In particular, as a local search procedure inGRASP we used a Randomized Iterative Improvement
(RII) technique [9], as reported in Algorithm 3. The algorithm starts fromthe solutions obtained in
the constructive phase ofGRASP, and then tries to improve the current candidate solution with respect
to v. RII uses a parameterwp ∈ [0, 1], called walk probability, that corresponds to the probability of
performing a random walk step (line 12) instead of an improvement step (lines14-23). The uninformed
random walk randomly selects a solution from the complete neighborhood (line12). The improvement
step randomly selects one of the strictly improving neighborsI(C) (line 16) or a minimally worsening
neighbor if the setI(C) is empty (line 18). The search is terminated when a given number of search steps
(steps) has been performed without achieving any improvement (line 4).
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Algorithm 3 Randomized Iterative Improvement (RII)
Require: C: candidate solution;

neighOP: neighborhood operator;
steps: max non improving search steps;
wp: walk probability

Ensure: Ĉ: candidate solution
1: improvingSteps = 0
2: bestValue =v(C)
3: Ĉ = C
4: while improvingSteps< steps do
5: improvingSteps++
6: if neighOP == SPLIT/MERGEthen
7: compute the neighborhooudN(C) = Ns/m(C) of C
8: else
9: compute the neighborhooudN(C) = Ns(C) of C

10: u = rand([0,1])
11: if u ≥ wp then
12: randomly selectC′ fromN(C)
13: else
14: I(C) = {S ∈ N(C)|v(S) < v(C)}
15: if I(C) 6= ∅ then
16: randomly selectC′ from I(C)
17: else
18: selectC′ fromN(C) such that∀S ∈ N(C) : v(C′) < v(S)
19: C = C′

20: if v(C) < bestValuethen
21: bestValue= v(C)
22: improvingSteps = 0
23: Ĉ = C
24: return Ĉ

5.2. GRASP evaluation

Stochastic Local Search algorithms are typically incomplete when applied to a given instance of an opti-
mization problem and the time required for finding a solution may be considered as a random variable [9].
Given an optimization SLS algorithmS for an optimization problemΠ and a soluble instanceπ ∈ Π, let
P (TS,π ≤ t, QS,π ≤ q) denote the probability thatS applied toπ finds a solution of quality less than or
equal toq in time less than or equal tot. Therun-time distribution(RTD) of S on the specific instance
π is the probability distribution of the bivariate random variable(TS,π, QS,π), characterized by therun-
time distribution functionrtd : R+ × R

+ → [0, 1] defined asrtd(t, q) = P (TS,π ≤ t, QS,π ≤ q) [9].
To empirically measure RTDs, letk be the total number of runs performed with a cutoff timet′, and
let k′ < k be the number of successful runs (i.e., runs during which a solution was found). Letrt(j)
denote the run-time for thejth entry in the list of successful runs, ordered by increasing run-times.The
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cumulative empirical RTD is then defined bŷP (T ≤ t) := #{j|rt(j) ≤ t}/k.
A CPU time measurement is always based on specific implementations and run-time environments.

It is often more appropriate to measure run-time in a way that abstracts from these factors. This can
be done usingoperation counts, reflecting the number of operations that are considered to contribute
significantly towards an algorithm’s performance. Run-time measurements corresponding to actual CPU
times and abstract run-times measured in operation counts may be distinguishedby referring to the latter
as run-lengths. We refer to RTDs obtained from run-times measured in terms of operation counts as
run-length distributionsor RLDs [9].

In order to evaluate the proposed algorithms, we implemented them in C languageand included the
corresponding source code in the ELK system2. ELK includes also our implementation of the algorithm
proposed by Sandholm et al. in [25], DP [29], IDP [19], and IP [20].

All the following experimental results about the behavior of bothGRASP and its extension with path-
relinking are obtained executing the algorithms included in ELK on a PC with an Intel(R) Core(TM) i5
CPU 670 @ 3.47GHz and 8GB of RAM, running GNU/Linux kernel 2.6.32-25-server.

The first evaluation, whose results are reported in Figure 3 and Table 1,regards the behavior of
GRASP adopting the SPLIT/MERGE (Ns/m) or the SHIFT (Ns) neighborhood relation in the local search
phase. We set the number of agents to 15, the walk probability of the RII procedure to 0.7, and a cutoff
run-length to107 operations. In particular, for each instance of the problem we computed the solution
quality obtained withGRASP, computed as the ratio between the optimal solution value and theGRASP

best solution value. The cutoff run-length limited the number of operations oftheGRASP algorithm. In
particular,GRASP ends either when the solution quality is 1 or when the number of computed operations
is greater than the cutoff run-length. The operations taken into account are the sum of the visited nodes
during the construction and local search phase. Hence,maxiter is set to+∞ and theGRASP stop
criterion is based on the solution quality and number of operations.

We generated 100 problem instances for each distribution type (Uniform, Uniform scaled, Normal,
Normal scaled and Normally distributed) of the characteristic function. For each instance 10 different
runs of theGRASP algorithm were executed. Figure 3 plots the graphs of the RLD forGRASP about each
distribution of the characteristic function. Each graph reports the curvescorresponding to the cumulative
empirical run-length distribution when the local search uses the SPLIT/MERGE and SHIFT neighbor-
hood operators. As we can see the SPLIT/MERGE neighborhood operator is more robust than the SHIFT
operator and permitsGRASP to find good solutions more quickly.

An insight of the experiment is reported in Table 1, where some descriptivestatistics for the RDLs
shown in Figure 3 are indicated. The first column reports the adopted distribution for the characteristic
function (Uniform (U), Uniform scaled (US), Normal (N), Normal scaled (NS), and Normally distributed
(ND)); the second column indicates the neighborhood operator used;mean, min, max andstddev indi-
cate, respectively, the mean, the minimum, the maximum and the standard deviation of the number of
operations over the 1000 runs (10 differentGRASP execution for problem instance);vc denotes thevari-
ational coefficient(vc = stddev/mean); q0.75/q0.25 is a quantile ratio; and#opt is the number of runs
in whichGRASP found the optimal solution within the cutoff run-length operations. From thesestatistics
the improvement obtained adopting the SPLIT/MERGE operator in the local search phase becomes more
evident.

2ELK is a system including many algorithms for the CSG problem whose source code is publicly available at
http://www.di.uniba.it/∼ndm/elk/.
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Figure 3. Semi log-plot of RLDs forGRASP, with SHIFT and SPLIT/MERGE neighbourhood operators, applied
to 100 Uniform, Uniform scaled, Normal, Normal scaled, Normal distributed CS instances, based on 10 runs per
instance.
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Dist Op mean min max stddev vc q0.75/q0.25 #opt

U
S 20318.4 3698 279817 26048.4 1.28 3.46 1000

S/M 48909.2 1658 1127280 89177.1 1.82 6.64 1000

US
S 8844716.9 33292 10006969 2565704.5 0.29 1.00 213

S/M 4422351.4 5958 10138012 3719544.2 0.84 7.76 781

N
S 6737.1 4438 15017 2134.0 0.32 1.76 1000

S/M 3057.6 2280 6683 600.5 0.20 1.23 1000

NS
S 8100474.3 6249 10006889 3299610.4 0.41 1.34 307

S/M 3923760.0 2681 10076751 3496925.3 0.89 7.22 845

ND
S 3461246.2 3637 10006795 3846373.4 1.11 22.78 803

S/M 2131138.6 1633 10004863 2903255.4 1.36 10.65 929

Table 1. Descriptive statistics for the RLDs shown in Figure3; vc = stddev/mean denotes the variation coeffi-
cient, andq0.75/q0.25 the quantile ratio, whereqx denotes thex-quantile.

A second experiment was run in order to evaluate the impact of the walk probability value in the
Randomized Iterative Improvement procedure adopted as local search. The corresponding results are
plotted in Figure 4. As in the previous experiment we runGRASP 10 times over 100 problem instances for
distribution and taking fixed the neighborhood operator to SPLIT/MERGE. The best values are obtained
with a walk probability equal to 0.6 or 0.7. There is an increasing improvement for values ranging from
0.2 to 0.6/0.7; then the quality of the found solutions starts decreasing for values ranging from 0.7 to
0.95.

6. GRASP with path-relinking for the CSG problem

Path-relinking is an intensification strategy, proposed in [7], that explores trajectories connectingelite
solutions obtained by tabu search [8] or scatter search [21].

Given a set of elite solutions, paths among elite solutions in the solution space are generated and
traversed hoping to visit better solutions. Paths are generated taking into account the moves incorporating
attributes of the guiding solution into the current one. Algorithm 4 reports the path-relinking procedure
applied to a pair of solutionsxs (starting solution) andxt (target solution), assuming thatf(xs) < f(xt),
wheref is the heuristic function computing the solution’s value.

The algorithm iteratively computes the symmetric difference∆(x, xt) between the current solution
x and the target onext corresponding to the set of moves needed to reachxt from x. At each step, the
algorithm considers all possible movesm ∈ ∆(x, xt) and selects the one whose result is the least cost
solution, i.e. the one which minimizesf(x ⊕m), wherex ⊕m is the solution resulting from applying
movem to solutionx. The best movem∗ is made, producing solutionx⊕m∗. The algorithm terminates
when xt is reached, i.e. when∆(x, xt) = ∅, and returns the best solutionx∗ obtained during the
iterations.

Given two elite solutionsa andb, some of the alternatives to relinka andb [22, 21] considered in
this paper are:
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Figure 4. Semi log-plot of RLDs for GRASP with SPLIT/MERGE neighborhood operator, applied to 100 Uni-
form, Uniform scaled, Normal, Normal scaled, Normal distributed CS instances, based on 10 runs per instance
with different values of the walk probability for the RII procedure.
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Algorithm 4 PATH-RELINKING
Require: xs andxt: starting and target solution such thatf(xs) < f(xt)
Ensure: best solutionx∗ in path fromxs to xt

1: x = xs
2: D = ∆(x, xt)
3: while D 6= ∅ do
4: selectm∗ ∈ D such thatf(x⊕m∗) < f(x⊕mi) for all m∗ 6= mi ∈ D
5: D = D \ {m∗}
6: x = x⊕m∗

7: if f(x) < f∗ then
8: f∗ = f(x)
9: x∗ = x

10: return x∗

• forward relink: usingxs = mina,b{f(a), f(b)} andxt = maxa,b{f(a), f(b)};

• backward relinking: adoptingxs = maxa,b{f(a), f(b)} andxt = mina,b{f(a), f(b)};

• back and forward relinking: both different forward and backward trajectories are explored.

Path-relinking represents a major enhancement to the basic GRASP procedure, leading to significant
improvements in solution time and quality, firstly proposed in [13]. The path-relinking intensification
strategy adopted in this paper is applied to each local optimum obtained after thelocal search phase.

The algorithm adopts a pool ofmaxElite elite solutions that is originally empty. Then, each locally
optimal solution obtained by a local search is considered as a candidate to beinserted into the pool if it
is different from every solution currently contained in the pool. The strategy adopted in this paper is the
following. If the pool already containsmaxElite solutions, then the candidate is inserted into the pool if
it is better than the worst of them, that is then removed from the pool. If the pool is not full, the candidate
is simply inserted.

Algorithm 5 reports GRASP with path-relinking for the CSG problem, referred in the following as
GRASP+PR, where a new step to the construction and local search phase is added. The path-relinking
algorithm is applied to the solution returned by local search and to all the solutions from the pool.
Improving solutions along the trajectories are considered as candidates for insertion into the pool.

6.1. GRASP with path-relinking evaluation

The first part of the evaluation ofGRASP+PR for CSG regarded its effectiveness by varying the relinking
strategy and the size of the pool of elite solutions. In the first experiment weinvestigated theGRASP+PR
effectiveness by varying the relinking strategy. Figure 5 plots the graphs corresponding to the RLDs
for GRASP+PR adopting the SPLIT/MERGE neighborhood operator and different relinking strategies.
The setup of the experiment is the same as that used in the previousGRASP evaluations, reported in
Section 5.2: 100 problem instances for each distribution and 10GRASP+PR runs per instance; the number
of agents was set to 15, the walk probability of RII to 0.7, and the cutoff run-length to107 operations. For
each instance the solution quality obtained withGRASP+PR has been computed as the ratio between the
optimal solution value and theGRASP+PR best solution value. As we can see from the graphs reported
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Algorithm 5 GRASP+PR
Require: v: the characteristic function;

A: the set ofn agents;
maxIter: maximum number of iterations;
neighOP: neighborhood operator;
maxElite: max pool dimension;
riiSteps: max non improving search steps for the RII procedure;
wp: RII walk probability

Ensure: solutionĈ ∈M(A)
1: iter= 0
2: P = ∅
3: while iter< maxiter do
4: C = GreedyRandomizedConstruction() /* lines 4-13 of the Alg. 2 */
5: C = RandomizedIterativeImprovement(C, wp, riiSteps, neighOP)
6: if iter≥ 1 then
7: for all x ∈ P do
8: determine which (C or x) is the initial and which is the target
9: xp = PathRelinking(xs, xt)

10: update the elite set withxp
11: if v(xp) > v(Ĉ) then
12: Ĉ = xp
13: update the elite setP with C
14: else
15: insertC into the elite setP
16: iter = iter + 1
17: return Ĉ

in Figure 5, the FORWARD/BACKWARD strategy is the most robust for all distributions, while the
FORWARD strategy seems to be the less beneficial one. Table 2 reports a descriptive statistics for the
search space nodes visited byGRASP+PR with a FORWARD relinking strategy, where#nodes is the
total number of visited nodes;#construction, #local and#relink are, respectively, the number of
nodes visited in the construction, local search and relinking phase;iter represents the mean value of
the iterations required by theGRASP+PR algorithm to end a single run.

In the second experiment onGRASP+PR, we evaluated its effectiveness by varying the size of the
pool of elite solutions. Adopting the same setting as for the last experiment, we fixed the FORWARD
relinking strategy and let themaxElite parameter range on the values{10, 50, 100, 250, 500}. Figure 6
plots the obtained RLDs showing that, for each distribution, the adoption of a largemaxiter value allows
GRASP+PR to quickly find the best solution.

The third experiment compared the behavior ofGRASP to that ofGRASP+PR by considering solution
qualities and the runtime performances. The experimental setting is the same: 100 problem instances
for each distribution and 10GRASP+PR runs per instance; the number of agents was set to 15, the walk
probability of RII to 0.7, the cutoff run-length to107 operations, the relinking strategy was FORWARD,
the neighborhood operator was SPLIT/MERGE, and the pool size of the elite solutions to 10. Figure 7
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Figure 5. Semi log-plot of RLDs forGRASP-PR, with SPLIT/MERGE neighborhood operator and FORWARD
(F), BACKWARD (B), and FORWARD-BACKWARD (FB) relinking strategy, applied to 100 Uniform, Uniform
scaled, Normal, Normal scaled, Normal distributed CS instances, based on 10 runs per instance.
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Figure 6. Semi log-plot of RLDs forGRASP+PR with SPLIT/MERGE neighbourhood operator and FORWARD
relinking strategy, applied to 100 Uniform, Uniform scaled, Normal, Normal scaled, Normal distributed CS in-
stances, based on 10 runs per instance. Curves refer to different values for the size of the pool of elite solutions.
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Dis. #nodes #construction #local #relink iter

U 33109.5 6745.0 (20.4%) 25578.4 (77.2%) 786.0 (2.4%) 13.2

US 3789510.5 363175.4 (9.6%) 3334008.3 (88.0%) 92326.8 (2.4%) 893.3

N 3061.9 605.2 (19.8%) 2456.7 (80.2%) 0 (0.0%) 1

NS 2732970.0 350673.3 (12.8%) 2268367.5 (83.0%) 113929.2 (4.17%) 853.0

ND 1528595.9 301562.6 (19.7%) 1105793.2 (72.3%) 121240.1 (7.9%) 699.0

Table 2. Descriptive statistics for the search space nodes visited byGRASP+PR with FORWARD relinking strategy
and SPLIT/MERGE neighborhood operator.

Dist. Alg. mean min max stddev vc q0.75/q0.25 #opt

U
G 48909.2 1658 1127280 89177.1 1.82 6.64 1000

G+PR 33109.5 1697 826931 55954.2 1.69 4.49 1000

US
G 4422351.4 5958 10138012 3719544.2 0.84 7.76 781

G+PR 3789510.5 5579 10130711 3500039.9 0.92 7.45 848

N
G 3057.6 2280 6683 600.5 0.20 1.23 1000

G+PR 3061.9 2123 6115 585.4 0.19 1.23 1000

NS
G 3923760.0 2681 10076751 3496925.3 0.89 7.22 845

G+PR 2732969.9 13193 10014158 3048544.5 1.11 6.81 911

ND
G 2131138.6 1633 10004863 2903255.4 1.36 10.65 929

G+PR 1528595.9 1144 10002688 2548228.5 1.67 12.00 949

Table 3. Descriptive statistics for the RLDs shown in Figure7; vc = stddev/mean denotes the variation coeffi-
cient, andq0.75/q0.25 the quantile ratio, whereqx denotes thex-quantile.

plots the obtained RDLs and Table 3 reports the corresponding descriptive statistics.
Finally, even ifGRASP+PR is not a complete algorithm returning the optimal solution, we compared

it to the two best performing algorithm able to return the optimal solution. Given different numbers
of agents, ranging from10 to 18, we comparedGRASP+PR to IDP andIP reporting the time required
to find a solution whose value is at least the 95% (resp. 99%) of the optimal coalition structure value.
SinceGRASP+PR is a stochastic algorithm, for each problem the corresponding value was obtained by
running it 10 times and then averaging the values for each run. As reported in Figure 8, where the time in
seconds is plotted in a log scale,GRASP+PR outperforms bothIDP andIP for non-scaled distributions. Its
effectiveness is comparable to that ofIDP andIP on scaled distributions. In particular, considering the
problems with 18 agents (rightmost points in the graphs)GRASP+PR is always able to obtain a solution
whose value is at least 95% of the optimal coalition structure value with a runtime lesser than that
required by bothIDP andIP. Increasing the accuracy of the required coalition structure value from95%
to 99% the runtime ofGRASP+PR is at least comparable to, or better than, that required byIDP and
IP. These results prove that for very hard problemsGRASP+PR is a valuable choice to find near optimal
solutions.
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Figure 7. Semi log-plot of RLDs for GRASP and GRASP+PR with FORWARD relinking strategy and
SPLIT/MERGE neighborhood operator, applied to 100 Uniform, Uniform scaled, Normal, Normal scaled, Normal
distributed CS instances, based on 10 runs per instance.



N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito / Grasp and Path-Relinking for Coalition Structure Generation 273

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  11  12  13  14  15  16  17  18

ru
n 

tim
e 

[s
ec

on
ds

]

agents

IDP
IP

GRASP+PR .95
GRASP+PR .99

(a) Uniform

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  11  12  13  14  15  16  17  18

ru
n 

tim
e 

[s
ec

on
ds

]

agents

IDP
IP

GRASP+PR .95
GRASP+PR .99

(b) Uniform scaled

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  11  12  13  14  15  16  17  18

ru
n 

tim
e 

[s
ec

on
ds

]

agents

IDP
IP

GRASP+PR .95
GRASP+PR .99

(c) Normal

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10  11  12  13  14  15  16  17  18

ru
n 

tim
e 

[s
ec

on
ds

]

agents

IDP
IP

GRASP+PR .95
GRASP+PR .99

(d) Normal scaled

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10  11  12  13  14  15  16  17  18

ru
n 

tim
e 

[s
ec

on
ds

]

agents

IDP
IP

GRASP+PR .95
GRASP+PR .99

(e) Normal distributed

Figure 8. Semi log-plot of run times forGRASP-PR, with SPLIT/MERGE operator and FORWARD relink type,
and IP applied to 10 Uniform, Uniform scaled, Normal, Normalscaled, Normal distributed CS instances, based on
10 runs per instance.



274 N. Di Mauro, T.M.A. Basile, S. Ferilli, F. Esposito / Grasp and Path-Relinking for Coalition Structure Generation

7. Implementation details

7.1. The characteristic function

Concerning the representation of the characteristic function and the search space, givenn agentsN =
{a1, a2, . . . , an}, we recall that the number of possible coalitions is2n − 1. Hence, the characteristic
functionv : 2n → R is represented as a vectorCF in the following way. Each subsetS ⊆ A (coalition)
is described as a binary numbercB = b1b2 · · · bn where eachbi = 1 if ai ∈ S, bi = 0 otherwise.
For instance, givenn = 4, the coalition{a2, a3} corresponds to the binary number0110. Now, given
the binary representation of a coalitionS, its decimal value corresponds to the index in the vectorCF

where its corresponding valuev(S) is stored. This allows to have random access to the values of the
characteristic functions in order to efficiently compute the valuev of a coalition structure.

7.2. Coalition structure

Given a coalition structureC = {C1, C2, . . . , Ck}, assuming that theCi’s are ordered by their smallest
elements, a convenient representation of the CS is an integer sequenced1d2 · · · dn wheredi = j, if the
agentai belongs to coalitionCj . Such sequences are known asrestricted growth sequences[16] in the
combinatorial literature. The binary representation of coalitionCi is b1b2 · · · bn wherebj = 0 if dj 6= i,
andbj = 1 otherwise.

For instance, the sequence corresponding to the coalition structureC = {C1, C2, C3} = {{1, 2}, {3}, {4}}
is 1123. Now, in order to computev(C), we have to solve the sumv(C1)+v(C2)+v(C3), whereC1 cor-
responds to the binary number1100, C2 corresponds to the binary number0010, andC3 corresponds to
the binary number0001. Hence,v(C) = v(C1)+v(C2)+v(C3) = CF[11002]+ CF[00102]+CF[00012]
= CF[12]+CF[2]+CF[1], whereCF is the vector containing the values of the characteristic function.

8. Feature set partitioning as coalition structure generation: an example

Feature set partitioning [24, 23] is a generalization of the task of feature selection that aims to partition
the feature set into subsets of features that are collectively useful. Here we give an illustrative example
on how the feature set partitioning problem can be solved using the ELK system.

In a classification problem we have a training set of instancesD = {(xi, yi)}i=1,...,N , wherexi =
(xi1, xi2, . . . , xin) is the vector of the values assigned to the featuresA andyi denotes the class value.
The projection of an instancexi (resp. a training setS) onto a subset of featuresG ⊆ A may be denoted
asπGxi (resp.πGS).

Solving the problem of partitioning an input feature set corresponds to finding the best partition-
ing such that the combination of the classifiers trained on each feature subset has the highest possible
accuracy. More formally:

Definition 8.1. (Feature set partitioning)
Given a learning algorithmL, a combination methodC, and a training setS defined over a set of input
featuresA and a target featurey, thefeature set partitioning problemcorresponds to finding an optimal
partitioningZ = {G1, . . . , Gm} of the input feature set A intom mutually exclusive subsetsGi ⊆ A.
The optimality is defined in terms of minimization of the generalization error of the induced classifiers
L(Gi) combined using methodC, whereL(Gi) denotes the classifier induced on the projectionπGi

S.
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For instance, assuming the naive Bayes as a combination method, a classification of a new instance
is based on the product of the conditional probability of the target feature, given the values of the input
features in each subset:

lMAP(xi) = argmax
cj

PL(S)(yi = cj)
m∏

k=1

PL(πGk∪yS)(yi = cj |πGk
xi)

PL(S)(yi = cj)
.

In terms of coalition structure generation, the problem corresponds to having a characteristic func-
tion game(N, v), whereN = A = {a1, a2, . . . , an} are the input features, andv is the function
v : 2A → [0, 1] that computes for a subset of the input featuresGi ⊆ A the predictive accuracy of a
model learned with the projectionπGi

. The accuracy may be computed adopting a k-fold cross validation
on the projected training set. The only modification that is needed to our algorithm is the construction of
the characteristic functionv. Now, for each coalitionGi (a subset of the input features) we have to adopt
a classifier to compute its predictive accuracy on the training setπGi

.

9. Conclusions

The paper presented an algorithm applicable to cooperative complex problems that require to find an
optimal partition, maximizing a social welfare, of a set of entities involved in a system into exhaustive
and disjoint coalitions. We present a greedy adaptive search procedure with path-relinking to efficiently
search the space of coalition structures of those grouping problems. As reported in the experimental
section the proposed algorithm outperforms in some cases the state of the artalgorithms in computing
optimal coalition structures.
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