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1. Introduction

Theoretical aspects and approaches to Machine
Learning (ML) and Data Mining (DM) continue to grow
especially in these years where there is an increasing
amount of data in electronic form. ML and DM are
two closely related research fields that differ slightly
in terms of their emphasis and terminology. In ML
the emphasis is on developing methods able to auto-
matically detect patterns in observed data and then to
use them fo predict future data or other outcomes of
interest [1]. The objective of DM is to discover use-
ful information and knowledge from a large collection
of data. DM looks for interpretable models, whereas

*Corresponding author: Nicola Di Mauro, University of Bari
“Aldo Moro”, Bari, Italy. E-mail: nicola.dimauro@uniba.it.

Machine Learning searches for accurate models. The
aim of this paper is to report some recent theoretical
aspects and approaches to ML and DM with an empha-
sis on the Italian research.

2. Multi-relational learning

Problems and research lines investigated at the
Machine Learning group in Bari related to learning
with complex representations ultimately based on logic
languages are briefly presented in the following.

The growing diversification and complexity of the
domains in which Machine Learning may find prof-
itable application has recently brought much interest
of the AI research community on techniques com-
ing from the Inductive Logic Programming (ILP)
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area [2]. However, the growing need of applying multi-
relational techniques to real-world problems in which
intelligent systems must interact with several kinds of
users and provide continuous adaptation to their needs,
goals and preferences has required to step up from
the purely logical setting to a mixed one in which
different approaches, strategies and representations
must cooperate. Outstanding examples are the research
efforts in Multi-Strategy Learning (MSL) and Sta-
tistical Relational Learning (SRL), that significantly
extended the representational and inferential capabili-
ties of ILP systems. SRL poses the problem of effective
and efficient inference and structure learning algorithms
that can be tackled by using metaheuristics [3]. In
the same perspective, a particularly hot question is
how to overcome the limitations of traditional batch
approaches, in which all the relevant observations must
be fully known at the time of learning, and any change in
the set of observations involves withdrawing the knowl-
edge acquired thus far and making hard efforts to restart
from scratch. In fact, additional flexibility is needed to
enable the systems to immediately react to new observa-
tions as long as they become available. An answer to this
requirement is represented by the development of fully
and inherently incremental systems, that can revise an
existing theory whenever it proves unable to account for
new evidence. Useful support may also come from the
development of techniques for comparison and similar-
ity assessment in Horn Clause logic, where the problem
of indeterminacy in mapping (portions of) formulas
adds further complexity. More advantages are ensured
by bringing these two techniques to cooperation (e.g.,
as shown in [4]). Examples of successful applications
include Document Image Understanding for Digital
Library management and User profiling in Ambient
Intelligence.

The perspective of the Semantic Web as a Web of
data calls for learning methods that are able to deal
with its shared semantics expressed with specific rep-
resentations, that are ultimately based on Description
Logics (DL). The main problems with dealing with
such datasets arise from the scalability of reasoning
w.r.t. its size and the inherent uncertainty of informa-
tion in evolving Web-scale distributed scenarios (e.g.
the Linked Data cloud). ML methods can provide effec-
tive solutions by means of an inductive approach. Since
the 90s, methods have been proposed for learning DL-
ontologies through the induction (refinement) of logical
axioms for their terminological part in accordance to
the available assertions. Generalization and covering
relationships descend directly from the related proof-

theory [5]. More recently, further methods have been
proposed for learning statistical models enabling forms
of approximate reasoning [6]. These models can be
used to estimate the probability of statements on the
instance-level, which are neither explicitly asserted in
the knowledge base nor can be proven (or refuted) based
on crisp logical reasoning. In particular, targeted meth-
ods range from those that exploiting semantic similarity
measures and apply non-parametric learning, such as
multilayer networks and kernel machines, up to sta-
tistical learning with relational representations, namely
matrix/tensor decomposition, relational graphical mod-
els and first-order probabilistic approaches (see [7] for
a recent survey). ML methods have been applied to
enrich/extend ontologies on the schema level, support-
ing tasks like ontology construction (ontology learning
from text), evaluation, refinement, evolution, as well as
their alignment.

Another stream of research promoted by the Machine
Learning group in Bari has been the extension of ILP
from the original knowledge representation framework
of Logic Programming to those hybrid formalisms, col-
lectively referred to as onto-relational rule languages,
that combine rules (notably, Datalog) and ontologies
(represented with DLs). Following the seminal work
of Rouveirol and Ventos [8], several ILP settings have
been proposed for learning such onto-relational rules
(see [9] for a survey). All these proposals aim at
accommodating ontologies in ILP in a clear, elegant
and well-founded manner by building upon estab-
lished work in knowledge representation. These novel
ILP settings have been successfully applied in Spa-
tial Data Mining, Semantic Web Mining, and Ontology
Evolution.

3. Probabilistic inductive logic programming

Probabilistic Inductive Logic Programming (PILP)
is concerned with the induction of models that com-
bine logic programming with probability theory [10]
in order represent complex and uncertain relationship
among the entities of the domain. Since the real world
is often uncertain and structured, PILP has received an
increased attention in the last decade.

The Italian community has been active in the field
since its beginnings. The system Mr-SBC for learning
naive Bayes models from relational data has been pro-
posed already in 2003 [11]. The authors then applied
relational naive Bayes to a spatial setting by inducing
probabilistic classifiers from association rules [12].
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A comparison of the approach of Mr-SBC with a
more traditional ILP technique shows that the first
is usually faster [13]. Mr-SBC was later upgraded to
a semi-supervised system by iterating a k-NN based
re-classification of labeled and unlabeled examples in
order to identify borderline examples [14]

A long standing research direction in PILP is the
combination of ILP with kernel methods of statis-
tical learning. In [15] the authors proposed to use
logic programs to generate traces corresponding to spe-
cific examples and kernels to quantify the similarity
between traces. k-FOIL [16] combines the well-known
ILP system FOIL with kernel methods. FOIL is used
for searching relevant clauses to be used as features
in standard kernel methods. This produces a dynamic
propositionalization framework that is further inves-
tigated in [17] where experimental results show that
kFOIL is able to handle domains of moderately large
size and multi-class problems achieving advantages
both in efficiency and accuracy. The language kLL.og was
introduced for specifying logical and relational learn-
ing problems at a high level in a declarative way and
was applied to natural language processing [18].

A different research direction in PILP involves learn-
ing models in a probabilistic logic language. Two main
families of languages can be identified: those based on
logic programming, such as ProbLog, and those based
on first order logic such as Markov Logic Networks
(MLN:Ss). For the first type of languages, the system RIB
[19] learns the parameters using the information bottle-
neck method, while EMBLEM [20, 21] uses a version
of EM in which the expectations are computed directly
using the data structures built for inference. Learning
the structure and the parameters of unrestricted pro-
grams at the same time is performed by SLIPCASE
[22] that searches the space of theories guided by the
log-likelihood of the examples as the heuristic. For
the second type of languages discriminative structure
learning is achieved in [23] using local search methods.
The use of metaheuristics for inference and learning is
further investigated in [3].

Very recently PILP techniques have been applied to
the Semantic Web: SRL methods are proposed in [7] for
building ontologies from data, while a terminological
naive Bayesian classifiers is presented in [24].

4. Sub-symbolic learning in structured domains

The field of ML for Structured Domains (SD) deals
with combinatorial data structures, such as sequences,

trees and graphs. Structured data model aggregates of
labeled elements and their intertwining relationships,
providing fundamental representation and abstraction
tools in computer science and Al, with applications e.g.
in NLP, document analysis, network and Web data anal-
ysis, image processing, cheminformatics, neuroscience
and bioinformatics. Supplying learning systems with
the capability of processing SD in their full relational
representation is a key to novel successful applications
dealing with real-world complex data.

The topic has been approached by different ML
paradigms, including SRL [25], relational DM (see
e.g. [26] and [27] for a short recent overview), and
kernel-based methods (see e.g. [27, 28] and the ref-
erences therein). All these solutions share the common
aim of overcoming the restrictions of traditional ML
approaches, which ensue from assuming a flat vecto-
rial encoding for the processed data. In this section, we
briefly review the development results in the field from
a sub-symbolic perspective, with a particular emphasis
on the works of Italian research groups in the area.

Recursive Neural Networks (RNNs) have been, since
their early onset, an elegant way to realize a learning
system combining the flexibility and robustness of the
connectionist (sub-symbolic) approach with the repre-
sentational power of a structured domain. The basic
idea is to follow through a state transition system the
hierarchical/recursive nature of the data and hence to
recursively compose the state encoding computed by a
ML model for each vertex of a tree structure. Relevant
contributions encompass both supervised approaches
(classification/regression), see [29, 30], as well as unsu-
pervised approaches that extend self organizing maps
to SD, see [31] for a general framework and more refer-
ences. Theoretical results on the model capabilities, e.g.
showing the universal approximation property over tree
domains, have been introduced in [32]. An extended
survey and historical remarks on the introduction of
RNNSs can be found in [33]. The same recursive frame-
work has been applied in the context of fuzzy systems
[34], in a generative setting, resulting in hidden tree
Markov models ([30] and more recently [35, 36] for
efficient bottom-up approaches), as well as for develop-
ing efficient approaches within the reservoir computing
field [37].

When moving to more complex structured data, con-
textual approaches have been showed to effectively
overcome the constraint of recursive causal process-
ing [38] and to extend the universal approximation
capabilities to classes of directed positional acyclic
graphs [39]. The extension to more general classes of
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structured information, including both acyclic/cyclic,
directed/undirected labeled graphs, has been pursued
through different approaches, including the use of
covering trees by RNNs [40], the construction of con-
strained dynamical transition systems [41], and the
exploitation of contextual information in constructive
neural models realizing a state transition systems with-
out recursive dynamics [42].

The research on ML models for structured data has
been paralleled by the development of a wide collection
of impacting applications. A striking example is in
the field of cheminformatics, where data structures are
commonly used to represent molecular compounds.
The generality of a SD learning has introduced benefits
for the direct exploitation of the structural information
conveyed by the molecular graph in the Quantitative
Structure-Activity or Property Relationships analysis
(see [43] for early approaches), with potential research
impact on drug and biomaterial design, toxicology anal-
ysis, environmental and health studies.

Generally speaking, the ability to treat the inher-
ent relational nature of the data in its fully-informative
structured representation emerges as a key feature to
further drive Al and ML methodologies. As such, learn-
ing in SD characterizes as an open research area with
great interest from the perspective of the integration
between symbolic and sub-symbolic learning, as well
as for generalizing the ML theoretical basis to the
SD. Nevertheless, the authors believe that such models
already provide tools that can foster the development
of effective and impacting real-world Al applications.

5. The complexity of relational learning

Relational Learning is a subfield of symbolic
Machine Learning requiring the acquisition of knowl-
edge from examples that are composed by interrelated
parts, and hence cannot be represented by simple
vectors of attribute values. Started by Michalski’s pio-
neering work [44], the topic was developed very early
in Italy [45, 46], and then, over the years, it evolved
toward ILP [47], first, and SRL, thereafter [48].

Since the beginning, the main obstacle on the way
to an effective use of relational learning has been its
high computational complexity, primarily due to the
covering test, i.e., the task of matching a candidate
hypothesis ¢ (alogical formula with n variables) against
an example x (a ground logical formula or a set of
relational tables). This task has a complexity which is
exponential in the number of variables in the hypoth-

esis, and, during a learning session, it may have to be
performed even thousands of times. No wonder, then,
that many efforts have been invested in controlling this
complexity. Two main ways have been followed toward
this goal: either limiting the expressive power of the
hypothesis language, or trying to reduce the learning
problem to one in Propositional Logic.

According to the first approach, relational learners
have often set strong biases on the hypothesis language
[49, 50]. Well-known constraints are the Object Identity
setting [51], the enforcement of determinacy, and the
limitation of the variables’ depth. The two latter can
be combined to define ij-determinacy. Imposing deter-
minacy limits both the complexity of the covering test,
and the size of the hypothesis space.

Some formal results have been obtained within the
PAC-learnability framework. For instance, DZeroski
et al. [52] showed that non-recursive, constant-
depth, determinate clauses are PAC-learnable. This
result was extended by Cohen [53] to linear, closed,
recursive, constant-depth determinate clauses. Also,
ij-clausal theories were proved to be PAC-learnable
[54]. An approach based on stochastic sampling has
also been proposed [55]; it exhibits a polynomial com-
plexity, but looses precision.

PAC-learnability, as well as classical complexity the-
ory, is based on a worst-case analysis of a task. In trying
to replace the notion of worst case complexity with that
of typical case complexity, introduced in the analysis of
SAT and CSP problems, Giordana and Saitta [56] have
uncovered that the matching problem (the covering test)
showed a phase transition with respect to the number
m of predicates in the hypothesis ¢ and the number L of
constants in the example x. A phase transition is a phe-
nomenon that emerges in classes of randomly generated
problems; in this case, a pair (¢, x) is built up accord-
ing to a given stochastic model. The (m, L) plane is thus
divided by a thin boundary (the phase transition) into
two regions, one in which a randomly chosen ¢ almost
surely “covers” x, and one in which it almost surely
doesn’t. Giordana et al. [56, 57] showed, experimen-
tally, that when a learning problem is situated “near” the
phase transition boundary, the computational require-
ment to perform a single matching becomes prohibitive
even in very simple learning settings.

This discovery triggered interest in the phenomenon,
especially in France and Germany, where researchers
analyzed in the same light both relational and propo-
sitional learning [58-60]. Moreover, the framework
has been extended to Grammar Induction [61], Multi-
instance kernels in Support Vector Machine [62], and
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to the very hypothesis search process [63, 64]. The
most interesting outcome from these studies is that rela-
tional learning shows a double phase transitions, one
in the covering test, and one in the hypothesis space
exploration [63]. As a consequence, learning structural
knowledge appears to be out of reach, if not for very
simple cases.

The alternative approach, used to tame complexity,
is propositionalization: the relational learning task is
translated into one solvable by a propositional learner
in polynomial time [65-67]. Stochastic approaches to
propositionalization have also been suggested [68, 69].
Clearly, as the covering test is NP-hard, complete
equivalence is impossible if P # NP. Considering that
also propositional learning may be affected by the emer-
gence of a phase transition, certainly there are cases in
which the transformation is ineffective.

More recently, with the diffusion of graphical mod-
els, relational learning underwent a deep renovation,
entering as an essential part the field of SRL [48,
70]. Bayesian Networks, Markov Random Fields and
Markov models are increasingly used to represent sta-
tistical relations among sets of variables. Relational
learning, then, consists in finding both the structure
and the parameters of a network. Unfortunately, also
in this field both inference and learning are mostly
intractable, and approximations are required [48]. As
before, complexity is reduced either by limiting the
possible structures of the network (reducing thus its
expressive power) or by introducing various types
of approximations and constraints [71-73]. Interest-
ingly, some problematics of learning graphical models
have been extended to mining social networks [74];
moreover, also Support Vector Machines and Neural
Networks start to incorporate structured elements [75].

By comparing the initial approaches to relational
learning with the set of computational tools available
today, we cannot but wonder in front of the achieved
results. Nevertheless, relation learning still remains a
hard problem to be completely solved.

6. Temporal, spatial and spatio-temporal data
mining

Temporal data are characterized by attributes whose
values change with time, such as a geophysical prop-
erty monitored by a sensor. Time implies an ordering
which affects both the statistical properties of data and
the semantics of the rules being extracted from them.
Although the temporal dimension may provide better

insights into data, it may also pose additional challenges
when the statistical distribution associated to a property
presents a time drift. The mining task can become even
more difficult when data are generated in a continuous
flow (or stream), eventually at high speeds, which pre-
vents the collection of all the data in the memory before
starting their analysis.

Spatial data are characterized by both a position and
an extension in some space, which implicitly define
many spatial relations, of various nature (directional,
topological and distance). When spatial autocorrela-
tion occurs, i.e. an attribute correlates with itself across
space, there is a clear violation of one of the fundamental
assumptions of classic data mining algorithms, that is,
the independent generation of data samples. However, it
is the identification of some form of spatial correlation
which helps to clarify what the relevant spatial relation-
ships are among the infinitely many that are implicitly
defined by locational properties of spatial objects.

A further degree of complexity in temporal/spatial
mining is introduced by the necessity of performing
temporal/spatial reasoning to reach valid conclusions
regarding the objects’ relationships. Embedding tem-
poral and spatial reasoning in data mining algorithms is
crucial to make the right inferences either when patterns
are generated or when patterns are evaluated.

The Italian research community for data mining and
machine learning has been very active in the last years
on the topics of temporal, spatial and spatio-temporal
data mining. Far from being exhaustive, some of the
most prominent results are reported below.

As to temporal data mining, most of the recent works
have focused on the temporal dimension in networks.
This interest is mainly due to the fact that in many
application domains data naturally come in the form
of a network, such as in social networks and sensor
networks. The network is the unit of analysis which
can evolve with time, and temporal data mining tech-
niques are useful to reveal evolution-related patterns,
such as eras and turning points [76], as well as evolu-
tion chains [77]. Relational approaches have also been
investigated in order to properly deal with temporal
relations between data received by a sensor network
[78], as well as to analyze multidimensional time-series,
known as longitudinal data [79]. A different perspec-
tive is offered by Loglisci and Ceci [80], who investigate
how to discover a temporal relation, called bisociation,
between concepts from two or more snapshots of a
dynamic domain.

The relational approach has been advocated also
for spatial data mining [81]. Indeed, relational mining
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algorithms can be directly applied to various rep-
resentations of networked data, i.e. collections of
interconnected entities. By looking at spatial databases
as a kind of networked data, where entities are spa-
tial objects and connections are spatial relations, the
application of relational mining techniques appears
straightforward, at least in principle. Relational mining
techniques can naturally take into account the vari-
ous forms of correlation which bias learning in spatial
domains. However, this capability is not exclusive of
relational learning. For instance, predictive clustering
trees (PCTs) have been extended in order to explic-
itly consider spatial autocorrelation in the values of the
response (target) variable [82]. This extension seems
particularly promising, since PCTs can be used for
multi-target prediction.

The scarcity of labeled spatial data has driven
researchers to investigate semi-supervised and trans-
ductive settings for spatial data mining. Indeed, these
settings are based on a (semi-supervised) smoothness
assumption, according to which if two points in a
high-density region are close, then the corresponding
predicted values at those points should also be close
[83]. In spatial domains, where closeness of points
corresponds to some spatial distance measure, this
assumption is implied by (positive) spatial autocorrela-
tion. Therefore, a strong spatial autocorrelation should
counterbalance the lack of labeled data, when trans-
ductive relational learners [14] are applied to spatial
domains. Results for spatial classification [84] and spa-
tial regression tasks [85] support this expectation.

Most of the studies on mining spatio-temporal data
generated by sensor networks consider only one dimen-
sion of the problem, usually the temporal dimension.
However, this significantly limits the correct under-
standing of the problem. Ciampi et al. [86] have
introduced a new kind of pattern, called trend cluster,
to summarize a stream of spatial data. This summary is
useful for many spatio-temporal data mining tasks, such
as interpolation [87]. Following a similar approach, but
related to moving objects, Monreale et al. [88] propose
first extracting a concise representation, called trajec-
tory pattern, of moving objects and then using it to
forecast the next location of a moving object. The same
type of patterns have been recently used to predict traffic
congestions [89].

7. Learning from constraints

In the last few years, the research unit at the Univer-
sity of Siena has been involved in a new research field,

referred to as learning from constraints. It focuses on
the design of intelligent agents, centered around the
parsimony principle, which are aimed to interact in
complex environments, where sensorial data are com-
bined with knowledge-based descriptions of the tasks.
Unlike the classic framework of learning from exam-
ples, in those cases, the beauty and the elegance of
simplicity behind the parsimony principle has not be
profitably used for the formulation of systematic theo-
ries of learning yet. Most solutions are essentially based
on hybrid systems, in which there is a mere combina-
tion of different modules that are separately charged
of handling the prior knowledge on the tasks and of
providing the inductive behavior naturally required in
some tasks. The study of more unified approaches is not
only of interest per se, but also, and perhaps primarily,
because this crafting of knowledge with learning can
give rise to interesting induction/deduction processes
that are likely to be very effective in complex real-world
problems.

In order to provide a unified context for manipulat-
ing perceptual data and granules of knowledge, we have
proposed to use the unifying concept of constraint. It
is sufficiently general to represent different kinds of
sensorial data along with their relations, as well as to
express abstract knowledge on the tasks. While the lin-
guistic description to express a constraint can be of
many different types, including those based on logic
formalisms, in order to describe knowledge granules
we can always end up into real-valued multi-variable
functions involving the inputs and the learning tasks.
We consider both the case in which we need perfect
satisfaction (hard constraints) on a whole subset of the
perceptual space and that in which only partially fulfill-
ment is required (soft-constraints).

Examples of constraints come out naturally in differ-
ent contexts: one might want to enforce the probabilistic
normalization of a set of functions modeling a classifi-
cation task, the probabilistic normalization of a density
function, or might want to impose coherent decisions
of the classifiers acting on different views of the same
pattern. The expressive power of constraints becomes
more significant when dealing with a specific problems
in fields like vision, control, text classification, rank-
ing in hyper-textual environment, and prediction of the
stock market.

Interestingly, our notion of constraint, which is based
on real-valued functions, encompasses logic predicates
thanks to the classic connection established by the
T-norm [90]. We unify continuous and discrete com-
putational mechanisms so as to accommodate in the
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same framework stimuli of very different kind, and pro-
pose the study of parsimonious agents interacting with
constraints in a multi-task environment with the pur-
pose of developing the simplest (smoothest) vectorial
function in a set of feasible solutions. In a sense,
our research naturally extend studies on approxima-
tion and learning presented in [91, 92] to the case in
which the agent interacts with general hard/soft con-
straints instead of the classic interaction restricted to
supervised examples. Interestingly, the case of super-
vised examples turns out to be a special case of the
proposed framework and our theory reduces in that
case to classic kernel machines. Moreover, while the
optimization scheme restricted to a finite collection
of supervised examples contains the traces of an
induction process, when involving constraints with
a significant degree of structure, their typical fulfill-
ment does require to develop consistent solutions that
are somehow related to deductive/abductive schemes.
Recent research on learning from constraints can be
found in [93-95] and, additional information on on
sites.google.com/site/semanticbasedregularization/.

A remarkable consequence of the theory is the con-
struction of a truly new inferential scheme, that we refer
to as parsimonious inference, in which we bridge the
gap between inferential schemes rooted in logic and in
statistics. We carry out a parsimonious selection of the
constraints to favor simple and elegant explanations.
Preliminary studies can be found in [96].

8. Game-theoretic models in machine learning

The development of game theory in the early 1940’s
by von Neumann was a reaction against the view,
dominant at that time, that problems in economic
theory can be formulated using standard methods
from optimization theory Indeed, most real-world
economic problems typically involve conflicting inter-
actions among decision-making agents that cannot be
adequately captured by a single (global) objective func-
tion, thereby requiring a different, more sophisticated
treatment. Accordingly, the main point made by game
theorists is to shift the emphasis from optimality cri-
teria to equilibrium conditions, namely to the search
of a balance among multiple interacting forces. Inter-
estingly, the later development of evolutionary game
theory in the late 1970’s by Maynard Smith [97] offered
a dynamical systems perspective to game theory, an
element which was totally missing in the traditional
formulation, and provided powerful tools to deal with

the equilibrium selection problem. As it provides an
abstract theoretically-founded framework to elegantly
model complex scenarios, game theory has found a vari-
ety of applications not only in economics and, more
generally, in the social sciences but also in different
fields of engineering and information technologies.

At the University of Venice, mainly within the EU
FP7 SIMBAD project!, game-theoretic concepts and
tools to formulate several machine learning and pattern
recognition problems, including data clustering [99,
100], structural matching [101], and semi-supervised
learning [102] have been used. Indeed, these prob-
lems can naturally be formulated at an abstract level
in terms of a game where (pure) strategies correspond
to class labels and the payoff function is expressed in
terms of competition between the hypotheses of class
membership. These ideas and algorithms are finding
applications in a variety of computer vision problems
such as, e.g., object detection [103], motion analysis
[104], and shape matching [105].

To illustrate the idea behind our approach, consider
the (pairwise) clustering problem. Upon scrutinizing
the relevant literature on the subject, it becomes appar-
ent that the vast majority of the existing approaches deal
with a very specific version of the problem, which asks
for partitioning the input data into coherent classes.
Instead of insisting on the idea of determining a parti-
tion of the input data, and hence obtaining the clusters
as a by-product of the partitioning process, we reverse
the terms of the problem and attempt instead to derive a
rigorous formulation of the very notion of a cluster. This
allows one, in principle, to deal with more general prob-
lems where clusters may overlap and/or clutter points
may get unassigned.

The starting point of our approach is the elementary
observation that a “cluster” may be informally defined
as a maximally coherent set of data items, i.e., as a
subset of the input data C which satisfies both an inter-
nal criterion (all elements belonging to C should be
highly similar to each other) and an external one (all
elements outside C should be highly dissimilar to the
ones inside). We then define a “clustering game,” and
within this context we show that the notion of a clus-
ter turns out to be equivalent to a classical equilibrium
concept from (evolutionary) game theory (the evolu-
tionary stable strategy [97]), as the latter reflects both
the internal and external cluster conditions alluded to
before. This characterization allows us to employ pow-
erful dynamical systems from evolutionary game theory

I'See http://simbad-fp7.eu and [98] for details.
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such as the replicator dynamics (we refer to [100] for
details).

One of the main attractive features offered by game
theory, which distinguishes it from other approaches
such as, e.g., spectral methods, is its generality, as it
allows one to naturally deal with (dis)similarities that
do not necessarily possess the Euclidean behavior or not
even obey the requirements of a metric. Indeed, the lack
of the Euclidean and/or metric properties undermines
the very foundations of traditional pattern recognition
theories and algorithms, and poses totally new theoret-
ical/computational questions and challenges [98].

The classical approach to deal with non-geometric
(dis)similarities is “embedding,” which refers to any
procedure that takes a set of (dis)similarities as input
and produces a vectorial representation of the data
as output, such that the proximities are either locally
or globally preserved [106]. These approaches are all
based on the assumption that the non-geometricity of
similarity information can be eliminated or somehow
approximated away. When this is not the case, i.e.,
when there is significant information content in the non-
(geo)metricity of the data (see e.g., [107]), alternative
approaches are needed, and game theory is particularly
appealing in this respect as it makes no assumption
whatsoever on the structure of the payoff (similarity)
functions.

9. Outlier detection and description

Outlier detection and description concerns the quan-
titative and qualitative analysis of anomalies in data.
Early methods for outlier identification have been
developed in the field of statistics [108], but they
assume that the given dataset has a distribution
model. In order to overcome this limitation, in the
last twenty years data mining and machine learning
researchers have focused on semi-supervised (also
called one-class classification or novelty detection) and
unsupervised techniques [109]. In the former case only
examples of the normal class are available, while in the
latter the dataset is unlabelled and the objects most devi-
ating from the remainder of the data are to be detected.

Most of the effort in these fields of the Italian com-
munity have been made by the data and knowledge
engineering group of the DIMES Department of Uni-
versity of Calabria (former DEIS). In the following
these contributions are overviewed in the context of the
related literature.

In the supervised setting, distance-based [110] and
density-based [111] approaches have gained popular-

ity over the years and are today recognized among
the most effective techniques for identifying outliers.
Distance-based outliers are defined in terms of the num-
ber of objects lying in a fixed-radius neighborhood of
each object. While this definition does not make any
assumption on the data distribution, the first proposed
algorithms ran in time quadratic in the size or exponen-
tial in the dimensionality of the data [110]. Thus, efforts
for developing scalable algorithms have been subse-
quently made. In this scenario, contributions concern
the design of efficient algorithms [112, 113].

Specifically [112] introduced a novel definition of
distance-based outlier together with an algorithm called
HilOut. The novel definition ranks objects on the basis
of the sum of the distances separating each object from
its k nearest neighbors and has become one of the
definitions commonly adopted in applications. HilOut
makes use of the Hilbert space-filling curve to deal with
high-dimensional data, by mapping the d-dimensional
Euclidean space onto the real segment [0, 1]. As a main
merit, this is the first method guaranteeing an approxi-
mate solution within linear time in the dataset size and
also scalable on high-dimensional data. The DOLPHIN
algorithm [113] has been designed to work with disk
resident datasets and detects outliers according to the
definition in [110]. The strong points of this techniques
are the very low I/O cost, the small theoretical memory
usage, and the linear time performance with respect
to the dataset size. These characteristics have estab-
lished DOLPHIN has a state of the art outlier detection
algorithm.

Distance and density based definitions are mainly
considered in the context of unsupervised outlier detec-
tion, but can also be exploited as semi-supervised
methods. Noteworthy contributions in this context con-
cern the definition of compressed representations of the
data for prediction purposes [114—116]: [114] intro-
duced the concept of outlier detection solving set for
the definition in [112], while [115, 116] generalized
the above approach in order to encompass the defini-
tion provided in [110] to further reduce the size of the
compressed set.

While traditional outlier analysis techniques have
focused on the outlier detection task, recently the
outlier description task has raised attention due
to the need of understanding the reasons that
make an object exceptional. This has connections
with subspace outlier mining, where the attention is
restricted to a subset of the features [117, 118]. Within
this setting, the concept of outlier property and outlier
explanation have been introduced in the context of cat-
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egorical data in [119]: “Assume you are provided with
the information that one of the individuals in a data
population is abnormal, but no reason whatsoever is
given to you as to why this particular individual is to
be considered abnormal. The goal is to discover sets of
attributes that account for the abnormality of that indi-
vidual”. In particular, a set of attributes is exceptional
(i.e., an outlier property) if the occurrence frequency
of the combination of values assumed by the outlier
on these attributes is infrequent. An outlier explanation
is a set of attributes that allows to select a subset of
the data population containing the outlier and mak-
ing another set of attributes exceptional. In [120] the
above approach is extended to the case in which a
group of anomalous individuals is given in input. This
method resorts to a form of minimum distance esti-
mation for evaluating the badness of fit of the values
assumed by the outliers compared to the probability
distribution associated with the values assumed by the
inliers.

10. Recommender systems

Recommender Systems (RSs) are information search
and filtering tools that provide suggestions for items
to be of use to a user [121]. They are common in a
large number of Internet applications, helping users to
make better choices while searching for news, music,
vacations or movies. “Item” is the general term used to
denote what the system recommends to its users, and a
specific RS normally focuses on one type of items.

A RS implements a real valued function of the prod-
uct space of the users and items r*: U x [ - R;
r*(u, i) is the prediction of how a user u € U eval-
uates an item i € /. Having a collection of predicted
evaluations, a RS recommends to u the items i with
the largest predicted evaluations r*(u, i) (top-N rec-
ommendations). Item evaluations are called ratings in
Collaborative Filtering RSs; this is a popular technique
that leverages the ratings of users estimated to be simi-
lar to the target user [121]. In some RSs more complex
types of evaluations are observed, for instance the rel-
ative preference for an item when compared to another
one [122], or the time spent by a user interacting with
items [123].

Content-based RSs (CBRSs) [124], differently from
Collaborative Filtering RSs, strongly rely on content
descriptions of items in order to identify items similar
to those the target user liked and therefore predicted to
have a large user evaluation r*(u, i).

Novel research works have introduced semantic
indexing techniques that shift from a keyword-based to
aconcept-based representation of items. Some semantic
techniques allow to generate better recommendations
by modelling user preferences with concepts defined in
external knowledge bases [125]. To this end, the infu-
sion of common-sense knowledge available in Open
knowledge sources, such as Wikipedia, DBpedia and
Freebase, have been shown to be useful to improve
the indexing effectiveness of both item descriptions and
user profiles [126].

Other semantic approaches, called distributional,
build high dimensional semantic spaces in which words
and concepts with similar meanings are close to each
another (geometric metaphor of meaning) [127]. One
of the great virtues of distributional approaches is that
semantic spaces can be built using entirely unsuper-
vised analysis of free text. In addition, replacing words
with item descriptions results in a high dimensional
space where similar items are represented close to one
another [128].

Context-aware RSs (CARS) is a novel and promis-
ing subject. Here the RS tailors the recommendations
to the specific contextual situations that may be expe-
rienced by the user while interacting with an item
[129]. For instance [130] describes a place of inter-
ests (POIs) RS where fourteen contextual factors are
considered, such as, the time of the travel, the weather,
the user mood or the group that is accompanying the
traveller.

Recent CARS techniques have addressed: the design
of evaluation/rating prediction models that effectively
incorporate the additional information brought by the
context [131, 132]; methodologies for identifying and
acquiring relevant contextual knowledge [130]; and
applications dealing with particular contextual data,
e.g., the current location of the user to adapt the music
to the surrounding while the user is visiting a place or
driving a car [133, 134]

A particular type of context is the group of users that
experience an item together and may have conflicting
preferences. Recent results have shown that rank aggre-
gation techniques, previously developed for building
meta search engines, can be effectively applied to group
recommendation [135].

Evaluation of recommender systems has been
performed with offline and online methods. Offline
evaluations are based on standard cross validation tech-
niques and error metrics (Root Mean Square Error).
However [136] have shown that error metrics are not
suited for assessing the system performance on top-N
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recommendations, and accuracy metric, such as preci-
sion and recall, should be used.

Ultimately, offline evaluations can never assess the
true performance of a RS and on line evaluations are
in order. Cremonesi et al. focuses on the persuasive
role of RSs and shows that algorithmic attributes are
less crucial than expected in determining the user’s
perception of a RS quality, hence HCI methods must
be considered [137]. Moreover, offline evaluations do
not factor in the cost of user preferences elicitation,
which has in practice an important role in determin-
ing the amount and quality of the data that a RS can
leverage [138]. Hence, the usage of active learning tech-
niques for user preference elicitation in RSs have been
proposed [139].

Contributions

Sec. 2 was written by F. Esposito, N. Fanizzi, S. Fer-
illiand F.A. Lisi. Sec. 3 was written by F. Riguzzi. Sec. 4
was written by D. Bacciu and A. Micheli. Sec. 5 was
written by L. Saitta. Sec. 6 was written by D. Malerba.
Sec. 7 was written by M. Gori. Sec. 8 was written by
M. Pelillo. Sec. 9 was written by F. Angiulli. Sec. 10
was written by M. de Gemmiis, P. Lops, F. Ricci and G.
Semeraro.
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