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Abstract—Tables are extremely important components of
documents, because they bear very informative content in a
compact and structured way. Being able to understand a table’s
internal organization would allow to extract and reuse the data
they contain. This can be reduced to recognizing critical cells
only. Since purely algorithmic approaches are unable to deal
with the many different table layouts designed to represent
particular kinds of information and/or particular perspectives
on them, Machine Learning may represent an effective solution.
On one hand, the spatial organization of tables puts a strong
emphasis on the relationships among cells; on the other, the
extreme variability in style, size, and aims of tables requires
flexible approaches. This paper proposes the exploitation of a
Statistical Relational Learning approach, that is able to model
the complex spatial relationships involved in a table structure,
by mixing the power of a relational representation formalism
with the flexibility of a statistical learning tool. Experiments
on a real-world dataset are reported both for single cell
classification and for overall table structure recognition, whose
results prove the validity of the proposed approach.

I. I NTRODUCTION

The huge amount of electronic documents available nowa-
days poses serious problems for the efficient and effective
exploitation of the information content they bear. In some
cases, this situation may tamper the very role of documents,
which is supporting the users in their activities by satisfying
their information needs. In fact, full management of the
documents and of their content goes beyond human capa-
bilities. Hence, the need for automatic techniques that can
suitably index, understand and relate different documentsin
a collection. In turn, understanding documents require to go
beyond ‘surface cues’ that can be determined syntactically,
up to the semantic level underlying the appearance.

This objective has been so far mainly aimed at based
on the textual content of documents, as the most close
component to the semantic level. Indeed, although words
suffer from linguistic tricks such as synonymy and pol-
ysemy, they are human artifacts purposely developed to
explicitly indicate concepts. Hence, the focus of the Informa-
tion Retrieval (IR) and Information Extraction branches of
Computer Science has typically concerned natural language,
often limited to the purely lexical aspects of the text. How-
ever, there are other components of documents that may be
very important towards its full understanding. For instance,
pictures and graphics are often exploited to immediately hit

perception and communicate contents that many words could
not satisfactorily express.

Another extremely important component of documents are
tables. Authors use tables to compactly represent many im-
portant data in a small space, to attract the reader’s attention,
or for information comparison [1]. Thus, the availability of
automatic components that can identify tables in documents,
and that are able to understand the table structure, would be
a precious support to extract the knowledge they contain,
represent it formally (e.g., using a relational Database) and
make it available to people and/or other software (e.g., using
semantic technologies that are being developed nowadays).

This paper focuses on the process of understanding table
structures by identifying their key cells, and proposes theuse
of Statistical Relational Learning [2] (SRL) techniques todo
this automatically. In fact, spacial (relational) information is
fundamental in tables, but the large variety of possible table
structures also requires the support of sufficiently flexible
(statistical) approaches.

Our approach was embedded in the DOMINUS frame-
work [3], that brings to cooperation a set of intelligent
techniques aimed at covering the whole set of steps going
from the submission of a document in digital format, through
its processing to extract the relevant knowledge it contains,
up to its delivery to interested users. Specifically, the layout
analysis engine of DOMINUS can extract tabular items,
that are provided to a SRL system in order learn and later
recognize their structure. This allows to extract the table
data, and use them for better indexing the document and
relating it to other items in the collection.

This paper is organized as follows. After introducing the
problem setting in the next section, the proposed approach
is described in Section III. This approach is then evaluated
in Section IV, before concluding the paper.

II. PRELIMINARIES AND PROBLEM SETTING

A table contains a rectangular configuration of data cells,
each of which can be uniquely referred by a row and a
column index. In general, six kinds of table-related elements
can be distinguished:

• Caption: explanatory text placed above the table;
• Data: The set of cells containing the actual information

carried by the table;



• Column Heading: The cells placed above the table
data, aimed at explaining part of the dimensions ac-
cording to which the data are organized;

• Row Heading: The cells placed to the left of the table
data, aimed at explaining the remaining part of the
dimensions according to which the data are organized;

• Stub: the cells placed at the intersection between the
horizontal projection of the row heading and the vertical
projection of the column heading;

• Notes: One or more optional text lines following the
table, aimed at explaining portions of its content.

Row and column headings may be quite complex, when
the table is intended to represent data that are conceptually
distributed along more than two dimensions. In such a case,
the row and/or column header must accommodate more than
one dimensions, which typically causes some cell to span
over many rows or columns as a side effect.content-cells
are identified by acolumn-header pathand arow-header-
path [4]. The stub can be made up of just one cell (when
there are just two dimensions, one reported on the column
header and the other on the row header) or of many cells
(when the column and/or row header accommodate many
dimensions). It may be empty, but it often contains a meta-
header aimed at explaining the row and/or column headings.

The Document Analysis literature has faced several kinds
of table-related tasks. Some concern the distinction be-
tween genuine tables (aimed at representing and organizing
meaningful information) from those just aimed at obtaining
a spatial partition of the page (as in most Web docu-
ments) [5]. Others face table boundary identification [6]
and table structure decomposition [7], or the classification
of tables according to their type of content and intended
exploitation [1]. Table search [8] or table classification [5]
are also investigated. [4] exploits the table structure fora
formal manipulation aimed at transposing the content into a
standard relational database representation.

Here we are interested in table structure identification,
which is preliminary to many high-level processing steps.
High accuracy is required if the table data are to be exten-
sively and precisely extracted. Although the mutual position
of the elements that make up a table is known and fixed,
identifying their specific boundaries may be very complex.
Nagy et al. adopted an algorithmic approach [9] leveraging
typical patterns, and later tried to improve its accuracy using
propositional Machine Learning based on information on
the 8-neighbor cells of the cell to be classified [10]. While
obtaining interesting results, this approach does not fully
exploit the relational structure of the whole table. Hence,we
believe that a fully relational approach can further improve
recognition performance. Moreover, the candidate solution
must also be flexible enough to capture all the different kinds
of tables that can be found in documents, and the ways in
which information can be organized therein.
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Figure 1. Classes for the table structure learning problem

Following [4], we assume that the input table is repre-
sented in a Comma Separated Values (CSV) file including
the whole set of table-related elements (stub, table cells and
headings, caption, notes). This file provides no structuralhint
to distinguish different kinds of elements (not even caption
and notes, if any). In particular, the content of multi-row or
multi-column cells (including caption and notes) is assumed
to be placed in the (top-left)-most cell of the group.

The table segmentation process aims at identifying four
critical cells useful to partition the table intostub, row
header, column header, and data regions (see Figure 1).
Learning, for each cell, the type of table component to which
it belongs, would cause a significant growth in the number
of examples, which would affect computational costs. It
would also be more difficult to handle in the subsequent
classification phase, because each cell would be classified
independently of the others (so that, for example, a data cell
might be identified in the heading area). To solve the former
problem, and to reduce the impact of the latter, a different
solution was adopted. Four classes were defined as shown
in Figure 1, that are non-redundant and are sufficient, alone,
to univoquely determine the whole table structure:

• home stub: The top-left cell in the stub;
• end stub: The bottom-right cell in the stub;
• home data: The top-left cell in the data;
• end data: The bottom-right cell in the data.

Indeed, the captions can be identified as the content cell
above the homestub row, and the notes as the content
cells below the enddata row; the column heading cells



are those in the columns to the right of the endstub
column and in the rows between the homestub row and
the endstub row; the row heading cells are those in the
rows below the endstub row and in the columns between
the homestub column and the endstub column. Assuming
that the homedata cell is always placed just one column
to the right, and one row below, the endstub, either of the
two is redundant. Conversely, if classes are considered as
mutually exclusive, an additional class must be included for
the case of overlapping homestub and endstub:

• single stub: The stub cell, in the case of a single-cell
stub.

Humans understand tables and their components based
on spatial structure and content regularities among cells.
Propositional techniques are not sufficiently powerful to
handle this kind of complexity. Switching to the first-order
logic setting, the following features might be suitable for
table description:

• Table boundaries
• Columns and Rows, and adjacency between them
• Cells and their belonging to a given row and column
• Cell content type

However, being the problem very multi-faceted, and due to
the lack of stable criteria to identify the table components,
the contribution of statistical approaches is also advisedto
improve flexibility.

III. STATISTICAL RELATIONAL LEARNING APPROACH

To learn to recognize critical cells we used the SRL
algorithmLynx [11], [12]. It is a probabilistic query-based
classifier that uses first-order logic as a representation lan-
guage. A first-orderalphabetconsists of a set ofconstants,
a set ofvariables, a set of function symbols, and a non-
empty set ofpredicate symbols. An atomp(t1, . . . , tn) is a
predicate symbolp of arity n applied ton termsti (constant
or variable symbols).
Lynx adopts aselective propositionalization (featuriza-

tion) approach to feature engineering, that combines a
feature construction phase with a feature selection process.
The feature construction process is carried out by mining
frequent queries with an approach similar to that in [13],
based on the same idea as the generic level-wise search
method [14]. The algorithm starts with the most general
queries, and then, at each step tries to specialize all the
candidate frequent queries, storing those whose length is
equal to the user specified input parameter. The algorithm
uses a background knowledgeB containing both the training
examples and a set of constraints that must be satisfied by
the generated queries.

Let X be the input space of relational examples, andY =
{1, 2, . . . , Q} denote the finite set of possible class labels.
Given a training setD = {(Xi, Yi)}i=1,...,m, whereXi ∈ X
and Yi ∈ Y, the goal is to learn a functionh : X → Y

that predicts the label for each unseen example. LetP, with
|P| = d, be the set of features constructed in the first phase.
For each exampleXk we can build ad-component vector-
valued random variablex = (x1, x2, . . . , xd) where each
xi is 1 if the querypi ∈ P subsumes exampleXk, or 0
otherwise.

The posterior probabilityp(Yj |x) can be computed as

p(Yj |x) =
p(x|Yj)p(Yj)∑Q

i=1 p(x|Yi)p(Yi)
.

Using a maximum a posteriori probability (MAP) approach
we classify examples by considering the the maximum
discriminant functiongi(x) = P (Yi|x). Considering the
components of vectorx as conditionally independent, we
can write the class-conditional probability asP (x|Yj) =∏d

i=1(pij)
xi(1 − pij)

1−xi , being pij = Prob(xi =
1|Yj) i=1,...,d

j=1,...,Q
.

Given these methods to construct a set of features and to
use them to classify unseen examples, the problem is how to
find a subset of these features that optimizes the prediction
accuracy. LetP be the constructed original set of queries,
and letf : 2|P| → R be a function scoring a selected subset
X ⊆ P. The problem of feature selection is to find a subset
X̂ ⊆ P such thatf(X̂) = maxZ⊆P f(Z). An exhaustive
approach to this problem would require examining all2|P|

possible subsets of the feature setP, which is impractical
even for small values of|P|. The use of a stochastic
local search procedure [15] allows to obtaingood solutions
without having to explore the whole solution space.

Given a subsetP ⊆ P, for each exampleXj ∈ X

we let the classifier find the MAP hypothesiŝhP (Xj) =
argmaxi gi(xj), where xj is the feature based represen-
tation of exampleXj obtained using queries inP . The
optimization problem corresponds to minimize the expecta-
tion E[1

ĥP (Xj) 6=Yj
] where1

ĥP (Xj) 6=Yj
is the characteristic

function of training exampleXj returning1 if ĥP (Xj) 6= Yj ,
or 0 otherwise.

Consider acombinatorial optimizationproblem, where
one is given a discrete setX of solutions and an objective
function f : X → R to be minimized, and seek a solution
x∗ ∈ X such that∀x ∈ X : f(x∗) ≤ f(x). High-
quality solutions for a combinatorial problem can be found
using a two-step approach made up of a greedy construc-
tion phase followed by a perturbative local search [15].
GRASP [16] solves the problem of the limited number of
different candidate solutions generated by a greedy con-
struction search method by randomizing the construction
method.GRASP is an iterative process combining at each
iteration a construction and a local search phase. In the
construction phase a feasible solution is built, and then
its neighborhood is explored by the local search.Lynx
includes an implementation ofGRASP to perform the feature
selection task [11].



label(c_2_1, single_stub).
label(c_1_1, caption).
label(c_3_2, home_data).
...
cell(c_1_1, alphanumeric).
cell(c_2_1, empty).
cell(c_2_2, integer).
cell(c_3_2, numericSymbol).
...
right(c_2_1,c_2_2).
left(c_2_2,c_2_1).
bottom(c_1_1, c_2_1).
top(c_2_1, c_1_1).
...

Figure 2. An example of a relational table description.

HS ES SS HD ED N Total #errors

HS 14.6 0.2 1.0 0.0 0.0 0.4 16.2 1.6
ES 0.0 14.6 0.4 0.0 0.0 1.2 16.2 1.6
SS 0.8 0.0 22.2 0.0 0.0 0.2 23.2 1.0
HD 0.0 0.0 0.0 37.8 0.0 1.6 39.4 1.6
ED 0.0 0.0 0.0 0.0 38.4 1.0 39.4 1.0
N 0.2 8.0 2.8 36.2 20.4 4214.04281.6 67.6

4416 220.2

Table I
LOCAL CLASSIFICATION

IV. EXPERIMENTAL RESULTS

We ran several experiments on a dataset consisting of
200 Comma Separated Value (CSV) files, each containing
the description of an HTML table randomly selected from
10 large statistical Web sites [17]. In a previous work [18]
we exploitedLynx to learn a classification model for the
critical cells using an independent classification approach on
a subset of this dataset. Here, we aim at correctly predicting
the label of the critical cells belonging to each table in a
collective way. In particular, given the setC of cells in
a tableT , we want to find the critical cells ofT among
all the cells inC. Furthermore, we changed the relational
description language for the examples.

In our new relational representation, each table cell has
an identifier. Given a table, acell/2 atom is introduced
for each cell in the CSV file, reporting as arguments the
corresponding identifier and the type of content.right/2,
left/2, bottom/2 andtop/2 atoms express the spatial
relationships between pairs of adjacent cells. Each cell is
also associated with alabel/2 atom reporting its class,
among:home_data (HD), end_data (ED),home_stub
(HS), end_stub (ES), single_stub (SS), data (D),
andnone (N). Cells labeled asdata are those belonging to
the data region, while cells labeled asnone are those outside
the stub and the data region, and being neither captions nor
notes. Notes and captions are simply identified based on the
location of HS/SS and ED. Figure 2 reports a sample table
description expressed in our relational language.

HS ES SS HD ED N Total #errors

HS 14.6 0.0 1.0 0.0 0.0 0.0 15.6 1.0
ES 0.0 13.0 0.4 0.0 0.0 0.0 13.4 0.4
SS 0.2 0.0 22.8 0.0 0.0 0.0 23.0 0.2
HD 0.0 0.0 0.0 36.4 0.0 0.0 36.4 0.0
ED 0.0 0.0 0.0 0.0 38.2 0.0 38.2 0.0
N 0.2 2.0 0.2 3.0 1.2 4282.84289.4 6.6

8.2/4416

Table II
GLOBAL CLASSIFICATION

Given a training set,Lynx was applied to the relational
descriptions of critical cells belonging to each table in order
to construct the relevant relational features maximizing the
likelihood on the training data, as reported in Section III.
Then, the system builds models made up of probabilistic
queries such as:

q = { label(A), type(A,alphabetic),
top(A,B), type(B,numeric) }

with corresponding class probabilities, e.g.p(q|HD) = 0.0,
p(q|ED) = 0.006, p(q|SS) = 0.205, p(q|HS) = 0.271
p(q|ES) = 0.029, p(q|D) = 0.005, and p(q|N) = 0.066.
These probabilistic queries are then used to predict critical
cells belonging to test tables.

The first experiment aimed at validating the proposed
approach by comparing it to [18] on classifying the cells
independently from the table they belong. The dataset,
consisting of23076 cells, was randomly split into5 folds
having4416 cells each on average. Table I reports the results
obtained byLynx with a 5-fold cross-validation in terms
of accuracy (values averaged over the5 folds). The system
made220.2 errors per fold on average (4.98%). It performed
best on the two labels regarding the data region, while it had
some difficulties in correctly classifying labelsHS andES.

In the next experiment we collectively classified all the
cells belonging to the same table in order to assess how
many tables were correctly segmented. In order to solve this
problem the following approach was adopted. For each table
T in the test set, letS be the set of cells inT ; then:

1) the cell with labelC ∈ { HS, ES, SS, ED} is iden-
tified solving the maximizationargmaxs∈S P (C|xs);
i.e., fixed classC, we find the cells ∈ S with MAP
for C;

2) however, we label a cells as SS (=HS=ES) if
P (SS|xs) > P (HS|xs) or P (SS|xs) > P (ES|xs);

3) finally, we label as HD the bottom-right 8-neighbor of
the cell labeled as ES.

As Table II shows, the number of classification errors was
thus reduced from220.2 to just 8.2 (0.18%) per fold on
average. While the data region is now correctly identified,
the problem persists on classes HS and ES. For the sake of
comparison, in [10] the same problem was tackled, obtaining
a 1.38% error rate. Finally, Table III reports the number of



#errors #tables

0 35.0 (88.9%)
1 1.2 (3.0%)
2 2.6 (6.6%)
3 0.6 (1.5%)

Table III
CORRECTLY CLASSIFIED TABLES

errors per table in each fold on average. We were able to
correctly identify the structure of88.9% tables.

V. CONCLUSIONS

Tables are very informative components of documents,
that compactly represent many inter-related data. It would
be desirable to extract these data in order to make them
available also outside the document. This requires to un-
derstand a table structure. Machine learning solutions may
help to deal with the extreme variability in table styles and
structures.

In this paper we proposed the exploitation of a Statistical
Relational Learning approach, that is able to model the
complex spatial relationships involved in a table structure,
by mixing the power of a relational representation formalism
with the flexibility of a statistical learning tool.

Experiments on a real-world dataset are reported both
for single cell classification and for overall table structure
recognition, whose results prove the validity of the proposed
approach.
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