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Abstract—Tables are extremely important components of  perception and communicate contents that many words could
documents, because they bear very informative content in a not satisfactorily express.
compact and structured way. Being able to understand a table’s Another extremely important component of documents are

internal organization would allow to extract and reuse the data tabl Auth tables t " ¢ .
they contain. This can be reduced to recognizing critical cells ~‘@P'€S. AUNOIS USe tables 1o compactly represent many im-

only. Since purely algorithmic approaches are unable to deal Portant data in a small space, to attract the reader’s aitent
with the many different table layouts designed to represent or for information comparison [1]. Thus, the availabilit§ o
particular kinds of information and/or particular perspectives  automatic components that can identify tables in documents
on them, Machine Learning may represent an effective solution. . g that are able to understand the table structure, would be

On one hand, the spatial organization of tables puts a strong . ft tract the k ledae th tai
emphasis on the relationships among cells; on the other, the a precious support to extract the knowleage they contain,

extreme variability in style, size, and aims of tables requires represent it formally (e.g., using a relational Database) a
flexible approaches. This paper proposes the exploitation of a make it available to people and/or other software (e.gngusi
Statistical Relational Learning approach, that is able to model  semantic technologies that are being developed nowadays).
the complex spatial relationships involved in a table structure, This paper focuses on the process of understanding table
by mixing the power of a relational representation formalism truct by identifvina their k I d

with the flexibility of a statistical learning tool. Experiments struc u'rels y laen 'Ifylng e _ey cells, an propqse

on a real-world dataset are reported both for single cell Of Statistical Relational Learning [2] (SRL) techniquesito

classification and for overall table structure recognition, whose  this automatically. In fact, spacial (relational) infortioa is

results prove the validity of the proposed approach. fundamental in tables, but the large variety of possibléetab
structures also requires the support of sufficiently flexibl
|. INTRODUCTION (statistical) approaches.

The huge amount of electronic documents available nowa- Our approach was embedded in the DOMINUS frame-
days poses serious problems for the efficient and effectivevork [3], that brings to cooperation a set of intelligent
exploitation of the information content they bear. In sometechniques aimed at covering the whole set of steps going
cases, this situation may tamper the very role of documentgtom the submission of a document in digital format, through
which is supporting the users in their activities by safigfy its processing to extract the relevant knowledge it costain
their information needs. In fact, full management of theup to its delivery to interested users. Specifically, theldy
documents and of their content goes beyond human capanalysis engine of DOMINUS can extract tabular items,
bilities. Hence, the need for automatic techniques that cathat are provided to a SRL system in order learn and later
suitably index, understand and relate different documients recognize their structure. This allows to extract the table
a collection. In turn, understanding documents requirecto g data, and use them for better indexing the document and
beyond ‘surface cues’ that can be determined syntactjcallyelating it to other items in the collection.
up to the semantic level underlying the appearance. This paper is organized as follows. After introducing the

This objective has been so far mainly aimed at baseghroblem setting in the next section, the proposed approach
on the textual content of documents, as the most closes described in Section Ill. This approach is then evaluated
component to the semantic level. Indeed, although wordé Section IV, before concluding the paper.
suffer from linguistic tricks such as synonymy and pol-
ysemy, they are human artifacts purposely developed to
explicitly indicate concepts. Hence, the focus of the Infar A table contains a rectangular configuration of data cells,
tion Retrieval (IR) and Information Extraction branches of €ach of which can be uniquely referred by a row and a
Computer Science has typically concerned natural languag€olumn index. In general, six kinds of table-related eletsen
often limited to the purely lexical aspects of the text. How-can be distinguished:
ever, there are other components of documents that may be« Caption: explanatory text placed above the table;
very important towards its full understanding. For insenc  « Data: The set of cells containing the actual information
pictures and graphics are often exploited to immediatdly hi carried by the table;

Il. PRELIMINARIES AND PROBLEM SETTING



. Column Heading: The cells placed above the table ~ S3Ption

data, aimed at explaining part of the dimensions ac- caption,,

cording to which the data are organized,; home stub

« Row Heading The cells placed to the left of the table Stub Column heading
data, aimed at explaining the remaining part of the end_stub
dimensions according to which the data are organized; | home data |

« Stub: the cells placed at the intersection between the
horizontal projection of the row heading and the vertical
projection of the column heading; end_data

« Notes One or more optional text lines following the note
table, aimed at explaining portions of its content.

Row heading Data

note,

Row and column headings may be quite complex, when caption
the table is intended to represent data that are conceptuall S
- . . caption,
distributed along more than two dimensions. In such a case, single stub Column Heading
the row and/or column header must accommodate more than home data
one dimensions, which typically causes some cell to span
over many rows or columns as a side effesintent-cells Row heading Data
are identified by acolumn-header pattand arow-header- —rddat
path [4]. The stub can be made up of just one cell (when note =

there are just two dimensions, one reported on the column

header and the other on the row header) or of many cells note,

(When t.he column and/or row hea_der accommpdate many Figure 1. Classes for the table structure learning problem
dimensions). It may be empty, but it often contains a meta-

header aimed at explaining the row and/or column headings.

The Document Analysis literature has faced several kinds Following [4], we assume that the input table is repre-
of table-related tasks. Some concern the distinction besented in a Comma Separated Values (CSV) file including
tween genuine tables (aimed at representing and organizirfje whole set of table-related elements (stub, table celis a
meaningful information) from those just aimed at obtainingheadings, caption, notes). This file provides no structirsl
a spatial partition of the page (as in most Web docu-o distinguish different kinds of elements (not even captio
ments) [5]. Others face table boundary identification [6]and notes, if any). In particular, the content of multi-row o
and table structure decomposition [7], or the classificatio multi-column cells (including caption and notes) is assdme
of tables according to their type of content and intended© be placed in the (top-left)-most cell of the group.
exploitation [1]. Table search [8] or table classificatidj [ ~ The table segmentation process aims at identifying four
are also investigated. [4] exploits the table structuregor critical cells useful to partition the table intstuh row
formal manipulation aimed at transposing the content into d&i€ader column headerand data regions (see Figure 1).
standard relational database representation. Learning, for each cell, the type of table component to which

Here we are interested in table structure identification!t P€longs, would cause a significant growth in the number

which is preliminary to many high-level processing steps.Of examples, which would affect computational costs. It

High accuracy is required if the table data are to be extenWould also be more difficult to handle in the subsequent
sively and precisely extracted. Although the mutual poiti classification phase, because each cell would be classified

of the elements that make up a table is known and fixedindependently of the others (so that, for example, a data cel
identifying their specific boundaries may be very Complex.m'ght be identified in the heading area). To solve the former

Nagy et al. adopted an algorithmic approach [9] Ieveraginngb'_em’ and to reduce the impact of the Iattgr, a different
typical patterns, and later tried to improve its accuradpgis solution was adopted. Four classes were defined as shown

propositional Machine Learning based on information onin Figure 1, that are npn-redundant and are sufficient, alone
the 8-neighbor cells of the cell to be classified [10]. While 10 Univoquely determine the whole table structure:
obtaining interesting results, this approach does noy full « home stub: The top-left cell in the stub;

exploit the relational structure of the whole table. Herwe, « end_stub: The bottom-right cell in the stub;

believe that a fully relational approach can further imgrov  « home data: The top-left cell in the data;

recognition performance. Moreover, the candidate salutio e« €nd_data: The bottom-right cell in the data.

must also be flexible enough to capture all the different&ind Indeed, the captions can be identified as the content cell
of tables that can be found in documents, and the ways iabove the homestub row, and the notes as the content
which information can be organized therein. cells below the endlata row; the column heading cells



are those in the columns to the right of the estdb that predicts the label for each unseen example R, awith
column and in the rows between the horstelb row and |P| = d, be the set of features constructed in the first phase.
the endstub row; the row heading cells are those in theFor each example;, we can build ad-component vector-
rows below the endstub row and in the columns between valued random variable = (z1,2,...,24) Where each
the homestub column and the endtub column. Assuming =«; is 1 if the queryp;, € P subsumes exampl&, or O
that the homedata cell is always placed just one column otherwise.
to the right, and one row below, the erstub, either of the The posterior probability(Y;|x) can be computed as
two is redundant. Conversely, if classes are considered as p(x|Y;)p(Y))
mutually exclusive, an additional class must be included fo p(Yj|x) = ) J .
the case of overlapping homstub and endstub: > p(x[Y3)p(Y:)

« single stub: The stub cell, in the case of a single-cell Using a maximum a posteriori probability (MAP) approach

stub. we classify examples by considering the the maximum

Humans understand tables and their components basédscriminant functiong;(x) = P(Y;[x). Considering the
on spatial structure and content regularities among cellscomponents of vectok as conditionally independent, we
Propositional techniques are not sufficiently powerful to¢an write the class-conditional probability d&¥x|Y;) =
handle this kind of complexity. Switching to the first-order [[;—, (»i;)* (1 — pi;)*~"*, being p;; = Prob(z; =
logic setting, the following features might be suitable for 1|Y;)i=1,....a-
table description: Given'iiiése methods to construct a set of features and to

o Table boundaries use them to classify unseen examples, the problem is how to

« Columns and Rows, and adjacency between them  find a subset of these features that optimizes the prediction

« Cells and their belonging to a given row and column accuracy. LetP be the constructed original set of queries,

« Cell content type and letf : 2Pl — R be a function scoring a selected subset
However, being the problem very multi-faceted, and due toX € P- The problem of feature selection is to find a subset
the lack of stable criteria to identify the table components X € P such thatf(X) = maxzcp f(Z). An exhaustive
the contribution of statistical approaches is also advised approach to this problem would require examining 2ff!

improve flexibility. possible subsets of the feature $&twhich is impractical
even for small values ofP|. The use of a stochastic
I1l. STATISTICAL RELATIONAL LEARNING APPROACH local search procedure [15] allows to obtgjood solutions

To learn to recognize critical cells we used the SRLWithout having to explore the whole solution space.
algorithm Lynx [11], [12]. It is a probabilistic query-based =~ Given a subset® C P, for each exampleX; < X
classifier that uses first-order logic as a representation la We let the classifier find the MAP hypothesis>(X;) =
guage. A first-ordealphabetconsists of a set afonstants ~ arg max; gi(x;), wherex; is the feature based represen-
a set ofvariables a set offunction symbolsand a non- tation of exampleX; obtained using queries . The

empty set ofpredicate symbolsAn atomp(t1, ... ,t,) is a optimization problem corresponds to minimize the expecta-
predicate symbap of arity n applied ton termst; (constant 0N E[17 ., ] wherely . ., is the characteristic
or variable symbols). function of training exampl&; returningl if hp(X;) # Y,

Lynx adopts aselective propositionalization (featuriza- or 0 otherwise.
tion) approach to feature engineering, that combines a Consider acombinatorial optimizationproblem, where
feature construction phase with a feature selection psocesone is given a discrete sé&f of solutions and an objective
The feature construction process is carried out by minindunction f : X — R to be minimized, and seek a solution
frequent queries with an approach similar to that in [13],2* € X such thatvz € X : f(z*) < f(z). High-
based on the same idea as the generic level-wise searquality solutions for a combinatorial problem can be found
method [14]. The algorithm starts with the most generalusing a two-step approach made up of a greedy construc-
queries, and then, at each step tries to specialize all thégon phase followed by a perturbative local search [15].
candidate frequent queries, storing those whose length IGRASP [16] solves the problem of the limited number of
equal to the user specified input parameter. The algorithndifferent candidate solutions generated by a greedy con-
uses a background knowled@fecontaining both the training struction search method by randomizing the construction
examples and a set of constraints that must be satisfied byiethod. GRASP is an iterative process combining at each
the generated queries. iteration a construction and a local search phase. In the

Let X be the input space of relational examples, ghe construction phase a feasible solution is built, and then
{1,2,...,Q} denote the finite set of possible class labels.its neighborhood is explored by the local seartly.nx
Given atraining seD = {(X;,Y;)}i=1,...m, WhereX; € X includes an implementation GRASP to perform the feature
andY; € ), the goal is to learn a functioh : X — )Y  selection task [11].



| 'abel (c_2_1, single_stub). [ [HS ES SS HD ED N] Total [ #errors |

I abel (c_1_1, caption). HS | 146 00 10 00 00 04 156 1.0

| abel (c¢_3_2, hone_data). ES | 0.0 130 04 00 0.0 0.0 134 0.4
L. SS |02 00 228 00 00 0.0 23.0 0.2
cell(c_1_1, al phanumeric). HD | 0.0 00 0.0 364 0.0 0.0 36.4 0.0
cell (c_2_1, enpty). ED |00 00 00 00 382 04 382 0.0
cell (c_2_2, integer). N | 02 20 02 30 12 4282842894| 6.6
cell(c_3_2, nunericSynbol). 8.2/4416
. Table Il
right(c_2_1,c_2_2). GLOBAL CLASSIFICATION

left(c_2_2,c_2_1).
bottom(c_1_1, c_2_1).
top(c_2_1, c_1 1).
T Given a training setl.ynx was applied to the relational
descriptions of critical cells belonging to each table idesr
to construct the relevant relational features maximizimg t
likelihood on the training data, as reported in Section IlI.

Figure 2. An example of a relational table description.

[ [HS ES SS HD ED N[ Total [ #errors] . A
ST I16 02 10 00 00 7152 5 Then, the systelm builds models made up of probabilistic
ES| 00 146 04 00 00 1.2 16.2 1.6 queries such as:

Ss |08 00 222 00 00 02 232 1.0 .
HD | 00 00 00 378 00 18 394 | 16 q={ label (A), type(A al phabetic),
ED| 00 00 00 00 384 10 394 1.0 top(A B), type(B, nuneric) }
N |02 80 28 362 204 4214042816 67.6
4416 | 220.2 with corresponding class probabilities, epfg| H D) = 0.0,
Table | p(q|ED) = 0.006, p(q|SS) = 0.205, p(¢/HS) = 0.271
LOCAL CLASSIFICATION p(q|ES) = 0.029, p(¢q|D) = 0.005, and p(g|N) = 0.066.

These probabilistic queries are then used to predict atitic
cells belonging to test tables.
The first experiment aimed at validating the proposed
IV. EXPERIMENTAL RESULTS approach by comparing it to [18] on classifying the cells

We ran several experiments on a dataset consisting dfidependently from the table they belong. The dataset,
200 Comma Separated Value (CSV) files, each containingonfs'sung 0f23076 cells, was randomly split inté folds
the description of an HTML table randomly selected fromNaving4416 cells each on average. Table | reports the results
10 large statistical Web sites [17]. In a previous work [18] obtained byLynx with a 5-fold cross-validation in terms
we exploitedLynx to learn a classification model for the ©Of accuracy (values averaged over théolds). The system
critical cells using an independent classification appnaae ~ Made220.2 errors per fold on average.(8%). It performed
a subset of this dataset. Here, we aim at correctly pregictinPest on the two labels regarding the data region, while it had
the label of the critical cells belonging to each table in aseme difficulties in correctly classifying labeiS and ES.
collective way. In particular, given the s of cells in In the nexj experiment we collecpvely classified all the
a tableT, we want to find the critical cells of’ among cells belonging to the same table in order to assess how
all the cells inC. Furthermore, we changed the relational Many tables were porrectly segmented. In order to solve this
description language for the examples. prgblem the following approach was adopted. For each table
In our new relational representation, each table cell had N the test set, let be the set of cells ifl”; then:
an identifier. Given a table, eel | / 2 atom is introduced 1) the cell with labelC' € { HS, ES, SS, ED} is iden-

for each cell in the CSV file, reporting as arguments the tified solving the maximizatioarg max,c g P(Cxs);
corresponding identifier and the type of contaritght / 2, i.e., fixed clasC, we find the cells € S with MAP

| eft/ 2, bottom 2 andt op/ 2 atoms express the spatial for C;

relationships between pairs of adjacent cells. Each cell is 2) however, we label a cels as SS (=HS=ES) if
also associated with habel / 2 atom reporting its class, P(SS|xs) > P(HS|xs) or P(SS5[xs) > P(ES|x;);
among:hone_dat a (HD), end_dat a (ED), hone_st ub 3) finally, we label as HD the bottom-right 8-neighbor of
(HS), end_stub (ES), si ngl e_st ub (SS),dat a (D), the cell labeled as ES.

andnone (N). Cells labeled adat a are those belonging to As Table Il shows, the number of classification errors was
the data region, while cells labeledrasne are those outside thus reduced fron220.2 to just 8.2 (0.18%) per fold on

the stub and the data region, and being neither captions nawverage. While the data region is now correctly identified,
notes. Notes and captions are simply identified based on thbe problem persists on classes HS and ES. For the sake of
location of HS/SS and ED. Figure 2 reports a sample tableomparison, in [10] the same problem was tackled, obtaining
description expressed in our relational language. a 1.38% error rate. Finally, Table Il reports the number of



[ #errors #tables |
0 35.0 (88.9%)

[7] T. Kieninger, “Table structure recognition based on robust
block segmentation,” ifProc. Document Recognition, Wol.

1 1.2 (3.0%) g
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[9] G. Nagy and M. Tamhankar, “Vericlick: an efficient tool for
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correctly identify the structure &88.9% tables. Gaudin and R. Zanibbi, Eds., vol. 8297. SPIE, 2012.

V. CONCLUSIONS [10] G. Nagy, “Learning the characteristics of critical cells from
Tables are very informative components of documents, web tables,” inProceedings of the 21st International Confer-
that compactly represent many inter-related data. It would ~ €NC€ on Pattern Recognition (ICER012, p. 4.
be _deswable to ext_ract these data in ort_jer to make the 1] N. Di Mauro, T. M. Basile, S. Ferilli, and F. Esposito, “Opti-
available also outside the document. This requires to un- ~ mizing probabilistic models for relational sequence learning,”
derstand a table structure. Machine learning solutions may in 19th International Symposium on Methodologies for Intel-

help to deal with the extreme variability in table styles and  ligent Systemsser. LNCS, M. Kryszkiewicz, H. Rybinski,
structures A. Skowron, and Z. W. Ras, Eds. Springer, 2011, pp. 240—
’ 249.

In this paper we proposed the exploitation of a Statistical
Relational Learning approach, that is able to model thg12] F. Esposito, N. Di Mauro, T. Basile, and S. Ferilli, “Multi-
complex spatial relationships involved in a table struetur dimensional relational sequence miningfindamenta Infor-
by mixing the power of a relational representation fornmalis maticae vol. 89, no. 1, pp. 23-43, 2008.
with the flexibility of a statistical learning tool.

. I[|13] S. Kramer and L. De Raedt, “Feature construction with
Experiments on a real-world dataset are reported bot

version spaces for biochemical applications,Proceedings

for single cell classification and for overall table struetu of the 18th International Conference on Machine Learning
recognition, whose results prove the validity of the prabs Morgan Kaufmann Publishers Inc., 2001, pp. 258-265.
approach.

[14] R. Agrawal and R. Srikant, “Mining sequential patterns,”
in Proceedings of the International Conference on Data
REFERENCES Engineering 1995, pp. 3-14.
[1] S. Kim and Y. Liu, “Functional-based table category iden- ] )
tification in digital library,” in International Conference on [15] H. Hoos and T. Sitzle, Stochastic Local Search: Founda-
Document Analysis and Recognitj011, pp. 1364-1368. tions & Applications San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2004.
[2] L. Getoor and B. Taskaintroduction to Statistical Relational

Learning (Adaptive Computation and Machine Learning) [16] T. Feo and M. Resende, “Greedy randomized adaptive search
The MIT Press, 2007. procedures,Journal of Global Optimizatiojwol. 6, pp. 109-

133, 1995.

[3] F. Esposito, S. Ferilli, T. M. Basile, and N. Di Mauro, .
“Machine learning for digital document processing: From [17] G. Nagy, R. Padmanabhan, R. C. Jandhyala, W. Silver-
layout analysis to metadata extraction,” Machine Learn- smith, and M. Krishnamoorthy, “Table metadata: Headers,
ing in Document Analysis and Recognitjoser. Studies in augmentations and aggregates, Nimth IAPR International
Computational Intelligence, S. Marinai and H. Fujisawa, Eds. Workshop on Document Analysis SysteB@0.

Springer, 2008, vol. 90, pp. 105-138. . - . .
pring PP [18] N. Di Mauro, S. Ferill, and F. Esposito, “Learning to

[4] G. Nagy, S. C. Seth, D. Jin, D. W. Embley, S. Machado recognize critical cells in document tables,” 8ih Italian
and M. S. Krishnamoorthy, “Data extraction from web tables: ggslgarl\cﬂh '(A:onfﬁre'?cz on Dt'g'tgl ll‘:'b:fﬁr'esnznﬂ AFrCt’]I!URSELd
The devil is in the details,” innternational Conference on » VI AGOSU, . ESPOSIto, >. Ferilll, a - Ferro, £as.,

Document Analysis and Recognitjd2011, pp. 242-246. vol. 354. Springer, 2012, pp. 105-116.

[5] Y. Wang and J. Hu, “A machine learning based approach for
table detection on the web,” iRroceedings of WW\2002,
pp. 242-250.

[6] Y. Liu, P. Mitra, and C. Giles, “Identifying table boundaries in
digital documents via sparse line detection,”Rmoceedings
of CIKM-08 2008.



