Approximate Relational Reasoning by
Stochastic Propositionalization

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

Abstract. For many real-world applications it is important to choose the
right representation language. While the setting of First Order Logic (FOL)
is the most suitable one to model the multi-relational data of real and complex
domains, on the other hand it puts the question of the computational com-
plexity of the knowledge induction process. A way of tackling the complexity
of such real domains, in which a lot of relationships are required to model
the objects involved, is to use a method that reformulates a multi-relational
learning task into an attribute-value one. In this chapter we present an ap-
prozimate reasoning method able to keep low the complexity of a relational
problem by using a stochastic inference procedure. The complexity of the re-
lational language is decreased by means of a propositionalization technique,
while the NP-completeness of the deduction is tackled using an approzimate
query evaluation. The proposed approximate reasoning technique has been
used to solve the problem of relational rule induction as well as the task of
relational clustering. An anytime algorithm has been used for the induction,
implemented by a population based method, able to efficiently extract knowl-
edge from relational data, while the clustering task, both unsupervised and
supervised, has been solved using a Partition Around Medoid (PAM) clus-
tering algorithm. The validity of the proposed techniques has been proved
making an empirical evaluation on real-world datasets.

1 Motivations
Most of the acquired large volumes of data in digital format are stored using

relational databases consisting of multiple tables and relations. Moreover, the
data used in the fields of user behaviour modelling, protein fold recognition

Nicola Di Mauro - Teresa M.A. Basile - Stefano Ferilli - Floriana Esposito
Department Of Computer Science, University of Bari, Italy
e-mail: {ndm,basile,ferilli,esposito}@di.uniba.it

Z.W.Ras and L.-S. Tsay (Eds.): Advances in Intelligent Information Systems, SCI 265, pp. 81-{I09
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

{ndm,basile,ferilli,esposito}@di.uniba.it

82 N. Di Mauro et al.

and drug design are relational in nature, and the induction of conceptual
definitions modelling the knowledge of such complex real-world domains is
a hard and crucial task. The challenges posed by such domains are due to
various factors such as the noise in the object descriptions, the lack of data,
but also the choice of the representation language exploited to describe them.

The choice of the right representation language is a fundamental as well
as a critical aspect in the process of knowledge discovery. Indeed, the used
representation language has a significant impact on the performance of the
learning algorithms but also on the possibility to interpret and reuse the
discovered knowledge. The most suitable representation language to describe
the objects and their relationships of complex real-world domains is a logic-
based representation such as the first-order logic language (FOL), a natural
extension of the propositional representation. Inductive Logic Programming
(ILP) [23] systems are able to learn hypotheses expressed with this more
powerful language. ILP systems represent examples, background knowledge,
hypotheses and target concepts in Horn clause logic. The core of ILP is the
use of logic for representation and the search for syntactically legal hypotheses
constructed from predicates provided by the background knowledge.

However, this representation language allows a potentially great number
of mappings between descriptions (relational learning), differently from the
feature vector representation in which only one mapping is possible between
descriptions (propositional learning). The obvious consequence of such a rep-
resentation is that both the space of candidate solutions to search and the
test to assess the validity of the induced model are more costly. A possible
solution is represented by approzimate reasoning techniques [32], that try to
decrease the complexity of a problem changing either the adopted language or
the inference operation used for the deduction. In this way, the results may
be unsound or incomplete but with a consequent speed-up and a reduced
reasoning complexity.

A possible approximate reasoning technique consists in reformulating the
original multi-relational learning task in a propositional one (i.e., proposition-
alization). This reformulation can be partial (heuristic), in which information
is lost and the representation change is incomplete, or complete, in which no
information is lost. In general, however, it is not possible to efficiently trans-
form multi-relational data into an equivalent propositional form without an
exponentially increasing complexity [26]. Alternative approaches concern the
possibility to apply propositionalization directly on the original FOL context
by a sort of flattening of the multi-relational data substituting them with all
(or a subset of) their matchings with a pattern that can be provided by the
users or previously built by the system.

This work presents a stochastic propositionalization technique for rela-
tional descriptions, introduced in [9] [10] for building efficient induction algo-
rithms, and here extended and applied for approximate relational clustering.
In particular, we propose a method useful to decrease the dimensionality
of the space of candidate solutions of a multi-relational learning problem

Approximate Relational Reasoning by Stochastic Propositionalization 83

to search by means of a propositionalization technique in which the trans-
position of the relational data is performed by an online flattening of the
examples. The proposed inductive method is a population based (genetic) al-
gorithm that stochastically propositionalizes the training examples in which
the learning phase may be viewed as a bottom-up search in the hypotheses
space. While, the proposed clustering method is an extension of the Partition
Around Medoid (PAM) [16] algorithm to the relational case, where the same
propositionalization technique has been used to define a distance measure
between relational descriptions.
The objective of this chapter is threefold:

O1: providing an efficient and scalable technique for relational inductive
reasoning, combining a genetic approach to navigate the search space of
candidate solutions with a partial transposition of the relational knowledge
base in a propositional one;

0O2: adopting an approximate reasoning strategy in a relational inductive
learner, making incomplete a) the validation test (query answering) of the
acquired model, and b) the inductive generalization task;

0O3: using an approximate matching procedure of relational descriptions
for computing a distance measure useful for conceptual clustering.

The resulting learning algorithm, of the objective O1, belongs to the class
of anytime algorithms [6] whose quality of results improves gradually as com-
putation time increases, hence trading this quality against the cost of compu-
tation. They are resource constrained algorithms that return the best solution
within a specified computational budget.

The validation test of the acquired knowledge, in objective O2, corresponds
to the classical query answering task, that in relational learning is obtained by
solving a subsumption problem known to be NP-complete. In many cases it
is less important to obtain an exact query result than keeping query response
time short. For instance, the following conjunctive FOL query

— author(Al, P1), journal(P1, J),impact(J, IF),
author(A2, P2), journal(P2,J)

may be used to test if there exist two authors A1 and A2 that have pub-
lished a paper (resp. P1 and P2) in a journal J with an impact factor IF.
Sometimes, instead of a correct answer, it may be suitable knowing the re-
sponse for a subset of the authors in the domain, improving running time
to the detriment of the accuracy. The approximate query answering used in
this work is a sampling based technique, in which a random sample of the
individuals involved in the domain is selected and used to solve the query.

Results obtained for the approximate query answering technique, in the
objective O3, have been extended for defining an approximate dissimilarity
function between relational descriptions.

84 N. Di Mauro et al.

2 Stochastic Propositionalization

In this section we present a technique [10] 9] that, reformulating the relational
descriptions can be used to solve a multi-relational learning problem (both
supervised and unsupervised).

2.1 Logic Background

We used Datalog [31] as representation language for the domain and induced
knowledge, that here is briefly reviewed. For a more comprehensive introduc-
tion to logic programming and ILP we refer the reader to [, [19, 23].

Definition 1 (Alphabet). A first-order alphabet consists of a set, X, of
variables, a set, L, of constants, a set, F, of function symbols, and a set,
P £ 0, of predicate symbols. Each function symbol and each predicate symbol
has a natural number (its arity) assigned to it.

The arity of a function symbol represents the number of arguments the func-
tion has. Constants may be viewed as function symbols of arity O.

Definition 2 (Terms). A term is a constant symbol, a variable symbols, or
an n-ary function symbol f € F applied to n terms t1,ta, ... ty.

An atom p(ti,...,t,) (or atomic formula) is a predicate symbol p € P of
arity n applied to n terms t;. Both [and its negation [are said to be literals
(resp. positive and negative literal) whenever [is an atomic formula.

Definition 3 (Clause). A clause is a formula of the form VX1VX,5... VX,
(LyVLyV.. NLiVLi{1V...VLy,) where each L; is a literal and X1, Xa, ... X,
are all the variables occurring in L1V LoV . . .L;V... L. Most commonly the
same clause is written as an tmplication Ly, Lo, ... L;—y < L;, Liy1,...Ln,
where Ly, Lo, ... L;_1 is the head of the clause and L;, L;y1, ... Ly, is the body
of the clause.

Clauses, literals and terms are said to be ground whenever they do not contain
variables. A Horn clause is a clause which contains at most one positive literal.
A Datalog clause is a clause with no function symbols of non-zero arity; only
variables and constants can be used as predicate arguments.

Definition 4 (Substitution). A substitution 6 is defined as a set of bind-
ings {X1 « a1,..., X, «— an} where X; is a variable and a; is a term,
1 <i < n. A substitution 0 is applicable to an expression e, obtaining the
expression ef, by replacing all variables X; with their corresponding terms a;.

The learning problem for ILP can be formally defined in the following way:

Given: A finite set of clauses B (background knowledge) and sets of clauses
Et and E~ (positive and negative ezamples).

Approximate Relational Reasoning by Stochastic Propositionalization 85

Find: A theory X' (a finite set of clauses), such that X' U B is correct with
respect to Et and E—, i.e.:

a) X UB is complete with respect to ET: X UB = ET; and,
b) X UBis consistent with respect to E=: X UB [~ E~.

Given the formula X UB | ET, deriving E* from X UB is deduction, and
deriving X from B and E™ is induction. In the simplest model, B is supposed
to be empty and the deductive inference rule |= corresponds to 8-subsumption
between clauses.

Definition 5 (f-subsumption). A clause ¢y 0-subsumes a clause co if and
only if there exists a substitution o such that cyo C co. ¢1 is a generalization
of ca (and co a specialization of ¢1) under 0-subsumption. If ¢1 0-subsumes
co then ¢ | co.

f-subsumption is the test used in relational learning for query answering. It
corresponds to the most time consuming task of the induction process which
is a NP-complete problem. In Section 2.4] we will present an approximate
f-subsumption test based on a sampling method described in the following
section.

2.2 Data Reformulation

The method is based on a stochastic reformulation of examples that, differ-
ently from other proposed propositionalization techniques, does not use the
classical subsumption relation. For instance, in PROPAL [2], each example E,
described in FOL, is reformulated into a set of matchings of a propositional
pattern P with E by using the classical #-subsumption procedure, being in
this way still bound to the FOL context. On the contrary, in our approach
the reformulation is based on a syntactic rewriting of the training examples
based on a fixed set of domain constants.

Let E be an example, represented as a Datalog ground clause, and let
consts(E) be the set of the constants appearing in E. One can write a new
example E’ from E by changing one or more constants in F, i.e. by renam-
ing. In particular, ' may be obtained by applying an antisubstitution (i.e.,
a mapping from terms onto variables) and a substitution under Object Iden-
tity (OI) to E, E' = Eo~'0o;, where o~ ! is an antisubstitution that maps
terms to variables, and 67 is a substitution under OI. In the Object Identity
framework, within a clause, terms that are denoted with different symbols
must be distinct, i.e. they must represent different objects of the domain. In
the following we will omit the OI notation, and we will consider substitutions
under the Object Identity framework.

Definition 6 (Renaming of an example). A renaming of an example E,
indicated by R(E), is a ground clause obtained by applying a substitution
0 = {Vi/t1,Va/ta,... Vy/tn} to Ec™t, i.e. R(E) = Eo~'0, such that o'

86 N. Di Mauro et al.

is an antisubstitution, {Vi,Va,... Vo } Cvars(Eo~1), and {t1,t2,...t,} are
distinct constants of consts(E), n = consts(E).

Ezample 1. Let E : h(a) < q(a,b),c(b),t(b,c) an example, C = consts(E) =
{a,b,c}, and 0~! = {a/X,b/Y,c/Z} an antisubstitution. All the possible
ground renamings of E, R(E) in the following, are

Ey : h(a) < q(a,b),c E) t(b,¢),

Ey : h(a) — q(a,c), c(c), t(c,b),
Es : () (’a)vc(a)’t()
Ey: () — (70)76(6)7t(07)
Es : (C) (Cv)70()7t(a7b)
Eg : h(c) < q(c,b), c(b), (b, a)

obtained by applying to Eo~! : h(X) « q(X,Y),c(Y),t(Y, Z) all the possible
injective substitutions from vars(Eo~1) = {X,Y, Z} to consts(E).

In this way, we do not need to use the #-subsumption test to compute the
renamings of an example E, we just have to rewrite it considering the per-
mutations of the constants in consts(E).

As shown in [0], it is possible to prove the following Lemma, that defines
the bound of the renamings of an example.

Lemma 1. Given an example E, let m =| consts(E) |. The number of all
possible renamings of E, |R(FE)|, is equal to the number of permutations on
a set of m constants, i.e. |R(E)| = P =ml.

Proof. Let consts(E)={c1,ca,...,cm},and ot ={c1/Vi,ca/Va,...,cm/Vin}
be an antisubstitution. By Definition [] a renaming R(FE) € R(F) is ob-
tained by choosing a substitution 8; = {Vi/t1;,Va/tos, ..., Vin/tms}, where
{t1;,t2; .., tm;} are elements of consts(E), s.t. R(E) = Eo~'6;. Letting
fixed variables Vj,7 = 1...m, all the possible substitutions #; can be ob-
tained by selecting permutations (t1;ta;--tm;); of the elements from the
set of constants {c1,ca,...,cn}. Being P = ml, it follows that |R(E)| =
HR(E) | R(E) = Ec~'6;}| = P™ = m|. <

Furthermore, all the renamings of an example have the same syntactic struc-
ture, as proved [9] in the following Lemma.

Lemma 2. All the renamings of an example E belong to the same equivalence
class, [E] = R(E) = {R(E) € £ | R(E) ~s E}, based on the equivalence
relation ~ defined by a ~4 b iff a is syntactically equivalent to b, where £ is
the set of all the possible ground clauses. In particular, given an example F,

VE' € [E],30,07! s.t. E'o 0 =E

Proof. Let consts(E) = {c1,ca,...,cm}. If R,Q € R(E) then, by Defini-
tion[@ ot = {e1/Va,c2/Vay .oy em/Vin}, and Or = {Vi/t1r, ., Vi /tmr}
and 0 = {Vi/tig,. .., Vin/tmg}, where (tig---tmpg) and (t1g - tmg) are
permutations of the elements in the set consts(E), s.t. R = Eo~'0p and

Approximate Relational Reasoning by Stochastic Propositionalization 87

Q = Eoc~'0q. Now, RO;'c = Q0" 0, where 05" = {tiz/Vi,. .., tmp/Vin},
9{21 ={tig/V1,-- .. tmq/Vim} and o = {Vi/c1,...,Vin/cm}, and hence R and
@ are syntactically equivalent, R ~, Q. N

Table [Il reports the propositional representation of the renamings belonging
to the equivalence class of the clause reported in the Example[Il In particular,
they are six syntactically equivalent rewriting of the same example.

Table 1 Renamings of the clause h(a) < g(a,b), c(b),t(b,c)

h(a) h(b) h(c) q(a,b) q(a,c) q(b,a) q(b,c) q(c,a) q(c,b) c(a) c(b) c(c) t(a,b) t(a,c) t(b,a) t(b,c) t(c,a) t(c,b)

Eq e L] L] .
Eg e . . .

&
%)
.
.
.
.

E5 ° ° . . .

2.3 Approximate Model Construction

In the general framework of ILP, the generalization of clauses, and hence
the model construction, is based on the concept of least general generaliza-
tion originally introduced by Plotkin [25]. Given two clauses Cy and Cs, Cy
generalizes Cy (denoted by Cy < C3) if C; subsumes Cy, i.e. there exists a
substitution # such that C;0 C Cs.

In our propositionalization framework, a generalization C' (a non-ground
clause) of two positive examples F; and Es may be calculated by turning
constants into variables in the intersection between a renaming of F; and a
renaming of Es, as proved [9] in the following Proposition [

Definition 7. Let E1 and E5 be two positive examples, n and m the number
of constants in E1 and Eo respectively. Let C' be a set of p constants such that
p>n and p > m. R(E1){cy and R(Es)cy indicate two generic renamings
of the examples E1 and Es, respectively, onto the set of constants C.

Proposition 1 (Generalization). Given E1, Ey examples, a generalization
G such that subsumes both E1 and FEo, G < Fq, Fs is

G = (R(E1)(cy N R(E2)(cy)o " (1)

Proof. We must show, by generalization definition, that there exist 61,65
substitutions, such that G6; C E; and G, C E,. Vl; € Gb; : [l; €
(R(E1){cyNR(E2){cy)o ™ 0;, and hence I € R(E;){cyo'6;. 0; are substitu-
tions that map variables in G onto terms in E;. Since R(E;);cy0™'0; € [Ej
then R(E;)(cy0~'0; ~s E; by Lemma 2l Thus, VI; € Gb; : I; € E;, hence

88 N. Di Mauro et al.

In order to obtain consistent intersections, it is important to note that all the
renamings, for both F; and F,, must be calculated on the same fixed set of
constants. Hence, given F1, Es, ..., E, examples, the set C of the constants
useful to build the renamings may be chosen equal to

C= argngxﬂconsts(Ei)D. (2)

Furthermore, to avoid empty generalizations, the constants appearing in the
head literal of the renamings must be fixed.

Ezxample 2. Given two positive examples

E; : h(a) < g(a,b),c(b),t(b,c),p(c,d) and
Es : h(d) < q(d,e), c(d),t(e, f).

We calculate C as:

C = argn}gaxﬂconsts(Ei)D = consts(Ey1) = {a, b, c,d}.

Now

)

R(El){C} = {h(a)v jQ(av b)’ ﬁC<b)’ -
R(EQ){C} = {h(a)v _'Q(av b)v _‘C(a)v _‘t(bv C)}

A generalization G of F; and E2 is

G = (R(E1){cy NR(E2)(cy)o™ ={h
= (h(a) « q(a,b),t(b,c))CT*l = ()

with 0=t = {a/X,b/Y,c/Z}.

P
(=
]

ks

—
o

&

—

(a),—q(a,b), =t(b,c)}o~t =
—q(X,Y), 1Y, Z)

2.4 Approximate Model Validation

In the classical ILP setting, generalizations are evaluated on the training ex-
amples using the #-subsumption as a covering procedure. The model valida-
tion we adopt in the proposed framework to assess and exploit the generated
model on the seen and unseen data is based on a syntactic lazy matching, as
proved [9] in the following Corollary.

Corollary 1 (Subsumption). Given a generalization G and an example E,
G subsumes E iff R(GO)(cy N R(E)cy ~s GO.

Proof. —) If G subsumes F then, by definition, there exists a substitution
s.t. GO C E. This means that VI € GO : | € E and hence GONE = GO ~;
R(G@){C} = R(G9 N E){C} = R(G@){C} N R(E){C}.

Approximate Relational Reasoning by Stochastic Propositionalization 89

) If R(GO)¢cy N R(E){cy ~s GO, then by Proposition [I]
(R(GO)(cy NR(E)(cy)o ' < E
= R(G@){C}U_l <F
= 3j: R(G@){C}071(5 CFE
= (GO0’ 1§ 16 CE
=GV CFE
q

To be complete, the procedure must prove the test GANE = GO for all P* =
(n’j—!r)! renamings of G and E, where n = max{|consts(G0)|, |consts(E)|}
and r = min{|consts(GO)|, |consts(E)|} and by taking fixed the renaming
for the clause GO or E containing less constants. However, we can make
the test approximate by randomly choosing a number « of all the possible
permutations.

Definition 8 (Approximate Subsumption degree). Let n be the number
of all possible renamings of GO and E, and o, o < n, the renamings to test the
subsumption between G and E. The approrimate subsumption degree between

G and E is defined as

1 if R(G@){C} N R(E){C} ~s GO;
sd(G,E) =

|R(GO) {cy NR(E) (o}l ;
argmax, RGO 0] otherwise.

3)

In this chapter we do not use the approximate subsumption degree to access
the validity of generalizations. Each generalization G is considered complete
with respect to a positive example E if R(G0);cy N R(E)(cy ~s GO (evact
completeness) for a given renaming, and it is considered consistent with re-
spect to a negative example E” if R(G0);cy N R(E") (¢} ~s GO does not hold
for all the chosen « renamings (approximate consistency). The induction with
the approximate subsumption degree represents a future work.

To reduce the set of possible permutations we can fix the associations
for the variables in the head of the generalization G. In particular if G :
h(Vi,Va,...,Vg) « ... and E : h(ey,ca,...,cq) < ... then we can fix the
associations {V1/c1,Va/ca, ..., Va/ca}, d < r,n in all the generated permuta-
tions. Finally, we can further reduce the set of permutations by taking into
account the positions of the constants in the literals. Suppose p(V1, Va, ..., Vi)
be a literal of the generalization G. Then, all the constants that may be as-
sociated to V;, 1 < i < k, are all those appearing in position ¢ in the literals
p/k of the example E.

In order to evaluate the efficacy of the approximate subsumption degree
reported in Definition [§] we exploited a task concerning the Phase Transi-
tion [15], a particularly hard artificial problem purposely designed to study
the complexity of matching First Order Logic formulas in a given universe in
order to find their models, if any.

90 N. Di Mauro et al.

In the Phase Transition setting, each clause ¢ is generated from n variables
(in a set X) and m binary predicates (in a set P), by first constructing its
skeleton ps = ai(x1,22) A ... Aan—1(Tn_1,2,) (obtained by chaining the n
variables through (n — 1) predicates), and then adding to ¢, the remaining
(m—n+1) predicates, whose arguments are randomly, uniformly, and without
replacement selected from X. Given A, a set of L constants, an example,
against which checking the subsumption of the generated clause, is built
using N literals for each predicate symbol in P, whose arguments are selected
uniformly and without replacement from the universe Y = A x A. In such
a setting, a matching problem is defined by a 4-tuple (n,m,L,N). In this
experiment, n was set to 4, N was set to 4, m ranges in [4, 7], and L ranges
in [4,7]. For each pair (m, L), an hypothesis and 100 examples (50 positive
and 50 negative) were constructed.

The results are depicted in Figures[], 2 and 3], reporting, respectively, the
results for all the problems with o = 800,400, @ = 200, 100 and « = 50, 10.

>

EN|

Pa444 | ——— P44 | ——
D544 | —— PG4 | ——
PIG444 | — PIG444 | —
PU7444 | —— PU744s ——
piadss | ———— ptads, I ———
pi54ss | ———— pi545, I ———
645 | —— 645 ——
7454 | ——— 745/ ———
pasps S W POS pases NS W POS
pisdps S W NEG piscs E— E NEG
ptodcs |HE——— podcs | ————
pt74cs |E——— pt7acs EE—
pras7s | ptag7s S ——
pt5474 | ——— p547 | ——
p6474 | ——— Po474 | ——
pr7a74 |E——— p7474 | —
0,00 020 040 060 080 1,00 0,00 0,20 040 060 0,80 1,00

Fig. 1 Approximate subsumption degree for positive (POS) and negative (NEG)

examples, with a = 800 (left) and o = 400 (right)

pta444 | Pta44s |

pts444 | H pt5444 | X

pte44s | L6444 |

pt7444 | — pt7444 | —

pta45s | HE——— pta45s | HE———

pt5454 | HE—— pt5454 | HE——

pte45s | HE——— pte45s | ——

pt7454 | E— pt7454 | —

pases EEE— W POS pases EEE— W POS
pioacs EEE— E NEG ptoacs EEE— NEG
ptoacs | ptoacs |

pt7464 | pt7464 |

ptaa7s | ptaa7s |

pisa74 | E—— pt5474 | ———

pioa7s | E———— ptod74 | ——

pt7474 A pt7474 A

=
(=R
S
=
(=3
S

o,

[=}
S}

0,20 0,40 0,60 0,80

o
=]
IS

0,20 040 0,60 0,80

Fig. 2 Approximate subsumption degree for positive (POS) and negative (NEG)
examples, with a = 200 (left) and o = 100 (right)

~

Approximate Relational Reasoning by Stochastic Propositionalization 91

Pta44s I ——— ptadas | ———
pt5ads e — pt5a4s |
Pto4ds | ——— ptosqs | ——
pt7444 R — pt7444 | EEE—
ptasss | —— pta4s/ | ———
pi545s I ——— pto4ss | IE——
ptoass | ———— ptosss | —
pr74ss ——— pr74ss | —
ptases EEEEEEEEEEESE—— W POS ptases EEEEEEEEEEEENE—— E POS
ptoscs EE— W NEG p54cs |— W NEG
po4cs | ———— ptoscs |E—
pt7464 | EE—— pt7des |EE——
praa7s —— ptaa7s | ——
pt5a74 | ——— pt5474 | ——
ptoa74 [—— ptod74 |E—
pr7a7s | EE——) pt7a7s —
0,00 0,20 040 060 0,80 1,00 000 020 040 060 0,80 1,00

Fig. 3 Approximate subsumption degree for positive (POS) and negative (NEG)
examples, with a = 50 (left) and o = 10 (right)

For each problem, the corresponding bars indicate, respectively, the mean of
the approximate subsumption degree obtained by matching the clause against
the 50 positive and 50 negative examples. As we can see, the mean value
obtained over the positive examples is greater than the one obtained over the
negative examples, proving that, on this synthetic dataset, the approximate
subsumption degree is able to discriminate between positive and negative
examples.

3 The Anytime Induction Method

Algorithm [reports the sketch of the Sprol system, implemented in Yap Pro-
log 5.1.1, that incorporates ideas of the propositional framework we proposed.
Sprol is a population based algorithm where several individual candidate so-
lutions are simultaneously maintained using a constant size population im-
plementing the anytime nature of the algorithm. The population of candidate
solutions provides a straightforward means for achieving search diversification
and hence for increasing the exploration capabilities of the search process. In
our case, the population is made up of candidate generalizations over the
training positive examples. In many cases, local minimum are quite common
in search algorithms and the corresponding candidate solutions are not typ-
ically of sufficiently high quality. The strategy we used to escape from local
minimum is a restart strategy that simply re-initialises the search process
whenever a local minimum is encountered.

Sprol takes as input the set of positive and negative examples of the train-
ing set and some user-defined parameters characterizing its approximate and
anytime behaviour. In particular, o and 3 represent the number of renamings
of a negative, respectively positive, example to use for the covering test; k is
the size of the population; and r is the number of restarts.

92 N. Di Mauro et al.

Algorithm 1. Sprol

Input: ET: positive examples; E~: negative examples; a: the parameter for negative coverage;
[: the parameter for positive coverage; k: the dimension of the population; r: number of
restarts;

Output: the hypotheses h

1: ¢ = argmaxpg. ¢ p_p+yp- (|consts(E;)]);

2: while ET # 0 do

3 select a seed e from ET

4: /* select k renamings of e */

5: Population « ren(k, e, C);

6: PopPrec « Population; i « 0;

7: whilei < r do

8: P «— (D;

9: for each element v € Population do

10: for each positive example et ¢ EY do
11: /* select t renamings of e™ */

12: Vo4 ren(t,e+,C);

13: /* generalization */

14: P— P U{ulu=vNw;,w; €V 4}
15: Population «— P;

16: /* Consistency check */

17: for each negative example e” € E~ do
18: /* select a renamings of e~ */

19: V. —ren(a,e”,C);

20: for each element v € Population do
21: if v covers an element of V,_ then
22: remove v from Population

23: /* Completeness check */

24: for each element v € Population do

25: completeness, «— 0;

26: for each positive example e € ET do
27: /* select 3 renamings of et */

28: Vo4 ren(ﬁ,e+,C);

29: for each element v € Population do
30: if Ju eV, 4 s.t. uNv =v then

31: completeness, «— completeness, + 1;
32: i— 14 1;

33: if |Population| = 0 then

34: /* restart with the previous population */
35: Population «+— PopPrec;

36: else

37: leave in Population the best k generalizations only;
38: PopPrec «— Population;

39: add the best element b € Population to h;
40: remove from E7T the positive exs covered by b

As reported in Algorithm [Tl Sprol tries to find a set of clauses that covers
all the positive examples and no negative one, by using an iterative popula-
tion based covering mechanism. It sets the initial population made up of k
randomly chosen renamings of a positive example (lines 3-5). Then, the ele-
ments of the population are iteratively generalized on the positive examples
of the training set (lines 9-15). All the generalizations that cover at least one
negative example are taken out (lines 16-22), and the quality of each gen-
eralization, based on the number of covered positive examples, is calculated
(lines 23-31). Finally, best k generalizations are taken into account for the
next iteration (line 37). In case of an empty population a restart is generated
with the previous population (line 35).

Approximate Relational Reasoning by Stochastic Propositionalization 93

Renamings of an example are generated according to the procedure re-
ported in Algorithm Bl that randomly chooses k renamings of the example
E onto the set of constants C. This procedure implements the approximate
and anytime nature of the method. Indeed, the parameter k represents at
the same time both the approximation degree and the time allocated for the
algorithm. The more renamings the algorithm selects, the more accurate gen-
eralizations and subsumptions will be, but the more time to compute them
will be needed.

It is important to note that our approach constructs hypotheses that are
only approximately consistent. Indeed, in the consistency check it is possible
that there exists a matching between an hypothesis and a negative example.
The number « of allowed permutations is responsible of the induction cost as
well as of the consistency of the produced hypotheses. An obvious consequence
is that the more permutations are allowed, the more consistent are the found
hypotheses and, perhaps, the more learning time is required.

Algorithm 2. ren(k, E,C)

Input: k: the number of renamings; E: the example; C: a set of constants;
Output: a set S of renamings of E

1: S0

2: for i =1 to k do

3: S—Su {R(E){c}}

4 Approximate Relational Clustering

Clustering represents a classical problem in knowledge discovery and artificial
intelligence whose aim is to find similar groups of objects from a database.
Basically, clustering is an unsupervised learning technique used to find a
partition of a given set of objects into clusters so that the objects within
each cluster are similar to each other. The similarity between objects can be
determined using various distance functions.

Relational clustering regards grouping relational data (i.e., objects with a
first-order description) by using distance measures that are generally more
complex than those used in the case of propositional data. Indeed, the generic
Euclidean distance cannot be applied to relational data since, in this case,
objects are not represented by a feature vector of a fixed number of mea-
surements. In this chapter we used the propositionalization framework in-
troduced in the Section [in order to compute the distance between two
ground clauses. Other relational distance measures for comparing first-order
descriptions concerning supervised and unsupervised learning can be found
in [7, 4, 27, 24, [5]. Among all the clustering algorithms, a partitional cluster-
ing algorithm, named Partition Around Medoids (PAM) [16] and its variant
Supervised Partition Around Medoids (SPAM) [13], have been used for our
study.

94 N. Di Mauro et al.

4.1 Definitions and Notations

In this section we will use the following terms and notations, as reported in
Table

e An object (or observation, or datum) X is a single data object used by the
clustering algorithm. In our case of relational clustering, it consists of a
set of ground literals {l1,ls,...,l,} whose arguments range over a finite
set of constants (2.

e An object set is denoted by X = {x1,X2,... X, }.

e A class governs the objects generation process whose distribution in the
objects space is characterized by a probability density specific to the class.
In particular, in case we known the class ¢; the object belongs to, then we
can describe the object as a ground horn clause ¢; < Iy,1s,...,1,.

e A distance measure is a metric on the observation space used to quantify
the similarity of objects.

Table 2 Notations used for clustering

Notation Description

X = {x1,...,Xn} objects in the data set

n number of objects in the data set

d(o0i, 05) distance between objects 0; and o,

c the number of classes in the data set

C cluster associated with the i-th representative

Wi representative of the i-th cluster

k the number of clusters

C ={C1,...,Cx} a clustering solution

J(Cs) an objective function that evaluates a clustering solution C;

Definition 9 (Distance [12]). A distance d(-,-) is a function that gives a
generalized scalar distance between two arguments objects. A distance must
have four properties: for all objects a, b and c

non-negativity: d(a,b) >0

reflexivity: d(a,b) =0 if and only ifa=Db
symmetry: d(a,b) = d(b, a)

triangle inequality: d(a, b) + d(b,c) > d(a,c).

4.2 Simalarity Measure

Measuring the similarity between two objects drawn from the same object
space is fundamental for clustering. For computing the distance between ob-
jects we adopted the Tanimoto metric [12], that finds most use in taxonomy,
where the distance between two sets is defined as

Approximate Relational Reasoning by Stochastic Propositionalization 95

ni1 + ng — 2?112

dr(S1,82) = (4)

ny+ng —nip’
where n; and no are the numbers of elements in sets S1 and Ss, respectively,
and nio is the number that is in both sets. The value of the Tanimoto distance
ranges in [0, 1]; a value close to 0 implies similarity and a value close to 1
implies a dissimilarity among the two descriptor sets compared.

Since, in our relational clustering scenario the objects are ground clauses
(i.e., sets of literals), we need a method to find the common components (i.e.,
literals) of the two instances. We use the word “instance” since each clause
can be labeled with the class it belongs to, and it can be represented as
C%ll,lg,...,ln.

In particular, given two instances E; : ¢; < li1,l12,...,l1, and Ey : ¢j <
lo1,l22, ... lam, and let C' = argmaxg, (|consts(F;)|), then the number of
literals in common to E; and Es is approximated using the formula reported
in Equation .

Sm(El, Eg, a) = Zi:l |RE1 i REzZl, (5)

(0%

where R, = ren(l, Eq,C) is a fixed renaming of the example E;, Rg,; €
ren(a, Eq,C) is a renaming of the example Ea, and « > 0 is the parameter
governing the approximation. In other words, sn(E1, E2,) is the mean of the
number of common literals in E; and E5 for each of the « renamings of Fs.

Now we can use the Tanimoto metric to define the distance between two
instances F1 and Fs as reported in the Equation [6],

_ |E1| + |E2| - 250(E17E27a)
|E1| + |E2| - Sﬂ(E13E27a) ’

dr,(E1, Ba,) (6)

where |F;| is the number of literals appearing in the instance F;.

4.3 Approximate Partition Around Medoid

A partitional clustering algorithm obtains a single partition of n objects into
a set of k clusters by optimizing an objective function. The exhaustive enu-
meration of all the possible partitions into k sets in order to find the global
maximum is too expensive. Hence, partitional clustering algorithms use the
following generic schema:

1. randomly choose k representatives for clusters;

2. iteratively improve these initial representatives until the change in the
objective function from one iteration to the next drops below a given
threshold

a. assign each object to the cluster it “fits best” in the current clustering
b. compute new cluster representatives using these new assignments

One of the most well-known and commonly used partitioning method is the k-
medoids clustering algorithm. Unlike other partitioning methods, k-medoids

96 N. Di Mauro et al.

based algorithms are very robust with respect to the existence of outliers
(i.e., data points that are very far away from the rest of the data points). In
particular, given X = {x;}1"; a set of objects, let {u;}¥_, be the k cluster
representatives, named medoids, and I; be the cluster assignment of an object
x;, where l; € £ and £ = {1, ..., k}, the goal of the the k-medoids algorithm
is to find the best clustering solution C optimizing the objective function
J(C).

The k-medoids method we used in this chapter is the well-known Partition
Around Medoids (PAM) [16] clustering algorithm. In order to find k clusters,
PAM finds a representative object u; (medoid) for each cluster. This repre-
sentative object is meant to be the most centrally located object for each
cluster. Once the k medoids have been selected, each non-selected object is
grouped with the medoid to which it is the most similar. More precisely, if x;
is a non-selected object, and x; is a (selected) medoid, then x; belongs to the
cluster represented by x; if d(x;,x;) = minp=1 . d(X;,x3), where d(x;, x;)
denotes the dissimilarity, or distance, between objects x; and x;. Finally,
the quality of the chosen medoids is measured by the average dissimilarity
between a non-selected object and the medoid of its cluster.

Algorithm [Bl reports the main procedure of the PAM method. In order to
find k medoids, PAM starts with an arbitrary selection of k objects. Then
in each step, a swap between a selected object x; and a non-selected object
Xp, is made, as long as such a swap would result in an improvement of the
quality of the clustering. In particular, to calculate the effect of such a swap
between x; and x,, PAM computes costs Cj;, for all non-selected objects x;.

Algorithm 3. PAM

Input: D: database of objects
Output: k clusters
1: select k representative objects, and mark these objects as medoid and the
remaining as non-medoid
2: repeat
3 for all medoid objects O; do
4 for all non-medoid objects Oy do
5: compute Cyp,
6: select imin, hmin such that C;
7
8
9:

minhmin = MR Cin
if Ci,.;hpmin <0 then
mark O; as non-medoid object and Oj, as medoid object

until convergence criterion is met

4.4 Objective Function

Traditional k-medoids clustering algorithm seeks to find & medoids among
the objects in the data set minimizing, for a given clustering solution C, the
objective function reported in Equation [7

Approximate Relational Reasoning by Stochastic Propositionalization 97

tightness(C Z d(xi, i) (7)

where p; is the medoid of the cluster the obJect x; belongs to.

Hence, PAM starts with a set of clusters containing the medoids of the
complete data set, and greedily inserts new objects into this set of clusters
while minimizing the above fitness function. Then, it tries to improve the pre-
viously obtained clustering by exploring all possible replacements of medoids
by non-medoids picking the replacement that enhances the fitness function.
If no such fitness improving replacement can be found, PAM terminates.

The Algorithm Ml is the proposed approximate relational clustering variant
of PAM, named Approzimate PAM, that uses the objective function reported
in Equation[§ It starts by randomly selecting k medoids and finding the first
clustering solution C by associating each non-medoid instance to the cluster
whose medoid is more similar. Then, it iteratively tries to swap a medoid
with a non-medoid object, exploring all possible replacements, in order to
minimize the value of the objective function Jiighiness(-,-). It terminates if
no replacement can be found that leads to a clustering with a better (lower)
objective value with respect to Jrightness (- -)-

1
u7tzqhtness C a - Z dTm Xisy Hi, Q0) (8)

Algorithm 4. Approximate PAM
Input: X = {x;};_;: set of instances (ground clauses)
Output: C = {Ch,...,Ck}: k clusters

1: randomly select £ medoids p;

2: C={C|Ci = {pitti=1,.. .k

3: for all non-medoid objects x; do

4: /* find the best cluster */

5. C; = C; U {xzn} being drn (Xn, 1), @) = ming=1, .k d1n (Xn, fit, @)
6: V= s7t7lgh,tness (67 Oé)

7: repeat

8: randomly select a medoid objects u;

9: randomly select a non-medoid objects x,

10: C'=¢C

11: /* swap p; with x, */
12: Cp={xp}

13: mark p; as a non-medoid

14: /* re-clustering */

15: for all non-medoid objects x5, do

16: C; = C; U {xn} being drn (xn, ptj, @) = ming—1, . dr (Xn, fit, @)

17: V/ = u7tightness (CI7 Oé)

18: if V' <V then

19: c=c=C

20: V=V

21: until no possible swap improves the optimization of Jiightness(C, @)

98 N. Di Mauro et al.

4.5 Approximate Supervised Partition Around Medoid

While clustering is typically applied in an unsupervised learning framework
using a particular error function, supervised clustering [13], on the other
hand, deviates from traditional clustering in that it is applied on classified
examples with the objective of identifying clusters that have high probabil-
ity density with respect to a single class. Similar to supervised clustering is
semi-supervised clustering that tries to obtain better results by considering
a subset of the classified examples optimising the class purity. The goal is to
find a clustering by optimising an objective function that takes as input the
class label also.

The objective functions used for supervised clustering are significantly dif-
ferent from the objective functions used by traditional clustering algorithms.
Indeed, supervised clustering algorithms may evaluate a clustering based on
the class impurity measured by the percentage of the minority examples in
the different clusters. We propose an Approximate variant of the Supervised
Partition Around Medoid clustering algorithm (SPAM) [13], named Approx-
imate SPAM, that uses an objective function different from Jiighiness(C, @).
Indeed, in case of class labeled instances, we can use two other metrics for
the evaluation of the clustering solutions, such as purity and entropy.

Entropy provides a measure of “goodness” for clusters. Entropy indicates
how homogeneous is a cluster. The higher the homogeneity of a cluster the
lower the entropy is, and viceversa. The entropy of a cluster containing only
one object (perfect homogeneity) is zero. For each cluster C; in the clustering
result C we compute p;;, the probability that a member of the cluster C;
belongs to class i as

n’

Dij = n_j-’ (9)
where n; is the number of objects contained in the cluster C}, and n; is the
number of data objects of the i-th class that were assigned to the cluster Cj;.

The entropy of each cluster C; may be calculated using the following for-
mula

‘n n’

B(Cy) == pijlog(pi) = = > —Llog -2, (10)
=1

where the sum is taken over all the ¢ classes. The entropy of the entire cluster-
ing solution is then defined to be the sum of the individual cluster entropies
weighted according to the cluster size:

k
EC) =Y "E(C) (11)

A perfect clustering solution should be the one that leads to clusters that
contain objects from only a single class, in which case the entropy will be

Approximate Relational Reasoning by Stochastic Propositionalization 99

zero. In general, the smaller the entropy values, the better the clustering
solution is.

The purity measures, for each cluster, how many objects belong to its
primarily class. The purity of the cluster C; is defined to be

P(C;) = imaux(ni-), (12)

n; 7 J
which is nothing more than the fraction of the overall cluster size that the
largest class of objects assigned to that cluster represents. The overall purity

of the clustering solution C is obtained as a weighted sum of the individual
cluster purities and is given by

k
Pe) =Y P, (13)

In general, the larger the values of purity, the better the clustering solution is.
In our Approximate SPAM clustering algorithm we used the objective func-
tion reported in the Equation[I4] corresponding to the purity of the clustering
solution.

Tpurity(C; @) = P(C), (14)

where « corresponds to the approximation value. In particular, given a set
of data objects X, and a number of cluster to form, k, it finds a disjoint k
partitioning {Xh}ﬁzl of X such that Jpuriy (C,) is maximized.

5 Experiments

In order to evaluate the system Sprol, we performed experiments on two real
world datasets (TableB]). The classical ILP mutagenesis dataset [30] consists
of structural descriptions of molecules. The Mutagenesis dataset has been
collected to identify mutagenic activity in a compound based on its molecu-
lar structure and is considered to be a benchmark dataset for multi-relational
learning. The Mutagenesis dataset consists of the molecular structure of 230
compounds, of which 138 are labelled as mutagenic and 92 as non-mutagenic.
The mutagenicity of the compounds has been determined by the Ames Test.
The task is to distinguish mutagenic compounds from non-mutagenic ones
based on their molecular structure. The Mutagenesis dataset basically con-
sists of atoms, bonds, atom types, bond types and partial charges on atoms.
The dataset also consists of the hydrophobicity of the compound (logP), the
energy level of the compound’s lowest unoccupied molecular orbital (LUMO),
a boolean attribute identifying compounds with 3 or more benzyl rings (I1),
and a boolean attribute identifying compounds which are acenthryles (Ia).
Ia, 11, logP and LUMO are relevant properties in determining mutagencity.

100 N. Di Mauro et al.

A second dataset has been used to evaluate the clustering algorithms. It is
a collection of 353 scientific papers in PostScript (PS) or Portable Document
Format (PDF) format, whose first pages layout descriptions were automat-
ically generated by a document layout analysis system [I4]. The documents
belong to 4 different classes: Elsevier journals, Springer-Verlag Lecture Notes
(SVLN) series, Journal of Machine Learning Research (JMLR) and Machine
Learning Journal (MLJ).

Table 3 Data Sets

Data Set Name # examples # classes

Mutagenesis 188 2
Documents 353 4

All the experiments have been carried out on machine equipped with an
Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00GHz and 2GiB RAM @ 667MHz.

5.1 Induction Task

In this section we report the results obtained by the Sprol system when
applied to the mutagenesis dataset. The size of the population has been set
to 50, the parameter « to 50, the parameter 8 to 50, and making 5 restarts.
As measures of the performance, we used predictive accuracy and execution
time. Results have been compared to those obtained by running, on both the
same machine and dataset, the system Progol [22]. A 10-fold cross-validation
produced the results reported in Table [4 averaged over the 10-folds, where

Table 4 Execution time (in seconds) and accuracy of Progol and Sprol on the
mutagenesis dataset.

Progol SPROL |
Time Accuracy|Time Accuracy

M1 |330.76 84.21 |56.73 57.89
M2 [479.03 78.95 [41.15 89.47
M3 |535.95 84.21 |48.51 73.68
M4 |738.54 68.42 |63.67 84.21
M5 [699.90 89.47 ([55.56 84.21
M6 |497.08 78.95 |53.55 78.49
M7 1498.22 84.21 |71.97 84.21
M8 [584.00 78.95 [56.29 89.47
M9 |511.88 68.42 |50.44 83.33
M10 [587.18 82.35 [65.63 70.59
Mean|546.25 79.81 [56.35 79.60

Approximate Relational Reasoning by Stochastic Propositionalization 101

we can note that there is an evident improvement of the execution time with
respect to Progol obtaining a comparable predictive accuracy of the learned
theory.

A second experiment, whose results are reported in Table[[] has been made
in order to evaluate how the behaviour of the algorithm change by altering
parameters k, o and f.

Table 5 Results on parameter settings.

Time Accuracy

k=50 7549 71.14
a=508=50k=75 9680 75,35
k=100 117.29 71.67
B =40 78.84 78.67
B=50 7549 71.14
B =60 7439 76.85
/=100 114 78.02
a=40 7549 70.19
a=50 7549 71.14
a=60 56.35 79.6

o =50k =50

B =50k =50

As we can see in Table [Bl the first row reports the case in which we fixed
« and § and letting k& to change. Obviously, taking more elements in the
population makes grow the execution time. Furthermore, the second and the
third row show that changing 0 does not change the accuracy of the theory.
On the contrary a seems to be more important than (§ in improving the
system performances. A further investigation of this behaviour deserves a
more accurate experiment on an ad-hoc artificial dataset.

5.2 Clustering Task

In this section we report the results obtained by the Approximate PAM and
Approximate SPAM on the mutagenesis (Figures @5l and [6) and documents
(Figures [[8] and []) dataset with the approximation parameter « taking
values 20, 50, and 100. As we can see, for both the dataset Approximate
PAM obtains clustering solutions with a better tightness, while Approximate
SPAM obtains clustering solutions with a better purity. In general, good
solutions are obtained when we choose a high value for the number of k
clusters, since in this case the system is more free to partition the objects in
the clusters. As expected the entropy values obtained by Approximate SPAM
are lower than that obtained by Approximate PAM, since the former tries to
find a good solution by optimizing the clusters’ purity. Finally, the execution
of the algorithm with high values of the a parameter shows an increment
about the quality of the clustering solution, even if with small values good
results have been obtained.

102 N. Di Mauro et al.

0,905 W APAM < ASPAM 0,920 4 APAM <~ ASPAM
0,900 0,900
0,880
0,895
0,860
» 0,890
\ 0,840
3 2
2 g
£ o885 3 0820
= 0,800
0,880
0,780
0,875 0.760
0,870 0,740
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
k k
0.700 W APAM < ASPAM 60 WAPAM < ASPAM
0,600 50
0,500
40
- 0,400 ©
s S 30
e 2
£ 0,300 ©
3} L
= 20
0,200
0,100 10
0,000 0
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
k k

Fig. 4 Tightness, Purity, Entropy and Iterations values obtained by Approximate
PAM and Approximate SPAM for the Mutagenesis dataset with o = 20

6 Discussion and Conclusion

Various strategies have been proposed in order to overcome the limitation
imposed by the inborn complexity of most real-word applications whose de-
scriptions involve many relationships. One of the classical approaches consists
in the reformulation of the relational learning in a propositional one followed
by the application of well known propositional learners and by the mapping
back in relational form of the resulting hypotheses. During the reformulation,
a fixed set of structural features is built from relational background knowledge
and the structural properties of the individuals occurring in the examples. In
such a process, each feature is defined in terms of a corresponding program
clause whose body is made up of a set of literals derived from the relational
background knowledge. When the clause defining the feature is called for a
particular individual (i.e., if its argument is bound to some example identi-
fier) and this call succeeds at least once, the corresponding boolean feature
is defined to be true for the given example; otherwise, it is defined to be
false. Examples of systems that implement such kind of propositionalization
process are LINUS [20], and its extensions DINUS [19] and SINUS [18], and

RSD [21].

Approximate Relational Reasoning by Stochastic Propositionalization 103

0,900 W APAM <~ ASPAM 0,950 W APAM <~ ASPAM

0,895 0,900 N\/—‘

., 0890 0,850
4 z
5 5
S 0885 2 0,800
0,880 0,750
0,875 0,700
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
k k
0,700 WAPAM < ASPAM 40 W APAM < ASPAM

0,600 35
0,500 %0
25
0,400
S 20
0,300
8 15
0,200 10
0,100 5

entropy
iterations

Fig. 5 Tightness, Purity, Entropy and Iterations values obtained by Approximate
PAM and Approximate SPAM for the Mutagenesis dataset with o = 50

Alternative approaches avoid the reformulation process and apply propo-
sitionalization directly on the original FOL context: the relational examples
are flattened by substituting them with all (or a subset of) their matchings
with a pattern. To this concern, it was noted [28, B3] 2] that a most suit-
able setting for supervised relational learning is that of multiple instance
problems (MIP), first introduced by Dietterich [11], where each example con-
sists of a set of literals (instances) built on a same predicate symbol. The
multiple instances representation is an extension that offers a good trade-off
between the expressive power of relational learning and the low complexity of
propositional learning. Unfortunately, most of the existing inductive learning
systems are not able to face efficiently with this problem. In some cases the
learning system has an incomplete knowledge about each training example:
It does not know the features vector but it only knows that each example can
be represented by means of one (or more) potential feature vectors (a bag of
instances).

Following this idea, [29] B3] 2] proposed a multi-instance propositional-
ization. In such a framework each relational example is reformulated in its
multiple matchings with a pattern (a formula of the initial hypotheses space
that can be built from the training data or provided by the user). After the

104 N. Di Mauro et al.

0,905 WAPAM < ASPAM 0,940 WAPAM < ASPAM
0,900 0,920
0,900
0,895
0,880
0,890 0.860
0885 3 o840 W—V.

0,880

tightness
purity

0,875

0,700 WAPAM < ASPAM 45 W APAM < ASPAM
0,600
0,500

0,400

entropy

0,300

0,200
10
0,100 5

iterations
N
o

Fig. 6 Tightness, Purity, Entropy and Iterations values obtained by Approximate
PAM and Approximate SPAM for the Mutagenesis dataset with o = 100

reformulation, each initial observation corresponds to many feature vectors
and the search for hypotheses may be re-casted in this propositional represen-
tation as the search for rules that cover at least one instance per observation.
Consequently, the learning task is no longer to induce a hypothesis that is
consistent with all the feature vectors reformulated but a hypothesis that cov-
ers at least one reformulated example of each positive initial training example
and no reformulated example of any negative initial training example.
Specifically, the approach proposed in [33] consists in limiting the num-
ber of possible mappings by means of a selective mapping and then searching
inductive generalizations in the hypotheses space defined by the selected map-
ping type. The type of mapping, i.e. the relevant propositionalization pattern,
is provided by the user/expert and represents a (strong) bias which allows to
dramatically reduce the matching space. On the contrary, in [29] the proposi-
tionalization process is done through a stochastic selection on each example of
a user-defined number of example matchings with the pattern, which allows
to reduce the dimensionality of the reformulated problem. In other words,
for each example it is constructed the set of a user-defined number of hy-
potheses covering the example and not covering any example belonging to
other classes. Then a representative of such a set for each example is learned

Approximate Relational Reasoning by Stochastic Propositionalization 105

0.870 W APAM <~ ASPAM 1,000 W APAM <~ ASPAM
0,900
0,865 anoM
0,860 0,700
o 0,600
© 0855 2 0,500
= 3
=) 2 0,400
0.850 0,300
0,845 0,200
0,100
0,840 0,000
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
k k
0,800 W APAM < ASPAM 80 WAPAM < ASPAM
0,700 70
0,600 60
0,500 50
z 2
S 0,400 S 40
E g
2 ©
S 0,300 2 30
0,200 20
0,100 10
0,000 0
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
k k

Fig. 7 Tightness, Purity, Entropy and Iterations values obtained by Approximate
PAM and Approximate SPAM for the Documents dataset with o = 20

that classifies unseen examples via a nearest-neighbour-like process. Finally,
[2] proposed a method that selectively propositionalizes the relational data
by interleaving attribute-value reformulation and algebraic resolution avoid-
ing, as much as possible, the generation of reformulated data which are not
relevant with respect to the discrimination task and obtaining a reformu-
lated learning problem of tractable size. The obtained set of attribute-value
instances is then used to solve the initial relational problem by applying a
data-driven strategy.

Based on this kind of more suitable propositionalization and on the ex-
isting effective and efficient techniques for feature selection, [1] proposed an
extension of classical feature selection methods for coping with the problem of
relational data by firstly transforming the original relational data in proposi-
tional ones by means of a multi-instance propositionalization and successively
applying methods for feature selection on such a new transformation.

In [I7] the authors propose a stochastic algorithm to automatically derive
features from background knowledge. The algorithm conducts a top-down
search for first-order clauses, where each clause represents a binary feature.
These features are used instead of relations in a subsequent induction step.
In [3] has been presented a work on clustering relational data by using propo-

106 N. Di Mauro et al.

0,880 W APAM <~ ASPAM 1,000 W APAM <~ ASPAM
0,875 0,900 W
0,800

0,870
0,700
0565 o .\k._./h-/.\".
£' 0,500
0,400
0,300
0,200

0,100
0,840 0,000

tightness
o o
o] ©
(5 (2]
(5] o
purity

0,800 W APAM < ASPAM 60 WAPAM < ASPAM

50
0,600

40
0,500

30

entropy
o o

w B

o o

o o
iterations

20

10

4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 0 11 12

Fig. 8 Tightness, Purity, Entropy and Iterations values obtained by Approximate
PAM and Approximate SPAM for the Documents dataset with o = 50

sitionalization. They propositionalize the relational data using randomly gen-
erated first-order rules, which are then converted into boolean features, based
on their coverage. Then the resulting propositional dataset is clustered using a
standard propositional clustering algorithm. It is different from our approach
since it is based on checking the coverage of the generated rule (computation-
ally expensive). Furthermore it does not cluster directly the relational data
but its propositional description.

Efficient multi-relational data mining algorithms have to tackle the prob-
lem of selecting the best search method for exploring the hypotheses space
and the problem of reducing the complexity of the coverage procedure that
assesses the validity of the learned theory against the training examples. A
way of tackling the complexity of this kind of learning systems is to use a
propositional method, that reformulates a multi-relational learning problem
into an attribute-value one.

In this chapter we presented a population based algorithm able to effi-
ciently solve multi-relational problems, and a relational clustering algorithm,
by using an approximate propositional method. The result of an empirical
evaluation on two real-world datasets of the proposed techniques is very
promising and proves the validity of the method.

Approximate Relational Reasoning by Stochastic Propositionalization 107

0880 W APAM - ASPAM 1,000
0,900
0,800
0,700
0,600
0,500
0,400
0,300
0,200
0,100
0,840 0,000

tightness
o o
o] ©
(5 (2]
(5] o
purity

0,800 W APAM < ASPAM 60
0,700
50
0,600
40
0,500
z 2
S 0,400 S 30
£
G 0,300]
= 20
0,200
10
0,100
0,000 0
4 5 6 7 8 9 10 11 12 4

W APAM - ASPAM

'/o—o——«—r’\‘—‘

P N

W APAM 9 ASPAM

Fig. 9 Tightness, Purity, Entropy and Iterations values obtained by Approximate
PAM and Approximate SPAM for the Documents dataset with o = 100

As a future work, we want to investigate the

behaviour of the algorithm

in the case of approximate completeness. In particular, we want to use the
approximate subsumption degree between clauses in order to induce theories

when noisy or uncertain data are available.

References

1. Alphonse, E., Matwin, S.: A dynamic approach to dimensionality reduction in

relational learning. In: Hacid, M.-S., Ras, Z.W.

(eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp.
(2002)

, Zighed, D.A., Kodratoff, Y.
255-679. Springer, Heidelberg

2. Alphonse, E., Rouveirol, C.: Lazy propositionalization for relational learning.
In: Horn, W. (ed.) Proc. of the 14th European Conference on Artificial Intelli-
gence, pp. 256-260. IOS Press, Amsterdam (2000)

3. Anderson, G., Pfahringer, B.: Clustering relational data based on randomized
propositionalization. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 39-48. Springer, Heidelberg (2008)

4. Bisson, G.: Learning in FOL with a similarity measure. In: Proceedings of the
10th National Conference on Artificial Intelligence, pp. 82-87 (1992)

108

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

N. Di Mauro et al.

Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees.
In: Proceedings of the 15th International Conference on Machine Learning, pp.
55-63. Morgan Kaufmann, San Francisco (1998)

Boddy, M., Dean, T.L.: Deliberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence 67, 245-285 (1994)
Bohnebeck, U., Horvath, T., Wrobel, S.: Term comparisons in first-order simi-
larity measures. In: Proceedings of the 8th International Workshop on Inductive
Logic Programming, pp. 65-79. Springer, Heidelberg (1998)

Bratko, I.: Prolog programming for artificial intelligence, 3rd edn. Addison-
Wesley Longman Publishing Co., Amsterdam (2001)

Di Mauro, N., Basile, T.M.A., Ferilli, S., Esposito, F.: Approximate reason-
ing for efficient anytime induction from relational knowledge bases. In: Greco,
S., Lukasiewicz, T. (eds.) SUM 2008. LNCS (LNAI), vol. 5291, pp. 160-173.
Springer, Heidelberg (2008)

Di Mauro, N., Basile, T.M.A., Ferilli, S., Esposito, F.: Stochastic propositional-
ization for efficient multi-relational learning. In: An, A., Matwin, S., Ras, Z.W.,
Slezak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994,
pp. 78-83. Springer, Heidelberg (2008)

Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple in-
stance problem with axis-parallel rectangles. Artificial Intelligence 89(1-2), 31—
71 (1997)

Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience,
Hoboken (2000)

Eick, C.F., Zeidat, N., Zhao, Z.: Supervised clustering: Algorithms and benefits.
In: ICTAI 2004: Proceedings of the 16th IEEE International Conference on
Tools with Artificial Intelligence, pp. 774-776. IEEE Computer Society Press,
Los Alamitos (2004)

Esposito, F., Ferilli, S., Basile, T.M.A., Di Mauro, N.: Machine learning for
digital document processing: From layout analysis to metadata extraction.
In: Marinai, S., Fujisawa, H. (eds.) Machine Learning in Document Analysis
and Recognition. Studies in Computational Intelligence, vol. 90, pp. 105-138.
Springer, Heidelberg (2008)

Giordana, A., Botta, M., Saitta, L.: An experimental study of phase transitions
in matching. In: Thomas, D. (ed.) Proceedings of the 16th International Joint
Conference on Artificial Intelligence. Morgan Kaufmann, San Francisco (1999)
Kaufman, L., Rousseeuw, P.: Finding groups in data: an introduction to cluster
analysis. John Wiley and Sons, Chichester (1990)

Kramer, S., Pfahringer, B., Helma, C.: Stochastic propositionalization of non-
determinate background knowledge. In: Proceedings of the 8th International
Workshop on Inductive Logic Programming, pp. 80-94. Springer, Heidelberg
(1998)

Krogel, M.A., Rawles, S., Zelezny, F., Flach, P., Lavrac, N., Wrobel, S.: Com-
parative evaluation of approaches to propositionalization. In: Horvath, T., Ya-
mamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 194-217. Springer,
Heidelberg (2003)

Lavrac, N., Dzeroski, S.: Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, New York (1994)

Lavrac, N., Dzeroski, S., Grobelnik, M.: Learning nonrecursive definitions of re-
lations with linus. In: Proceedings of the European Working Session on Machine
Learning, pp. 265—281. Springer, Heidelberg (1991)

Approximate Relational Reasoning by Stochastic Propositionalization 109

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Lavra¢, N., Zelezny, F., Flach, P.A.: RSD: Relational subgroup discovery
through first-order feature construction. In: Matwin, S., Sammut, C. (eds.)
ILP 2002. LNCS (LNAI), vol. 2583, pp. 149-165. Springer, Heidelberg (2003)
Muggleton, S.: Inverse Entailment and Progol. New Generation Computing,
Special issue on Inductive Logic Programming 13(3-4), 245286 (1995)
Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming 19/20, 629-679 (1994)

Nienhuys-Cheng, S.-H.: Distances and limits on herbrand interpretations. In:
Proceedings of the 8th International Workshop on Inductive Logic Program-
ming, pp. 250-260. Springer, Heidelberg (1998)

Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D.
(eds.) Machine Intelligence, ch. 8, vol. 5, pp. 153-163. Edinburg Univ. Press
(1970)

Raedt, L.D.: Attribute value learning versus inductive logic programming;:
The missing links (extended abstract). In: Page, D.L. (ed.) ILP 1998. LNCS,
vol. 1446, pp. 1-8. Springer, Heidelberg (1998)

Sebag, M.: Distance induction in first order logic. In: Proceedings of the 7th In-
ternational Workshop on Inductive Logic Programming, pp. 264-272. Springer,
Heidelberg (1997)

Sebag, M., Rouveirol, C.: Induction of maximally general clauses consistent with
integrity constraints. In: Wrobel, S. (ed.) Proceedings of the 4th International
Workshop on Inductive Logic Programming. GMD-Studien, vol. 237, pp. 195—
216. Gesellschaft fiir Mathematik und Datenverarbeitung MBH (1994)

Sebag, M., Rouveirol, C.: Tractable induction and classification in first order
logic via stochastic matching. In: 15th International Join Conference on Artifi-
cial Intelligence, pp. 888-893. Morgan Kaufmann, San Francisco (1997)
Srinivasan, A., Muggleton, S., King, R.: Comparing the use of background
knowledge by inductive logic programming systems. In: Raedt, L.D. (ed.) Pro-
ceedings of the 5th International Workshop on Inductive Logic Programming,
pp. 199-230. Springer, Heidelberg (1995)

Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I. Com-
puter Science Press (1988)

Zilberstein, S., Russell, S.: Approximate reasoning using anytime algorithms.
Imprecise and Approximate Computation 318, 4362 (1995)

Zucker, J.-D., Ganascia, J.-G.: Representation changes for efficient learning in
structural domains. In: Proceedings of 13th International Conference on Ma-
chine Learning, pp. 543-551. Morgan Kaufmann, San Francisco (1996)

	Motivations
	Stochastic Propositionalization
	Logic Background
	Data Reformulation
	Approximate Model Construction
	Approximate Model Validation

	The Anytime Induction Method
	Approximate Relational Clustering
	Definitions and Notations
	Similarity Measure
	Approximate Partition Around Medoid
	Objective Function
	Approximate Supervised Partition Around Medoid

	Experiments
	Induction Task
	Clustering Task

	Discussion and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

