
Coalition Structure Generation with GRASP

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

University of Bari “Aldo Moro”, Italy,
{ndm,basile,ferilli,esposito}@di.uniba.it

Abstract. The coalition structure generation problem represents an active re-
search area in multi-agent systems. A coalition structure is defined as a partition
of the agents involved in a system into disjoint coalitions. The problem of find-
ing the optimal coalition structure is NP-complete. In order to find the optimal
solution in a combinatorial optimization problem it is theoretically possible to
enumerate the solutions and evaluate each. But this approach is infeasiblesince
the number of solutions often grows exponentially with the size of the problem. In
this paper we present a greedy adaptive search procedure (GRASP) to efficiently
search the space of coalition structures in order to find an optimal one.

1 Introduction

An active area of research in multi-agent systems (MASs) is the coalition structure
generation (CSG) of agents (equivalent to the complete set partitioning problem). In
particular it is interesting to find coalition structures maximizing the sum of the values
of the coalitions, that represent the maximum payoff the agents belonging to the coali-
tion can jointly receive by cooperating. A coalition structure is defined as a partition
of the agents involved in a system into disjoint coalitions.The problem of finding the
optimal coalition structure isNP-complete [1, 2]. Coalition generation shares a simi-
lar structure with a number of common problems in theoretical computer science, such
as in combinatorial auctions [3], in which bidders can placebids on combinations of
items; in job shop scheduling; and as in set partitioning andset covering problems.

Sometimes in MASs there is a time limit for finding a solution,the agents must
be reactive and they should act as fast as possible. Hence forthe specific task of CSG
it is necessary to have approximation algorithms able to quickly find solutions that are
within a specific factor of an optimal solution. Hence, the goal of this paper is to propose
a new algorithm for the CSG problem able to quickly find a near optimal solution.

The problem of CSG has been studied in the context of characteristic function
games (CFGs) in which the value of each coalition is given by acharacteristic func-
tion, and the values of a coalition structure are obtained bysumming the value of the
contained coalitions. The problem of coalition structure generation isNP-hard, indeed
as proved in [2], givenn the number of agents, the number of possible coalition struc-
tures than can be generated isO(nn) andω(nn/2). Moreover, in order to establish any
bound from the optimal, any algorithm must search at least2n − 1 coalition structures.
The CSG process can be viewed as being composed of three activities [2]: a)coalition
structure generation, corresponding to the process of generating coalitions such that

agents within each coalition coordinate their activities,but agents do not coordinate be-
tween coalitions. This means partitioning the set of agentsinto exhaustive and disjoint
coalitions. This partition is called a coalition structure(CS); b)optimization: solving
the optimization problem of each coalition. This means pooling the tasks and resources
of the agents in the coalition, and solving this joint problem; and c)payoff distribution:
dividing the value of the generated solution among agents.

Even if these activities are independent of each other, theyhave some interactions.
For example, the coalition that an agent wants to join depends on the portion of the
value that the agent would be allocated in each potential coalition. This paper focuses
on the coalition structure generation in settings where there are too many coalition
structures to enumerate and evaluate due to costly or bounded computation and limited
time. Instead, agents have to select a subset of coalition structures on which to focus
their search.

Specifically, in this work we adopted a stochastic local search procedure [4], named
GRASP [5], to solve the problem of coalition structure generation in CFGs. The main
advantage of using a stochastic local search is to avoid exploring an exponential number
of coalition structures providing a near optimal solution.Indeed, our algorithm does not
provide guarantees about finding the global optimal solution. In particular the questions
we would like to pose are:

– Q1) can the metaheuristic GRASP be used as a valuable anytime solution for the
CSG problem? In many cases, as in CSG, it is necessary to terminate the algo-
rithm prior to completion due to time limits and to reactivity requirements. In this
situation, it is possible to adopt anytime algorithms (i.e.algorithms that may be ter-
minated prior to completion and returning an approximationof the correct answer)
whose quality depends on the amount of computation.

– Q2) can the metaheuristic GRASP be adopted for the CSG problem to find optimal
solution faster than the state of the art exact algorithms for CSG problem? In case of
optimization combinatorial problems, stochastic local search algorithms have been
proved to be very efficient in finding near optimal solution [4]. In many cases, they
outperformed the deterministic algorithms in computing the optimal solution.

2 Definitions

Given a setA = {a1, a2, . . . , an} of n agents,|A| = n, called thegrand coalition, a
coalition S is a non-empty subset of the setA, ∅ 6= S ⊆ A. A coalition structure (CS)
C = {C1, C2, . . . , Ck} ⊆ 2A is a partition of the setA, andk is its size, i.e.∀i, j :
Ci ∩ Cj = ∅ and∪k

i=1Ci = A. ForC = {C1, C2, . . . , Ck}, we define∪C , ∪k
i=1Ci.

We will denote the set of all coalition structures ofA asM(A).
As in common practice [2, 6], we consider coalition structure generation incharac-

teristic function games (CFGs). In CFGs the value of a coalition structureC is given
by V (C) =

∑
S∈C v(S), wherev : 2A → R andv(S) is the value of the coalitionS.

Intuitively, v(S) represents the maximum payoff the members ofS can jointly receive
by cooperating. As in [2], we assume thatv(S) ≥ 0. In case of negative values, it is pos-
sible to normalize the coalition values, obtaining a game strategically equivalent to the
original game [7], by subtracting a lower bound value from all coalition values. Given

a set of agentsA, the goal is to maximize the social welfare of the agents by finding a
coalition structureC∗ = argmaxC∈M(A) V (C).

Given n agents, the size of the input to a CSG algorithm is exponential, since it
contains the valuesv(·) associated to each of the(2n − 1) possible coalitions. Further-
more, the number of coalition structures grows as the numberof agents increases and
corresponds to

∑n
i=1 Z(n, i), whereZ(n, i), also known as the Stirling number of the

second kind, is the number of coalition structures withi coalitions, and may be com-
puted using the following recurrence:Z(n, i) = iZ(n− 1, i) +Z(n− 1, i− 1), where
Z(n, n) = Z(n, 1) = 1. As proved in [2], the number of coalition structures isO(nn)
andω(nn/2), and hence an exhaustive enumeration becomes prohibitive.

In this paper we focus on games that are neithersuperadditive nor subadditive for
which the problem of coalition structure generation is computationally complex. In-
deed, for superadditive games wherev(S∪T) ≥ v(S)+v(T) (meaning any two disjoint
coalitions are better off by merging together), and for subadditive games wherev(S ∪
T) < v(S)+v(T) for all disjoint coalitionsS, T ⊆ A, the problem of coalition structure
generation is trivial. In particular, in superadditive games, the agents are better off form-
ing the grand coalition where all agents operate together (C∗ = {A}), while in subaddi-
tive games, the agents are better off by operating alone (C∗ = {{a1}, {a2}, . . . , {an}}).

3 Related Work

Previous works on CSG can be broadly divided into two main categories: exact algo-
rithms that return an optimal solution, and approximate algorithms that find an approx-
imate solution with limited resources.

A deterministic algorithm must systematically explore thesearch space of candi-
date solutions. One of the first algorithms returning an optimal solution is the dynamic
programming algorithm (DP) proposed in [8] for the set partitioning problem.This al-
gorithm is polynomial in the size of the input (2n − 1) and it runs inO(3n) time, which
is significantly less than an exhaustive enumeration (O(nn)). However, DP is not an
anytime algorithm, and has a large memory requirement. Indeed, for each coalitionC it
computes the tablest1(C) andt2(C). It computes all the possible splits of the coalition
C and assigns tot1(C) the best split and tot2(C) its value. In [6] the authors proposed
an improved version of the DP algorithm (IDP) performing fewer operations and re-
quiring less memory than DP. IDP, as shown by the authors, is considered one of the
fastest available exact algorithm in the literature computing an optimal solution.

Both DP and IDP are not anytime algorithms, they cannot be interrupted before
their normal termination. In [2], Sandholm et al. have presented the first anytime al-
gorithm, that can be interrupted to obtain a solution withina time limit but not guar-
anteed to be optimal. When not interrupted it returns the optimal solution. The CSG
process can be viewed as a search in a coalition structure graph as reported in Fig-
ure 1. One desideratum is to be able to guarantee that the CS iswithin a worst case
bound from optimal, i.e. that searching through a subsetN of coalition structures,
k = min{k′} where k′ ≥ V (S∗)

V (S∗

N
) is finite, and as small as possible, whereS∗ is the best

CS andS∗
N is the best CS that has been seen in the subsetN . In [2] has been proved

that: a) to boundk, it suffices to search the lowest two levels of the coalition structure

Fig. 1.Coalition structure graph for a 4-agent game.

graph (with this search, the boundk = n, and the number of nodes searched is2n−1);
b) this bound is tight; and, c) no other search algorithm can establish any boundk while
searching only2n−1 nodes or fewer.

A new anytime algorithm has been proposed in [9], named IP, whose idea is to
partition the space of the possible solutions into sub-spaces such that it is possible to
compute upper and lower bounds on the values of the best CSs they contain. Then, these
bounds are used to prune all the sub-spaces that cannot contain the optimal solution.
Finally, the algorithm searches through the remaining sub-spaces adopting a branch-
and-bound technique avoiding to examine all the solutions within the searched sub-
spaces.

As regards the approximate algorithms, in [10] it has been proposed a solution based
on a genetic algorithm, which performs well when there is some regularity in the search
space. Indeed, the authors assume, in order to apply their algorithm, that the value of
a coalition is dependent of other coalitions in the CS, making the algorithm not well
suited for the general case. A new solution [11] is based on a Simulated Annealing
algorithm [12], a widely used stochastic local search method. At each iteration the al-
gorithm selects a random neighbour solutions′ of a CSs. The search proceeds with
an adjacent CSs′ of the original CSs if s′ yields a better social welfare thans. Oth-
erwise, the search is continued withs′ with probabilitye(V (s′)−V (s))/t, wheret is the
temperature parameter that decreases according to the annealing schedulet = αt.

4 GRASP for CSG

The resource limits posed by MASs, such as the time for findinga solution, require to
have approximation algorithms able to quickly find solutions that are within a specific
factor of an optimal solution. In this section we present a new anytime algorithm for
CSG based on a stochastic local search procedure, named GRASP-CSG.

A method to find high-quality solutions for a combinatorial problem is a two steps
approach consisting of a greedy construction phase followed by a perturbative1 local

1 A perturbative local search changes candidate solutions by modifying one or more of the cor-
responding solution components.

Algorithm 1 GRASP-CSG
Require: V : the characteristic function;A: the set ofn agents;maxiter: maximum number of

iterations
Ensure: solutionĈ ∈M(A)

Ĉ = ∅, V (Ĉ) = −∞
iter= 0
while iter< maxiterdo
α = rand(0,1);
C = ∅; i = 0
/* construction */
while i < n do
S = {C′|C′ = add(C,A)}
s = max{V (T)|T ∈ C}
s = min{V (T)|T ∈ C}
RCL= {C′ ∈ S|V (C′) ≥ s+ α(s− s)}
randomly select an elementC from RCL
i← i+ 1

/* local search */
N = {C′ ∈ neigh(C)|V (C′) > V (C)}
whileN 6= ∅ do

selectC ∈ N
N ← {C′ ∈ neigh(C)|V (C′) > V (C)}

if V (C) > V (Ĉ) then
Ĉ = C

iter = iter + 1
return Ĉ

search [4]. Namely, the greedy construction method starts the process from an empty
candidate solution and at each construction step adds the best ranked component ac-
cording to a heuristic selection function. Successively, aperturbative local search al-
gorithm is used to improve the candidate solution thus obtained. Advantages of this
search method, over other stochastic local search algorithms, are the much better so-
lution quality and fewer perturbative improvement steps toreach the local optimum.
Greedy Randomized Adaptive Search Procedures (GRASP) [5] solve the problem of
the limited number of different candidate solutions generated by a greedy construc-
tion search methods by randomising the construction method. GRASP is an iterative
process, in which each iteration consists of a constructionphase, producing a feasible
solution, and a local search phase, finding a local optimum inthe neighborhood of the
constructed solution. The best overall solution is returned.

Algorithm 1 reports the outline for GRASP-CSG included in the ELK system. In
each iteration, it computes a solutionC by using a randomised constructive search pro-
cedure and then applies a local search procedure toC yielding an improved solution.
The main procedure is made up of two components: a constructive phase and a local
search phase. The constructive search algorithm used in GRASP-CSG iteratively adds
a solution component by randomly selecting it, according toa uniform distribution,
from a set, namedrestricted candidate list (RCL), of highly ranked solution compo-

nents with respect to a greedy functiong : C → R. The probabilistic component of
GRASP-CSG is characterized by randomly choosing one of the best candidates in the
RCL. In our case the greedy functiong corresponds to the characteristic functionV
presented in Section 2. In particular, givenV , the heuristic function, andC, the set of
feasible solution components,s = min{V (C)|C ∈ C} ands = max{V (C)|C ∈ C}
are computed. Then the RCL is defined by including in it all thecomponentsC such
thatV (C) ≥ s+α(s−s). The parameterα controls the amounts of greediness and ran-
domness. A valueα = 1 corresponds to a greedy construction procedure, whileα = 0
produces a random construction. As reported in [13], GRASP with a fixed nonzero
RCL parameterα is not asymptotically convergent to a global optimum. The solution
to make the algorithm asymptotically globally convergent,could be to randomly select
the parameter value from the continuous interval[0, 1] at the beginning of each iteration
and using this value during the entire iteration, as we implemented in GRASP-CSG.

Given a set of nonempty subsets ofn agentsA, C = {C1, C2, . . . , Ct}, such that
Ci ∩ Cj 6= ∅ and∪C ⊂ A, the functionadd(C,A) used in the construction phase
returns a refinementC ′ obtained fromC using one of the following operators:

1. C ′ → C \ {Ci} ∪ {C ′
i} whereC ′

i = Ci ∪ {ai} andai 6∈ ∪C, or
2. C ′ → C ∪ {Ci} whereCi = {ai} andai 6∈ ∪C.

Starting from the empty set, in the first iteration all the coalitions containing exactly one
agent are considered and the best is selected for further specialization. At the iterationi,
the working set of coalitionC is refined by trying to add an agent to one of the coalitions
in C or a new coalition containing the new agent is added toC.

To improve the solution generated by the construction phase, a local search is used.
It works by iteratively replacing the current solution witha better solution taken from
the neighborhood of the current solution while there is a better solution in the neigh-
borhood. In order to build the neighborhood of a coalition structureC, neigh(C), the
following operators, useful to transform partitions of thegrand coalition, have been
used. Given a CSC = {C1, C2, . . . , Ct}:

split: C → C \ {Ci} ∪ {Ck, Ch}, whereCk ∪ Ch = Ci, with Ck, Ch 6= ∅;
merge: C → C \ {Ci, Cj}i6=j ∪ {Ck}, whereCk = Ci ∪ Cj ;
shift: C → C \ {Ci, Cj}i6=j ∪ {C ′

i, C
′
j}, whereC ′

i = Ci \ {ai} andC ′
j = Cj ∪ {ai},

with ai ∈ Ci.
exchange:C → C \ {Ci, Cj}i6=j ∪ {C ′

i, C
′
j}, whereC ′

i = Ci \ {ai} ∪ {aj} and
C ′

j = Cj \ {aj} ∪ {ai}, with ai ∈ Ci andaj ∈ Cj ;
extract: C → C \ {Ci}i6=j ∪ {C ′

i, Cj}, whereC ′
i = Ci \ {ai} andCj = {ai}, with

ai ∈ Ci.

In the local search phase, the neighborhood of a coalition structureC is built by ap-
plying all the previous operators (split, merge, shift, exchange and extract) toC. As an
example, in Table 1 is reported the application of the operators to the CS{{12}{3}{4}}.
The problem in using more than the two classical merge and split operators corresponds
to the fact of obtaining repetitions of the same CS. This problem deserves further at-
tention, each operator must take into account how other operators works. Concerning
the representation of the characteristic function and the search space, givenn agents

Table 1.Operators applied to the CS{12}{3}{4}.

split merge shift exchange extract
{1}{2}{3}{4} {123}{4} {2}{13}{4} {23}{1}{4} {1}{2}{3}{4}

{124}{3} {2}{3}{14} {24}{3}{1}
{12}{34} {1}{23}{4} {13}{2}{4}

{1}{3}{24} {14}{3}{2}

A = {a1, a2, . . . , an}, we recall that the number of possible coalitions is2n−1. Hence,
the characteristic functionv : 2n → R is represented as a vectorCF in the following
way. Each subsetS ⊆ A (coalition) is described as a binary numbercB = b1b2 · · · bn
where eachbi = 1 if ai ∈ S, bi = 0 otherwise. For instance, givenn = 4, the coalition
{a2, a3} corresponds to the binary number0110. Now, given the binary representation
of a coalitionS, its decimal value corresponds to the index in the vectorCF where its
corresponding valuev(S) is memorised. This gives us the possibility to have a random
access to the values of the characteristic functions in order to efficiently compute the
valueV of a coalition structure.

Given a coalition structureC = {C1, C2, . . . , Ck}, assuming that theCi are or-
dered by their smallest elements, a convenient representation of the CS is a sequence
d1d2 · · · dn wheredi = j, if the agentai belongs to the coalitionCj . Such sequences
are known asrestricted growth sequences [14] in the combinatorial literature. For in-
stance, the sequence corresponding to the coalition structure C = {C1, C2, C3} =
{{1, 2}, {3}, {4}} is 1123. Now in order to computeV (C), we have to solve the sum
v(C1) + v(C2) + v(C3), whereC1 corresponds to the binary number1100, C2 cor-
responds to the binary number0010, andC3 corresponds to the binary number0001.
Hence,V (C) = v(C1) + v(C2) + v(C3) = CF [12] + CF [2] + CF [1], whereCF is
the vector containing the values of the characteristic function.

5 Experimental results

In order to evaluate our GRASP-CSG, we implemented it in the Clanguage and the
corresponding source code has been included in the ELK system2. We also implemented
the algorithm proposed by Sandholm et al. in [2], DP [8], and IDP [6], whose source
code has been included in the ELK system. GRASP-CSG has been compared to those
algorithms and to the Simulated Annealing algorithm (SA) proposed in [11], kindly
provided by the authors.

In the following we present experimental results on the behaviour of these algo-
rithms for some benchmarks considering solution qualitiesand the runtime perfor-
mances. We firstly compared GRASP-CSG to DP and IDP. Then we evaluated its ability
in generating solutions anytime when compared to the SA and to the Sandholm et al.
algorithms.

Instances of the CSG problem have been defined using the following distributions
for the values of the characteristic function:

2 ELK is a system including many algorithms for the CSG problem whose source code is pub-
licly available at http://www.di.uniba.it/∼ndm/elk/.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0,120 secs

58 hours
102 hours

T
im

e

Agents

DP
IDP

GRASP-CSF Normal
GRASP-CSF Uniform

Fig. 2.Comparison between DP, IDP and GRASP-CSG.

1. Normal ifv(C) ∼ N(µ, σ2) whereµ = 1 andσ = 0.1;
2. Uniform if v(C) ∼ U(a, b) wherea = 0 andb = 1.

The algorithms are executed on PC with an Intel Core2 Duo CPU T7250 @ 2.00GHz
and 2GB of RAM, running Linux kernel 2.6.31.

5.1 Optimal solution

Given different numbers of agents, ranging from14 to 27, we compared GRASP-CSG
to DP and IDP reporting the time required to find the optimal coalition structure. As
reported in Figure 2, where the time in seconds is plotted in alog scale, GRASP-CSG
outperforms both DP and IDP for all the distributions. Note that there is one line for DP
and IDP since they do not depend on the input distribution butonly on the input dimen-
sion. Over the problems, the execution time for DP (resp. IDP) ranges from0.124 (resp.
0.06) seconds to approximately366586 (resp.207433) seconds, while for GRASP-CSG
it ranges from0.011 seconds to0.12 seconds on average. In particular, for27 agents
GRASP-CSG is1728608 times faster than IDP. As regards DP and IDP, due to high
time consuming, values for problems with a number of agents ranging from23 to 27
have been analytically calculated since their complexity linearly depends on the prob-
lem size. As we can see from Figure 2 this improvement grows asthe dimension of
the problem grows. Even if we cannot make a direct comparisonto IP, as the authors
reported in [9], IP is 570 times better than IDP in the case of uniform distribution for
27 agents. Since GRASP-CSG is1728608 times faster than IDP for the same problem,
we can argue that GRASP-CSG is faster than IP.

As regards GRASP-CSG we set the maxiter parameter to20 even if in many cases
the optimal CS has been found with fewer iterations, see the details in Figure 3. How-
ever, in this experiment this limit guarantees to find alwaysthe optimal coalition. Given
the number of agents, 10 different instances of the problem for each distribution have
been generated and time is averaged. Figure 3 reports an insight of the GRASP-CSG
execution for three problems (18, 19 and 20 agents). For eachiteration the graphs report
the time and the relative quality of the solution averaged over 10 instances. The relative
quality of a coalition structureC is obtained asV (C)/V (C∗) whereC∗ is the optimal

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 2 4 6 8 10 12 14 16 18 20

T
im

e

Iterations

18
19
20

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0 2 4 6 8 10 12 14 16 18 20

Q
ua

lit
y

Iterations

18
19
20

Fig. 3.Time (in seconds) and relative quality of GRASP-CSG obtained on the first20 iterations.

CS. As we can see, the quality of the obtained CSs is very high just in the first iterations
computed with few milliseconds.

5.2 Approximate solution

In this second experiment we compared the anytime characteristic of GRASP-CSG
to the Sandholm et al. algorithm [2] and the Simulated Annealing algorithm [11]. We
generated 10 instances for each problem with agents rangingfrom 14 to 20 and uniform
distributionU(0, 1). For each problem we set a time limit to return a good solutionand
we recorded the relative error of the obtained solutionS by each of the three algorithms
computed ase = 1− V (S)/V (S∗), whereS∗ is the best CS. Table 2 reports the error
averaged over the 10 instances for each problem. As we can seeGRASP-CSG is always
able to find a better CS than those obtained by Sandholm et al. and SA. With this second
experiment we can conclude that GRASP-CSG quickly finds verygood solutions.

Table 2.Comparison of Sandholm et al., Simulated Annealing (SA) and GRASP-CSG.

AgentsSandholm SA GRASP-CSG

14 0.1340 0.0320 0.0046
15 0.1862 0.0331 0.0000
16 0.1814 0.0205 0.0033
17 0.1514 0.0104 0.0000
18 0.1057 0.0001 0.0000
19 0.1393 0.0052 0.0005
20 0.1399 0.0021 0.0000

6 Conclusions

The paper presented the application of the stochastic localsearch GRASP to the prob-
lem of coalition structure generation. As reported in the experimental section the pro-

posed algorithm outperforms some of the state of the art algorithms in computing opti-
mal coalition structures.

As a future work it should be interesting to investigate the behaviour of the opera-
tors used to create the neighborhood of a coalition structure. In particular, an in deep
study may be conducted in learning to choose the correct operators with respect to the
distribution of the coalition values. Furthermore the application of shift, exchange and
extract operators should generate repetitions of the same coalition structure obtained
with the split and merge operators. Hence, an analysis on howto overcome this prob-
lem, avoiding to spend time and space resources, deserves more attention. Furthermore,
we are planning to apply the proposed method to the more general games such as Parti-
tion Function Games [15], where the coalition’s value may depend on the formation of
another coalition, and to the task-based colaition formation problem [16].

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guideto the Theory of NP-
Completeness. W. H. Freeman & Co. (1990)

2. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure gen-
eration with worst case guarantees. Artificial Intelligence111(1-2) (1999) 209–238

3. Cramton, P., Shoham, Y., Steinberg, R., eds.: Combinatorial Auctions. MIT Press (2006)
4. Hoos, H., Sẗutzle, T.: Stochastic Local Search: Foundations & Applications. MorganKauf-

mann Publishers Inc. (2004)
5. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Journal of

Global Optimization6 (1995) 109–133
6. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for coalition

structure generation. In: Prooceedings of AAMAS08. (2008) 1417–1420
7. Kahan, J.P., Rapoport, A.: Theories of Coalition Formation. Lawrence Erlbaum Associates

Publisher (1984)
8. Yeh, D.Y.: A dynamic programming approach to the complete set partitioning problem. BIT

26(4) (1986) 467–474
9. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for op-

timal coalition structure generation. Journal of Artificial Intelligence Research34(1) (2009)
521–567

10. Sen, S., Dutta, P.S.: Searching for optimal coalition structures. In: Prooceedings of IC-
MAS00, IEEE Computer Society (2000) 287–292

11. Kein̈anen, H.: Simulated annealing for multi-agent coalition formation. In: Prooceedings of
KES-AMSTA09, Springer (2009) 30–39

12. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598) (1983) 671–680

13. Mockus, J., Eddy, E., Mockus, A., Mockus, L., Reklaitis, G.V.: Bayesian Heuristic Approach
to Discrete and Global Optimization. Kluwer Academic Publishers (1997)

14. Milne, S.C.: Restricted growth functions, rank row matchings of partitions lattices, and q-
stirling numbers. Advances in Mathemathics43 (1982) 173–196

15. Rahwan, T., Michalak, T., Jennings, N., Wooldridge, M., McBurney, P.: Coalition structure
generation in multi-agent systems with positive and negative externalities. In: Prooceedings
of IJCAI-09. (2009) 257–263

16. Dang, V.D., Jennings, N.R.: Coalition structure generation in task-based settings. In: Pro-
ceeding of ECAI 2006, IOS Press (2006) 210–214

