Optimizing Probabilistic Models for
Relational Sequence Learning

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

Department of Computer Science, LACAM laboratory
University of Bari “Aldo Moro”, Via Orabona,4, 70125 Bari, Italy
{ndm,basile,ferilli,esposito}@di.uniba.it

Abstract. This paper tackles the problem of relational sequence learn-
ing selecting relevant features elicited from a set of labelled sequences.
Each relational sequence is firstly mapped into a feature vector using the
result of a feature construction method. The second step finds an opti-
mal subset of the constructed features that leads to high classification
accuracy, by adopting a wrapper approach that uses a stochastic local
search algorithm embedding a Bayes classifier. The performance of the
proposed method on a real-world dataset shows an improvement com-
pared to other sequential statistical relational methods, such as Logical
Hidden Markov Models and relational Conditional Random Fields.

1 Introduction

Sequential data may be found in many contexts of everyday life, and in many
computer science applications such as video understanding, planning, computa-
tional biology, user modelling and speech recognition. Different methodologies
have been proposed to face the problem of sequential learning. Some environ-
ments involve very complex components and features, and hence classical existing
approaches have been extended to the case of relational sequences [1] to exploit
a more powerful representation formalism. Sequential learning techniques may
be classified according to the language they adopt to describe sequences. On the
one hand there are methods adopting a propositional language, such as Hidden
Markov Models (HMMs), allowing both a simple model representation and an ef-
ficient algorithm; on the other hand (Sequential) Statistical Relational Learning
(SRL) [2] techniques, such as Logical Hidden Markov Models (LoHMMs) [3] and
relational Conditional Random Fields [4, 5] are able to elegantly handle complex
and structured descriptions for which a flat representation could make the prob-
lem intractable to propositional techniques. The goal of this paper is to propose
a new probabilistic method for relational sequence learning [1].

A way to tackle the task of inferring discriminant functions in relational
learning is to reformulate the problem into an attribute-value form and then
apply a propositional learner [6]. The reformulation process may be obtained
adopting a feature construction method, such as mining frequent patterns that
can then be successfully used as new Boolean features [7-9]. Since, the effec-
tiveness of learning algorithms strongly depends on the used features, a feature

2 Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

selection task is very desirable. The aim of feature selection is to find an optimal
subset of the input features leading to high classification performance, or, more
generally, to carry out the classification task optimally. However, the search for
a variable subset is a NP-hard problem. Therefore, the optimal solution cannot
be guaranteed to be reached except when performing an exhaustive search in
the solution space. Using stochastic local search procedures [10] allows one to
obtain good solutions without having to explore the whole solution space.

In this paper we propose an algorithm for relational sequence learning, named
Lynx!, that works in two phases. In the first phase it adopts a feature construc-
tion approach that provides a set of probabilistic features. In the second step,
Lynx adopts a wrapper feature selection approach, that uses a stochastic local
search procedure, embedding a naive Bayes classifier to select an optimal subset
of the features constructed in the previous phase. In particular, the optimal sub-
set is searched using a Greedy Randomised Search Procedure (GRASP) [11] and
the search is guided by the predictive power of the selected subset computed us-
ing a naive Bayes approach. The focus of this paper is on combining probabilistic
feature construction and feature selection for relational sequence learning.

Related works may be divided into two categories. The former includes works
belonging to the Inductive Logic Programming (ILP) [12] area, that reformulate
the initial relational problem into an attribute-value form, by using frequent
patterns as new Boolean features, and then applying propositional learners. The
latter category includes all the systems purposely designed to tackle the problem
of relational sequence analysis falling into the more specific SRL area where
probabilistic models are combined with relational learning.

This work may be related to that in [9], where the authors presented one of
the first ILP feature construction methods. They firstly build a set of features
adopting a declarative language to constrain the search space and find discrimi-
nant features. Then, these features are used to learn a classification model with
a propositional learner. In [13] are presented a logic language for mining se-
quences of logical atoms and an inductive algorithm, that combines principles of
the level-wise search algorithm with the version space in order to find all patterns
that satisfy a given constraint. These ILP works, however, take into account the
feature construction problem only. In this paper, on the other hand, we want to
optimise the predictive accuracy of a probabilistic model built on an optimal set
of the constructed features.

More similar to our approach are sequential statistical relational techniques
that combine a probabilistic model with a relational description belonging to the
SRL area, such as Logical Hidden Markov Models (LoHMMSs) [3] and relational
Conditional Random Fields [4] that are purposely designed for relational se-
quence learning. In [3] the authors proposed an algorithm for selecting LoHMMs
from logical sequences. The proposed logical extension of HMMs overcomes their
weakness on flat symbols by handling sequences of structured symbols by means
of a probabilistic ILP framework. In [14] the authors presented a method to com-
pute the gradient of the likelihood with respect to the parameters of a LoHMM.

! Lynx is public available at http://www.di.uniba.it/~ndm/lynx/.

Optimizing Probabilistic Models for Relational Sequence Learning 3

They overcome the predictive accuracy of the generative model of LoHMMs us-
ing a Fisher Kernel. Finally, in [4] an extension of Conditional Random Fields
(CRFs) to logical sequences has been proposed. CRFs are undirected graphical
models that, instead of learning a generative model as in HMMSs, learn a dis-
criminative model designed to handle non-independent input features. In [4], the
authors lifted CRFs to the relational case representing the potential functions
as a sum of relational regression trees.

2 Lynx: a Relational Pattern-based Classifier

This section firstly briefly reports the framework for mining relational sequences
introduced in [15] and used in Lynx due to its general logic formalism. Over that
framework Lynx implements a probabilistic pattern-based classifier. After intro-
ducing the representation language, the Lynx system will be presented, along
with its feature construction capability, the adopted pattern-based classification
model, and the feature selection approach.

As a representation language we used first-order logic.A first-order alphabet
consists of a set of constants, a set of variables, a set of function symbols, and a
non-empty set of predicate symbols. Both function symbols and predicate symbols
have a natural number (its arity) assigned to it. A term is a constant symbol, a
variable symbol, or an n-ary function symbol f applied to n terms t1, %o, ..., t,.
An atom p(ty,...,t,) is a predicate symbol p of arity n applied to n terms ¢;.
Both [and its negation [are said to be (resp., positive and negative) literals
whenever [is an atom. Literals and terms are said to be ground whenever they
do not contain variables. A substitution 6 is defined as a set of bindings {X; +
ai,...,Xpn ¢ an} where X;, 1 <14 <n are variables and a;,1 < i < n are terms.
A substitution 6 is applied to an expression e, obtaining the expression (ef), by
replacing all variables X; with their corresponding term a;.

Lynx adopts the relational framework, and the corresponding pattern mining
algorithm, reported in [15], that here we briefly recall. Considering a sequence as
an ordered succession of events, fluents have been used to indicate that an atom
is true for a given event. A multi-dimensional relational sequence may be defined
as a set of atoms, concerning n dimensions, where each event may be related to
another event by means of the <; operators, 1 < 4 < n. In order to represent
multi-dimensional relational patterns, the following dimensional operators have
been introduced. Given a set D of dimensions, Vi € D: <; indicates the direct
successor on the dimension i; <; encodes the transitive closure of <;; and O}
calculates the n-th direct successor. Hence, a multi-dimensional relational pattern
may be defined as a set of atoms, regarding n dimensions, in which there are
non-dimensional atoms and each event may be related to another event by means
of the operators <;, <; and QF, 1 <14 < n. In order to compute the frequency
of a pattern over a sequence it is important to define the concept of sequence
subsumption. Given X' = B U U, where U is the set of atoms in a sequence S,
and B is a background knowledge. A pattern P subsumes a sequence S (P C .S),

4 Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

iff there exists an SLDgr-deduction of P from Y. An SLDgi-deduction is an
SLD-deduction under Object Identity [16].

2.1 Feature Construction via Pattern Mining

The first step of Lynx carries out a feature construction process by mining fre-
quent patterns from sequences with an approach similar to that reported in [9].
The algorithm for frequent multi-dimensional relational pattern mining is based
on the same idea as the generic level-wise search method, known in data mining
from the Apriori algorithm [17]. The level-wise algorithm performs a breadth-first
search in the lattice of patterns ordered by a specialization relation <. Genera-
tion of the frequent patterns is based on a top-down approach. The algorithm
starts with the most general patterns. Then, at each step it tries to specialise all
the candidate frequent patterns, discarding the non-frequent patterns and stor-
ing those whose length is equal to the user specified input parameter maxsize.
For each new refined pattern, semantically equivalent patterns are detected, by
using the fpr-subsumption relation [16], and discarded. In the specialization
phase the specialization operator, basically, adds atoms to the pattern.

The algorithm uses a background knowledge B3 containing the sequences and a
set of constraints, similar to that defined in SeqLog [13], that must be satisfied by
the generated patterns. In particular, some of the constraints in B are (see [15]
for more details): maxsize (M), maximal pattern length; minfreq(m), the fre-
quency of the patterns must be greater than m; type(p) and mode(p), denote,
respectively, the type and the input/output mode of the predicate’s arguments

p, used to specify a language bias; negconstraint ([py,ps,...,pn]) specifies a
constraint that the patterns must not fulfil; posconstraint ([p1,po,...,pnl)
specifies a constraint that the patterns must fulfil; atmostone ([p1,po,...,pnl)

discards all the patterns that make true more than one predicate among p1,
D2, - -y Pn; key ([p1,p2, - .., pnl) specifies that each pattern must have one of the
predicates p1,p2,...pn as a starting literal.

Given a set of relational sequences D defined over a set of classes C, the
frequency of a pattern p, freq(p, D), corresponds to the number of sequences
s € D such that p subsumes s. The support of a pattern p with respect to a class
¢ € C, supp.(p, D) corresponds to the number of sequences s € D whose class
label is c. Finally, the confidence of a pattern p with respect to a class ¢ € C' is
defined as conf.(p, D) = supp.(p, D)/freq(p, D).

The refinement of patterns is obtained by using a refinement operator p
that maps each pattern to a set of its specializations, i.e. p(p) C {p'|p < p'}
where p < p’ means that p is more general than p’ or that p subsumes p’. For
each specialization level, before starting the next refinement step, Lynx records
all the obtained patterns. Hence, it might happen that the final set includes
a pattern p that subsumes many other patterns in the same set. However, the
subsumed patterns may have a different support, contributing in different way
to the classification model.

Optimizing Probabilistic Models for Relational Sequence Learning 5

2.2 Pattern-based Classification

After identifying the set of frequent patterns, the next question is how to use
them as features in order to correctly classify unseen sequences. Let X be the
input space of relational sequences, and Y = {1,2,...,Q} denote the finite set
of possible class labels. Given a training set D = {(X;,Y;)|1 < i < m}, where
X; € X is a single relational sequence and Y; €) is the label associated to X;,
the goal is to learn a function h : X —) from D that predicts the label for
each unseen instance. Let P, with |P| = d, be the set of constructed features
obtained in the first step of the Lynx system (the patterns mined from D), as
reported in Section 2.1. For each sequence X € X we can build a d-component
vector-valued x = (z1,2,...,24) random variable where each z; € x is 1 if the
pattern p; € P subsumes sequence Xy, and 0 otherwise, for each 1 <4 < d.
Using the Bayes’ theorem, if p(Y;) describes the prior probability of class Y

then the posterior probability p(Y; |x) can be computed from p(x|Y;) as

ZZ 1 p(X\Yi)p(Yi)
Given a set of discriminant functions g;(x), 7 =1,...,Q, a classifier is said to as-

sign the vector x to class Yj if gj(x) > ¢;(x) for all j # 4. Taking g;(x) = P(Y;|x),
the maximum discriminant function corresponds to the mazimum a posteriori
(MAP) probability. For minimum error rate classification, the following discrim-
inant function will be used

9i(x) = Inp(x|Y;) + In P(Yy). (1)

We are considering a multi-class classification problem involving discrete fea-
tures. In this problem the components of vector x are binary-valued and condi-
tionally independent. In particular, let the component of vector x = (z1,...,z4)
be binary valued (0 or 1). We define

= Prob(z; = 1|Y}) i=1,....d
i=1....Q
with the components of x being statistically independent for all x; € x. In
this model each feature z; gives a yes/no answer about pattern p;. However,
if pix > pi+ we expect the i-th pattern to subsume a sequence more frequently
when its class is Y}, than when it is Y;. The factors p;; can be estimated by
frequency counts on the training examples, as p;; = supporty, (pi). In this way,
the constructed features p; may be viewed as probabilistic features expressing
the relevance for pattern p; in determining classification Y;.

By assuming conditional independence we can write P(x|Y;) as a product
of the probabilities of the components of x. Given this assumption, a particu-
larly convenient way of writing the class-conditional probabilities is as follows:

P(x|Y;) = Hle(pij)zi (1—p;;)*~*. Hence, Eq. 1 yields the discriminant function

+Zln 1—piy) +Inp(Y;). (2)

9;(x) = Inp(x[Y;) + Inp(Y; valn -
T g =1

6 Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

The factor corresponding to the prior probability for class Y; can be estimated
from the training set as p(Y;) = ‘{(X’Y)E?;"t' Y=Yi}l ,1 <4 < Q. The minimum
probability of error is achieved by the following decision rule: decide Yy, 1 <
E<Q,ifvj,1<j<QANj#Ek:g(x)> gj(x), where g;(-) is defined as in
Eq. 2. Note that this discriminant function is linear in z;, and thus we can write
g;(x) = XU aux; + Bo, where oy = In(pi; /(1 — py;)), and Bo = 20 In(1 —
pij) + Inp(Y;). The magnitude of the weight «; in g;(x) indicates the relevance
of a subsumption for pattern p; in determining classification Y;. This is the
probabilistic characteristic of the features obtained in the feature construction
phase, as opposed to the classical Boolean feature approach.

2.3 Feature Selection with Stochastic Local Search

After having constructed a set of features, and presented a method to use those
features to classify unseen sequences, now the problem is how to find a subset of
these features that optimises prediction accuracy. The optimization problem of
selecting a subset of features (patterns) with a superior classification performance
may be formulated as follows. Let P be the constructed original set of patterns,
and let f : 2IPl — R be a function scoring a selected subset X C P. The problem
of feature selection is to find a subset X C P such that f(X) = maxzcp f(Z).
An exhaustive approach to this problem would require examining all 2/7! possible
subsets of the feature set P, making it impractical for even small values of |P].
The use of a stochastic local search procedure [10] allows to obtain good solutions
without having to explore the whole solution space.

Given a subset P C P, for each sequence X; € X we let the classifier find
the MAP hypothesis ﬁp(Xj) = argmax; g;(x;) by adopting the discriminant
function reported in Eq. 1, where x; is the feature based representation of se-
quence X; obtained using patterns in P. Hence the initial optimization problem
corresponds to minimise the expectation E[lﬁP (X,)£Y,] where L X,)£Y, is the

characteristic function of training example X; returning 1 if h p(X;)#Y;,and 0
otherwise. Finally, given D the training set with |D| = m and P a set of features
(patterns), the number of classification errors made by the Bayesian model is

errp(P) = mE[lEP(Xj#Yﬂ. (3)

GRASP™ Consider a combinatorial optimisation problem, where one is given a
discrete set X of solutions and an objective function f : X — R to be minimised,
and seek a solution z* € X such that Vo € X : f(z*) < f(z). A method
to find high-quality solutions for a combinatorial problem consists of a two-step
approach made up of a greedy construction phase followed by a perturbative local
search [10]. The greedy construction method starts the process from an empty
candidate solution and at each construction step adds the best ranked component
according to a heuristic selection function. Then, a perturbative local search
algorithm, searching a local neighbourhood, is used to improve the candidate

Optimizing Probabilistic Models for Relational Sequence Learning 7

solution thus obtained. Advantages of this search method are a much better
solution quality and fewer perturbative improvement steps needed to reach the
local optimum.

GRASP [11] solves the problem of the limited number of different candidate
solutions generated by a greedy construction search method by randomising the
construction method. GRASP is an iterative process combining at each iteration
a construction and a local search phase. In the construction phase a feasible
solution is built, and then its neighbourhood is explored by the local search. Al-
gorithm 1 reports the GRASP™S procedure included in the Lynx system to perform
the feature selection task. In each iteration, it computes a solution S € § by
using a randomised constructive search procedure and then applies a local search
procedure to S yielding an improved solution. The main procedure is made up
of two components: a constructive phase and a local search phase.

Algorithm 1 GRASP™S
Input: D: the training set; P: a set of patterns (features); maziter: maximum number
of iterations; errp(P): the evaluation function (see Eq. 3)
Output: solution S cP
1: S=0, errp(S) = +o0

2: iter =0

3: while iter < maxiter do

4: o =rand(0,1)

5 S=0;i=0

6: while i <n do

7 S ={9'|S" = add(S, A)} for each component A € P s.t. A¢ S
8: s = max{errp(T)|T € S}

9: s = min{errp(T)|T € S}

10: RCL = {S’ € Slerrp(9’) < s+ a(s —s5)}
11: select the new S, at random, from RCL
12: 1+i1+1

13: N ={9" € neigh(S)|errp(S’) < errp(S)}
14: while N # 0 do

15: select S e N

16: N + {8 € neigh(S)lerrp(S’) < errp(9)}
17 if errp(S) < errp(S) then

18 S=8

19: iter = iter + 1

20: return §

The constructive search algorithm (lines 4-12) used in GRASPFS iteratively
adds a solution component by randomly selecting it, according to a uniform dis-
tribution, from a set, named restricted candidate list (RCL), of highly ranked
solution components with respect to a greedy function g : S — R. The probabilis-
tic component of GRASP™® is characterised by a random choice of one of the best
candidates in the RCL. In our case the greedy function g corresponds to the error

8 Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

Folds
Conf. Lynx 1 9 3 4 5 6 7 8 9 10 Mean
w/o GRASP™| 0.84 0.88 0.83 0.83 0.85 0.76 0.85 0.81 0.82 0.80| 0.826

w GRASP™ | 0.88 0.92 0.88 0.88 0.89 0.84 0.93 0,87 0.90 0.93| 0.878
w/o GRASP™| 0.89 0.94 0.84 0.92 0.94 0.88 0.91 0.89 0.88 0.87| 0.896

w GRASP™ | 0.94 0.97 0.93 0.95 0.95 0.93 0.93 0.97 0.90 0.94| 0.942
Table 1. Cross-validated accuracy on 10 folds of the data of Lynx with and without
feature selection.

0.95

1.0

function errp(P) previously reported in Eq. 3. In particular, given errp(P), the
heuristic function, and S, the set of feasible solutions, s = min{errp(5)|S € S}
and 3§ = max{errp(S)|S € S} are computed. Then the RCL is defined by in-
cluding in it all the components S such that errp(S) > s+ a5 — s).

To improve the solution generated by the construction phase, a local search
is used (lines 13-16). It works by iteratively replacing the current solution with
a better solution taken from the neighbourhood of the current solution while
such a better solution exists. Given P the set of patterns, in order to build the
neighbourhood neigh(S) of a solution S = {p1,pa,...,p:} C P, the following
operators are exploited:

add: S — SU{p;} where p; € P\ S;
replace: S — S\ {p;} U{pr} where p; € S and p,, € P\ S.

In particular, given a solution S € S, the elements of the neighbourhood neigh(S)
of S are those solutions that can be obtained by applying an elementary modifi-
cation (add or replace) to S. Local search starts from an initial solution SY € S
and iteratively generates a series of improving solutions S',S2,.... At the k-
th iteration, neigh(S*) is searched for an improved solution S**! such that
errp(S*¥+1) < errp(S*). If such a solution is found, it becomes the current
solution. Otherwise, the search ends with S* as a local optimum.

3 Experiments

Experiments were conducted on protein fold classification, an important problem
in biology. The dataset, already used in [14, 3, 4], is made up of logical sequences
of the secondary structure of protein domains. The task is to predict one of
the five most populated SCOP folds of alpha and beta proteins (a/b): TIM
beta/alpha-barrel (c1), NAD(P)-binding Rossmann-fold domains (c¢2), Riboso-
mal protein L4 (¢23), Cysteine hydrolase (c37), and Phosphotyrosine protein
phosphatases I-like (c55). Overall, the class distribution is 721 sequences for
class cl, 360 for c2, 274 for ¢23, 441 for ¢37 and 290 for ¢55. As in [4], we used
a round robin approach, treating each pair of classes as a separate classification
problem, and the overall classification of an example instance is the majority
vote among all pairwise classification problems.

Table 1 reports the experimental results of a 10-fold cross-validated accuracy
of Lynx. Two experiments have been run choosing confidence levels 0.95 and

Optimizing Probabilistic Models for Relational Sequence Learning 9

System Accuracy
LoHMMs [3] 75%
Fisher kernels [14] 84%
TildeCRF [4] 92.96%
Lynx 94.15%

Table 2. Cross-validated accuracy of LoHHMs, Fisher kernels, TildeCRF and Lynx

1.0. For each experiment, Lynx was applied on the same data with and without
feature selection. In particular, we run classification on the test instances without
applying GRASPFS in order to have a baseline accuracy value. Indeed, it turns out
that accuracy grows when GRASPFS optimises the feature set, proving the validity
of the method adopted for the feature selection task. Furthermore, the accuracy
level grows up when we mine patterns with a confidence level equal to 1.0 which
corresponds to saving jumping emerging patterns? only. This proves that jumping
patterns have a discriminative power greater than emerging patterns (when the
confidence level is equal to 0.95).

As a second experiment we compared Lynx on the same data to other SRL
systems. Cross-validated accuracy is summarised in Table 2. LoHHMs [3] were
able to achieve a predictive accuracy of 75%, Fisher kernels [14] achieved
an accuracy of about 84%, TildeCRF [4] reached an accuracy value of 92.96%,
while Lynx obtained an accuracy of 94.15%. We can conclude that Lynx performs
better than established methods on this real-world dataset.

4 Conclusions

In this paper we considered the problem of relational sequence learning using
relevant patterns discovered from a set of labelled sequences. We firstly apply
a feature construction method in order to map each relational sequence into a
feature vector. Then, a feature selection algorithm to find an optimal subset
of the constructed features leading to high classification accuracy is applied.
The performance of the proposed method on a real-world dataset shows an
improvement when compared to other sequential statistical relational techniques.

Acknowledgment

This work is partially founded by the MBLab Italian MIUR-FAR project: “The
Molecular Biodiversity LABoratory Initiative” (DM19410).

References

1. Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational
sequence learning. In De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.,

2 An emerging pattern is a pattern whose support in one class differs from its support
in others. A jumping emerging pattern is a pattern with non-zero support on a class
and zero support on all other classes, i.e. with confidence equal to 1.

10

10.

11.

12.

13.

14.

15.

16.

17.

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

eds.: Probabilistic Inductive Logic Programming. Volume 4911 of LNCS. Springer
(2008) 28-55

. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive

Computation and Machine Learning). The MIT Press (2007)

Kersting, K., De Raedt, L., , Raiko, T.: Logical hidden markov models. Journal
of Artificial Intelligence Research 25 (2006) 425-456

Gutmann, B., Kersting, K.: TildeCFR: Conditional random fields for logical se-
quences. In Firnkranz, J., Scheffer, T., Spiliopoulou, M., eds.: Proceedings of the
15th European Conference on Machine Learning. Volume 4212 of LNAI. Springer
(2006) 174-185

Antanas, L., Gutmann, B., Thon, I., Kersting, K., De Raedt, L.: Combining video
and sequential statistical relational techniques to monitor card games. In Thurau,
C., Driessens, K., Missura, O., eds.: ICML Workshop on Machine Learning and
Games. (2010)

Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational
data mining. In Dzeroski, S., Lavrac, N., eds.: Relational Data Mining. Springer
(2001) 262291

Dehaspe, L., Toivonen, H., King, R.: Finding frequent substructures in chemical
compounds. In Agrawal, R., Stolorz, P., Piatetsky-Shapiro, G., eds.: 4th Interna-
tional Conference on Knowledge Discovery and Data Mining. AAATI Press. (1998)
30-36

King, R.D., Srinivasan, A., DeHaspe, L.: Warmr: A data mining tool for chemical
data. Journal of Computer-Aided Molecular Design 15(2) (2001) 173-181
Kramer, S., De Raedt, L.: Feature construction with version spaces for biochemical
applications. In: Proceedings of the 18th International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc. (2001) 258-265

Hoos, H., Stiitzle, T.: Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (2004)

Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of
Global Optimization 6 (1995) 109-133

Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19/20 (1994) 629-679

Lee, S., De Raedt, L.: Constraint based mining of first order sequences in SeqLog.
In Meo, R., Lanzi, P., Klemettinen, M., eds.: Database Support for Data Mining
Applications. Volume 2682 of LNCS. Springer (2004) 154-173

Kersting, K., Gartner, T.: Fisher kernels for logical sequences. In Boulicaut, J.F.,
Esposito, F., Giannotti, F., Pedreschi, D., eds.: Proceedings of the 15th European
Conference on Machine Learning. Volume 3201 of LNCS. Springer (2004) 205-216
Esposito, F., Di Mauro, N., Basile, T., Ferilli, S.: Multi-dimensional relational
sequence mining. Fundamenta Informaticae 89(1) (2008) 23-43

Ferilli, S., Di Mauro, N., Basile, T., Esposito, F.: #-subsumption and resolution: A
new algorithm. In Zhong, N., Ras, Z.W., Tsumoto, S., Suzuki, E., eds.: Foundations
of Intelligent Systems. Volume 2871 of LNCS., Springer Verlag (2003) 384-391
Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of the Inter-
national Conference on Data Engineering. (1995) 3-14

