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Abstract. The coalition structure generation problem represents an active re-
search area in multi-agent systems. A coalition structure is defined atteopa

of the agents involved in a system into disjoint coalitions. The problem of find-
ing the optimal coalition structure is NP-complete. In order to find the optimal
solution in a combinatorial optimization problem it is theoretically possible to
enumerate the solutions and evaluate each. But this approach is infesisiae

the number of solutions often grows exponentially with the size of the prolilem
this paper we present a greedy adaptive search procedure (QRASHciently
search the space of coalition structures in order to find an optimal one.

1 Introduction

An active area of research in multi-agent systems (MASshésdoalition structure
generation (CSG) of agents (equivalent to the complete aitipning problem). In
particular it is interesting to find coalition structuresximizing the sum of the values
of the coalitions, that represent the maximum payoff theneggkelonging to the coali-
tion can jointly receive by cooperating. A coalition st is defined as a partition
of the agents involved in a system into disjoint coalitionke problem of finding the
optimal coalition structure i/ P-complete [1, 2]. Coalition generation shares a simi-
lar structure with a number of common problems in theoretiomputer science, such
as in combinatorial auctions [3], in which bidders can plams on combinations of
items; in job shop scheduling; and as in set partitioningsetdtovering problems.

Sometimes in MASs there is a time limit for finding a solutidine agents must
be reactive and they should act as fast as possible. Hentleefapecific task of CSG
it is necessary to have approximation algorithms able toldyifind solutions that are
within a specific factor of an optimal solution. Hence, thalgdf this paper is to propose
a new algorithm for the CSG problem able to quickly find a ngaineal solution.

The problem of CSG has been studied in the context of chaistitefunction
games (CFGs) in which the value of each coalition is given loharacteristic func-
tion, and the values of a coalition structure are obtaineduyming the value of the
contained coalitions. The problem of coalition structueagration is\V’P-hard, indeed
as proved in [2], givem the number of agents, the number of possible coalition struc
tures than can be generatedién”) andw(n"/?). Moreover, in order to establish any
bound from the optimal, any algorithm must search at I2&st 1 coalition structures.
The CSG process can be viewed as being composed of thregies{i2]: a)coalition
structure generation, corresponding to the process of generating coalitiont st



agents within each coalition coordinate their activitlag, agents do not coordinate be-
tween coalitions. This means partitioning the set of agentsexhaustive and disjoint
coalitions. This partition is called a coalition struct@S); b)optimization: solving
the optimization problem of each coalition. This means jmapthe tasks and resources
of the agents in the coalition, and solving this joint prabjend c)payoff distribution:
dividing the value of the generated solution among agents.

Even if these activities are independent of each other, hlagg some interactions.
For example, the coalition that an agent wants to join depamdthe portion of the
value that the agent would be allocated in each potentiditioma This paper focuses
on the coalition structure generation in settings whereettzge too many coalition
structures to enumerate and evaluate due to costly or bdwmeputation and limited
time. Instead, agents have to select a subset of coalitiantstes on which to focus
their search.

Specifically, in this work we adopted a stochastic localdearocedure [4], named
GRASP [5], to solve the problem of coalition structure gatien in CFGs. The main
advantage of using a stochastic local search is to avoiderglan exponential number
of coalition structures providing a near optimal solutibvdeed, our algorithm does not
provide guarantees about finding the global optimal satutio particular the questions
we would like to pose are:

— Q1) can the metaheuristic GRASP be used as a valuable anytilngsdor the
CSG problem? In many cases, as in CSG, it is necessary tonteienihe algo-
rithm prior to completion due to time limits and to reactwiequirements. In this
situation, it is possible to adopt anytime algorithms @lgorithms that may be ter-
minated prior to completion and returning an approximatibthe correct answer)
whose quality depends on the amount of computation.

— Q2 can the metaheuristic GRASP be adopted for the CSG prolaldimd optimal
solution faster than the state of the art exact algorithm€8G problem? In case of
optimization combinatorial problems, stochastic locarsh algorithms have been
proved to be very efficient in finding near optimal solutioh 4 many cases, they
outperformed the deterministic algorithms in computing diptimal solution.

2 Definitions

Given a setd = {aj,as,...,a,} of n agents|A| = n, called thegrand coalition, a
coalition S is a non-empty subset of the séf() # S C A. A coalition structure (CS)
C = {0,0y,...,Cx} C 24 is a partition of the setl, andk is its size, i.e¥i, j :
C;NC; =0anduf_C; = A. ForC = {Cy,Cs,...,Ck}, we defineuC = Uk, C;.
We will denote the set of all coalition structuresfasM (A).

As in common practice [2, 6], we consider coalition struetgeneration irtharac-
teristic function games (CFGs). In CFGs the value of a coalition structdrds given
by V(C) = > gec v(S), wherev : 24 — R andwv(S) is the value of the coalitiors.
Intuitively, v(S) represents the maximum payoff the members @fn jointly receive
by cooperating. As in [2], we assume th@b) > 0. In case of negative values, it is pos-
sible to normalize the coalition values, obtaining a gamategically equivalent to the
original game [7], by subtracting a lower bound value froihcahlition values. Given



a set of agentsl, the goal is to maximize the social welfare of the agents kg a
coalition structure™ = arg maxceaq(a) V(C).

Givenn agents, the size of the input to a CSG algorithm is exporlesiizce it
contains the values(-) associated to each of tlig" — 1) possible coalitions. Further-
more, the number of coalition structures grows as the nurobagents increases and
corresponds t§ ", Z(n, %), whereZ(n, i), also known as the Stirling number of the
second kind, is the number of coalition structures wittoalitions, and may be com-
puted using the following recurrenc8(n,i) = iZ(n—1,i)+ Z(n —1,i — 1), where
Z(n,n) = Z(n,1) = 1. As proved in [2], the number of coalition structuregisn™)
andw(n"/?), and hence an exhaustive enumeration becomes prohibitive.

In this paper we focus on games that are neitaperadditive nor subadditive for
which the problem of coalition structure generation is catafionally complex. In-
deed, for superadditive games whe(€UT) > v(S)+wv(T") (meaning any two disjoint
coalitions are better off by merging together), and for slditive games where(S U
T) < v(S)+wv(T) for all disjoint coalitionsS, T' C A, the problem of coalition structure
generation is trivial. In particular, in superadditive gasnthe agents are better off form-
ing the grand coalition where all agents operate togettier { A}), while in subaddi-
tive games, the agents are better off by operating alotie£ {{a1}, {az}, ..., {an}}).

3 Related Work

Previous works on CSG can be broadly divided into two maiegates: exact algo-
rithms that return an optimal solution, and approximat@&igms that find an approx-
imate solution with limited resources.

A deterministic algorithm must systematically explore #sarch space of candi-
date solutions. One of the first algorithms returning anroatisolution is the dynamic
programming algorithm (DP) proposed in [8] for the set pinmning problem.This al-
gorithm is polynomial in the size of the inp@'{— 1) and it runs inO(3™) time, which
is significantly less than an exhaustive enumerati@t{*)). However, DP is not an
anytime algorithm, and has a large memory requirementelaider each coalitiod” it
computes the tables(C) andtz (C). It computes all the possible splits of the coalition
C'and assigns to, (C) the best split and t6,(C') its value. In [6] the authors proposed
an improved version of the DP algorithm (IDP) performing é&veperations and re-
quiring less memory than DP. IDP, as shown by the authorsyrisidered one of the
fastest available exact algorithm in the literature cormguan optimal solution.

Both DP and IDP are not anytime algorithms, they cannot beriapted before
their normal termination. In [2], Sandholm et al. have prgsd the first anytime al-
gorithm, that can be interrupted to obtain a solution withitime limit but not guar-
anteed to be optimal. When not interrupted it returns thenwgdtisolution. The CSG
process can be viewed as a search in a coalition structuph g= reported in Fig-
ure 1. One desideratum is to be able to guarantee that the ®ihis a worst case
bound from optimal, i.e. that searching through a suliéedf coalition structures,
k = min{k’} where k' > “//((gN)) is finite, and as small as possible, whéreis the best
CS andS} is the best CS that has been seen in the sulisén [2] has been proved
that: a) to bound, it suffices to search the lowest two levels of the coalitivocdure
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Fig. 1. Coalition structure graph for a 4-agent game.

graph (with this search, the boukd= n, and the number of nodes searche@'is!);
b) this bound is tight; and, c) no other search algorithm cal#ish any bouné while
searching onl2"~! nodes or fewer.

A new anytime algorithm has been proposed in [9], named IRs&tidea is to
partition the space of the possible solutions into sub-apacich that it is possible to
compute upper and lower bounds on the values of the best €gsdhtain. Then, these
bounds are used to prune all the sub-spaces that cannotrctimgeoptimal solution.
Finally, the algorithm searches through the remaining spaees adopting a branch-
and-bound technique avoiding to examine all the solutioitkinvthe searched sub-
spaces.

As regards the approximate algorithms, in [10] it has beep@sed a solution based
on a genetic algorithm, which performs well when there issoegularity in the search
space. Indeed, the authors assume, in order to apply tlgerithim, that the value of
a coalition is dependent of other coalitions in the CS, mgkire algorithm not well
suited for the general case. A new solution [11] is based oimal8ted Annealing
algorithm [12], a widely used stochastic local search meiti#a each iteration the al-
gorithm selects a random neighbour solutidrof a CSs. The search proceeds with
an adjacent CS’ of the original CSs if s’ yields a better social welfare than Oth-
erwise, the search is continued withwith probability eV (s)=V )/t wheret is the
temperature parameter that decreases according to thalimgnechedule = at.

4 GRASP for CSG

The resource limits posed by MASs, such as the time for findisglution, require to
have approximation algorithms able to quickly find solutidhat are within a specific
factor of an optimal solution. In this section we present & aaytime algorithm for
CSG based on a stochastic local search procedure, namedGRAS.

A method to find high-quality solutions for a combinatoriabplem is a two steps
approach consisting of a greedy construction phase fotldwea perturbativelocal

L A perturbative local search changes candidate solutions by modifyiagomore of the cor-
responding solution components.



Algorithm 1 GRASP-CSG
Require: V' the characteristic functiord: the set ofn agentsmaxiter: maximum number of
iterations R
Ensure: solutionC' € M(A)
C=0,vV(C)=—-
iter=0
while iter < maxiterdo
«a =rand(0,1);
C=0;i=0
/* construction */
while 7 < n do
S ={C'|C" = add(C, A)}
s =max{V(T)|T € C}
s =min{V(T)|T € C}
RCL={C' € S|V(C') > s+ a(s — 5)}
randomly select an eleme@tfrom RCL
i 1+1
/* local search*/
N ={C" € neigh(C)|V(C") > V(C)}
while A # () do
selectC ¢ N/
N+ {C" € neigh(C)|V(C") > V(C)}
if V(C) > V(C) then
C=cC
iter=iter+1
return C

search [4]. Namely, the greedy construction method stheptocess from an empty
candidate solution and at each construction step adds stedgked component ac-
cording to a heuristic selection function. Successivelgegurbative local search al-
gorithm is used to improve the candidate solution thus abthi Advantages of this
search method, over other stochastic local search algwijthre the much better so-
lution quality and fewer perturbative improvement stepsetach the local optimum.
Greedy Randomized Adaptive Search Procedures (GRASPP[# ¢he problem of
the limited number of different candidate solutions getesteby a greedy construc-
tion search methods by randomising the construction metB&ASP is an iterative
process, in which each iteration consists of a construgiltase, producing a feasible
solution, and a local search phase, finding a local optimuthémeighborhood of the
constructed solution. The best overall solution is retdrne

Algorithm 1 reports the outline for GRASP-CSG included ie LK system. In
each iteration, it computes a solutiéhby using a randomised constructive search pro-
cedure and then applies a local search proceduée yelding an improved solution.
The main procedure is made up of two components: a consteugkiase and a local
search phase. The constructive search algorithm used inSPR2SG iteratively adds
a solution component by randomly selecting it, accordin@ teniform distribution,
from a set, namedestricted candidate list (RCL), of highly ranked solution compo-



nents with respect to a greedy functign C — R. The probabilistic component of
GRASP-CSG is characterized by randomly choosing one ofélsedandidates in the
RCL. In our case the greedy functigncorresponds to the characteristic functign
presented in Section 2. In particular, given the heuristic function, and, the set of
feasible solution components,= min{V (C)|C € C} ands = max{V(C)|C € C}
are computed. Then the RCL is defined by including in it all tbenponentg” such
thatV (C) > s+a(s5—s). The parametet controls the amounts of greediness and ran-
domness. A value: = 1 corresponds to a greedy construction procedure, white0
produces a random construction. As reported in [13], GRA®R @ fixed nonzero
RCL parametery is not asymptotically convergent to a global optimum. Thieitson
to make the algorithm asymptotically globally convergeotild be to randomly select
the parameter value from the continuous intef@al] at the beginning of each iteration
and using this value during the entire iteration, as we imgleted in GRASP-CSG.
Given a set of nonempty subsetsiobgentsA, C' = {C;,C, ..., C;}, such that
CinC; # 0 anduC C A, the functionadd(C, A) used in the construction phase
returns a refinementt’ obtained fromC' using one of the following operators:

1. C'— C\{C;} U{C!} whereC! = C; U {a;} anda; ¢ UC, or
2. ¢" —» Cu{C;} whereC; = {a;} anda; ¢ UC.

Starting from the empty set, in the first iteration all thelitmams containing exactly one
agent are considered and the best is selected for furtheiasipation. At the iteration,
the working set of coalitio is refined by trying to add an agent to one of the coalitions
in C' or a new coalition containing the new agent is added'to

To improve the solution generated by the construction pleakeal search is used.
It works by iteratively replacing the current solution wahbetter solution taken from
the neighborhood of the current solution while there is aebetolution in the neigh-
borhood. In order to build the neighborhood of a coalitiouactiureC', neigh(C), the
following operators, useful to transform partitions of t@nd coalition, have been
used. Given aC&' = {C1,Cs, ..., C:}:

split: ¢ — C \ {Cl} U {Ck-, Ch}, whereCy, U C}, = C;, with Cy, C}, # 0;

merge: C' — C\ {C;, C;}iz; U{Ck}, whereCy, = C; U Cj;

shift: ¢ — C \ {Cm Cj}l;,gj @] {Cz/’ C_;}, WhereC’{ =C; \ {CLZ} andC]’- = Cj U {ai},
with a; € C;.

exchange:C — C\ {C;,Cj}ig; U {C;, C7}, whereC} = C; \ {a;} U {a;} and
C; = Cj \ {aj} U {al—}, with a; € C; andaj € Cj,

extract: C' — C\ {C;}ix; U{C},C;}, whereC! = C; \ {a;} andC; = {a;}, with
a; € C;.

In the local search phase, the neighborhood of a coalitioietsireC' is built by ap-
plying all the previous operators (split, merge, shift,leege and extract) t0'. As an
example, in Table 1 is reported the application of the opesab the C§{12}{3}{4}}.
The problem in using more than the two classical merge aiittbgy@rators corresponds
to the fact of obtaining repetitions of the same CS. This |eobdeserves further at-
tention, each operator must take into account how otheratger works. Concerning
the representation of the characteristic function and #zech space, given agents



Table 1.Operators applied to the G32}{3}{4}.

split merge shift exchange extract
{1H2H3Ha {123 {4} {2 H{13H{a {23 {1 {4} {1 {2} {3}{4}
{124} {3}|{2}{3}{14}|{24 {3 {1}
{12334} {1 {23 {4} |{13{2}{4}
{1H{3}{24}|{14}{3}{2}

A ={a1,as,...,a,}, werecall that the number of possible coalition8'is- 1. Hence,
the characteristic function : 2" — R is represented as a vectOi’ in the following
way. Each subsef C A (coalition) is described as a binary number = b1bs - - - b,
where eaclh; = 1 if a; € S, b; = 0 otherwise. For instance, given= 4, the coalition
{a2, a3} corresponds to the binary numtEr0. Now, given the binary representation
of a coalitionsS, its decimal value corresponds to the index in the ve€tbrwhere its
corresponding value(S) is memorised. This gives us the possibility to have a random
access to the values of the characteristic functions inrdadefficiently compute the
valueV of a coalition structure.

Given a coalition structur€’ = {C4,C>,...,Cy}, assuming that th€); are or-
dered by their smallest elements, a convenient repregamiaiftthe CS is a sequence
dids - - - dy, Whered; = j, if the agenta; belongs to the coalitiod’;. Such sequences
are known asestricted growth sequences [14] in the combinatorial literature. For in-
stance, the sequence corresponding to the coalition steu€t = {Cy,Cs,C5} =
{{1,2},{3},{4}} is 1123. Now in order to comput& (C'), we have to solve the sum
v(Ch) + v(C3) + v(Cs), whereCy corresponds to the binary numbgr00, Cy cor-
responds to the binary numb@p10, andC5 corresponds to the binary numhb@#io1.
HenceV(C) = v(C1) + v(Cs) + v(C3) = CF[12] + CF[2] + CF|1], whereCF is
the vector containing the values of the characteristictionc

5 Experimental results

In order to evaluate our GRASP-CSG, we implemented it in tHarf@uage and the
corresponding source code has been included in the ELKragstée also implemented
the algorithm proposed by Sandholm et al. in [2], DP [8], ab& [6], whose source
code has been included in the ELK system. GRASP-CSG has loegpaced to those
algorithms and to the Simulated Annealing algorithm (SAQpmsed in [11], kindly
provided by the authors.

In the following we present experimental results on the bigha of these algo-
rithms for some benchmarks considering solution qualitied the runtime perfor-
mances. We firstly compared GRASP-CSG to DP and IDP. Then aleated its ability
in generating solutions anytime when compared to the SA arnldet Sandholm et al.
algorithms.

Instances of the CSG problem have been defined using thevinfadistributions
for the values of the characteristic function:

2 ELK is a system including many algorithms for the CSG problem whose saarde is pub-
licly available at http://www.di.uniba.it¢ndm/elk/.
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Fig. 2. Comparison between DP, IDP and GRASP-CSG.

1. Normal ifv(C) ~ N(u,0?) wherey = 1 ando = 0.1;
2. Uniform ifv(C) ~ U(a, b) wherea = 0 andb = 1.

The algorithms are executed on PC with an Intel Core2 Duo CP250 @ 2.00GHz
and 2GB of RAM, running Linux kernel 2.6.31.

5.1 Optimal solution

Given different numbers of agents, ranging framto 27, we compared GRASP-CSG
to DP and IDP reporting the time required to find the optimallition structure. As
reported in Figure 2, where the time in seconds is plottedlagacale, GRASP-CSG
outperforms both DP and IDP for all the distributions. Ndtattthere is one line for DP
and IDP since they do not depend on the input distributiorohlyt on the input dimen-
sion. Over the problems, the execution time for DP (resp) i2aRges fron®).124 (resp.
0.06) seconds to approximatedp6586 (resp.207433) seconds, while for GRASP-CSG
it ranges from0.011 seconds td).12 seconds on average. In particular, far agents
GRASP-CSG isl 728608 times faster than IDP. As regards DP and IDP, due to high
time consuming, values for problems with a number of ageantging from23 to 27
have been analytically calculated since their complexitgdrly depends on the prob-
lem size. As we can see from Figure 2 this improvement growth@slimension of
the problem grows. Even if we cannot make a direct compaitisdR, as the authors
reported in [9], IP is 570 times better than IDP in the casenifoun distribution for
27 agents. Since GRASP-CSGIi%28608 times faster than IDP for the same problem,
we can argue that GRASP-CSG is faster than IP.

As regards GRASP-CSG we set the maxiter paramet20 &ven if in many cases
the optimal CS has been found with fewer iterations, see ¢fald in Figure 3. How-
ever, in this experiment this limit guarantees to find alwidngsoptimal coalition. Given
the number of agents, 10 different instances of the probtamedch distribution have
been generated and time is averaged. Figure 3 reports ghtrdithe GRASP-CSG
execution for three problems (18, 19 and 20 agents). Forigzrelion the graphs report
the time and the relative quality of the solution averagest 0 instances. The relative
quality of a coalition structuré€’ is obtained a3’ (C)/V (C*) whereC* is the optimal
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CS. As we can see, the quality of the obtained CSs is very higt) the first iterations
computed with few milliseconds.

5.2 Approximate solution

In this second experiment we compared the anytime chaistaiteof GRASP-CSG
to the Sandholm et al. algorithm [2] and the Simulated Aningadlgorithm [11]. We
generated 10 instances for each problem with agents rafrgimgl4 to 20 and uniform
distributionU (0, 1). For each problem we set a time limit to return a good soleioth
we recorded the relative error of the obtained solufidsy each of the three algorithms
computed ag = 1 — V(5)/V(S*), whereS* is the best CS. Table 2 reports the error
averaged over the 10 instances for each problem. As we cabR&8P-CSG is always
able to find a better CS than those obtained by Sandholm etchEA. With this second
experiment we can conclude that GRASP-CSG quickly finds gend solutions.

Table 2. Comparison of Sandholm et al., Simulated Annealing (SA) and GRASB-CS

[AgentgSandholm SA [GRASP-CSG

14 | 0.1340 |0.0320 0.0046
15 | 0.1862 |0.0331 0.0000
16 | 0.1814 |0.0205 0.0033
17 | 0.1514 |0.0104 0.0000
18 | 0.1057 |0.0001 0.0000
19 | 0.1393 |0.0052 0.0005
20 | 0.1399 |0.0021 0.0000

6 Conclusions

The paper presented the application of the stochastic szath GRASP to the prob-
lem of coalition structure generation. As reported in thpegimental section the pro-



posed algorithm outperforms some of the state of the artigihgas in computing opti-
mal coalition structures.

As a future work it should be interesting to investigate teddviour of the opera-
tors used to create the neighborhood of a coalition stractarparticular, an in deep
study may be conducted in learning to choose the correcatpsrwith respect to the
distribution of the coalition values. Furthermore the &milon of shift, exchange and
extract operators should generate repetitions of the samliion structure obtained
with the split and merge operators. Hence, an analysis ontbhavercome this prob-
lem, avoiding to spend time and space resources, deservesattention. Furthermore,
we are planning to apply the proposed method to the more glegemes such as Parti-
tion Function Games [15], where the coalition’s value magat®l on the formation of
another coalition, and to the task-based colaition foromggiroblem [16].
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