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Abstract. In most real-world applications the choice of the right representation
language represents a fundamental issue, since it may give opportunities for gen-
eralization and make inductive reasoning computationally easier or harder. While
the setting of First Order Logic (FOL) is the most suitable one to model the multi-
relational data of real and complex domains, on the other hand it puts the ques-
tion of the computational complexity of the knowledge induction that represents
a challenge for multi-relational data mining algorithms. Indeed, the complex-
ity of most real domains, in which a lot of relationships are required to model
the objects involved, calls for both an efficient and effective search method for
exploring the space of candidate solutions and a deduction procedure assessing
the validity of the discovered knowledge. A way of tackling the complexity of
such domains is to use a method that reformulates a multi-relational learning task
into an attribute-value one. In this paper we propose an approximate reasoning
technique that decreases the complexity of a relational problem changing both
the language and the inference operation used for the deduction. The complexity
of the FOL language is decreased by means of a stochastic propositionalization
method, while the NP-completeness of the deduction is tackled using an approx-
imate query evaluation. The induction is performed with an anytime algorithm,
implemented by a population based method, able to efficiently extract knowledge
from structured data in form of complete FOL definitions. The validity of the pro-
posed technique has been proved making an empirical evaluation on a real-world
dataset.

1 Motivations

Over the last decades large volumes of data in digital form have been acquired. Most
of these data are stored using relational databases consisting of multiple tables and
associations. Moreover, the data used in the fields of weather prediction, financial risk
analysis and drug design are relational in nature. The induction of conceptual definitions
to model the knowledge of such complex real-world domains is a hard and crucial task.
The challenges posed by such domains are due to various elements such as the noise in
the descriptions, the lack of data, but also the choice of the right representation language
exploited to describe them.

Representation is a fundamental as well as a critical aspect in the process of knowl-
edge discovery. Indeed, the choice of the right representation has a significant impact
on the performance of the learning algorithms but also on the possibility to interpret and



reuse the discovered knowledge. The most suitable representation language to describe
the objects and their relationships of complex real-world domains is a logic-based repre-
sentation such as the first-order logic language (FOL) and the research area implement-
ing algorithms working on this kind of representation is popularly known as Inductive
Logic Programming (ILP). ILP systems represent examples, background knowledge,
hypotheses and target concepts in Horn clause logic. The core of ILP is the use of logic
for representation and the search for syntactically legal hypotheses constructed from
predicates provided by the background knowledge.

However, this representation language allows a potentially large number of map-
pings between descriptions. The obvious consequence of such a representation is that
both the space of candidate solutions to search and the test to assess the validity of the
induced model result more costly. A possible solution is represented by approximate
reasoning techniques [1], that try to decrease the complexity of a problem changing
either the adopted language or the inference operation used for the deduction. In this
way, the results may be unsound or incomplete but with a consequent speed-up and a
reduced reasoning complexity.

A possible approximate reasoning technique consists in reformulating the original
multi-relational learning task in a propositional one (i.e., propositionalization). This
reformulation can be partial (heuristic), in which information is lost and the represen-
tation change is incomplete, or complete, in which no information is lost. In general,
however, it is not possible to efficiently transform multi-relational data into an equiva-
lent propositional form without an exponentially increasing complexity [2]. Alternative
approaches concern the possibility to apply propositionalization directly on the original
FOL context by a sort of flattening of the multi-relational data substituting them with
all (or a subset of) their matchings with a pattern that can be provided by the users or
previously built by the system.

This work proposes a method to decrease the dimensionality of the space of can-
didate solutions of multi-relational data to search by means of a propositionalization
technique in which the transposition of the relational data is performed by an online
flattening of the examples. The proposed method is a population based (genetic) algo-
rithm that stochastically propositionalizes the training examples in which the learning
phase may be viewed as a bottom-up search in the hypotheses space. The objective of
this paper is twofold:

O1: providing an efficient and scalable method for inductive reasoning on relational
databases, combining a genetic approach to navigate the search space of candidate
solutions with a partial transposition of the relational knowledge base in a proposi-
tional one;

02: incorporating an approximate reasoning strategy in a relational inductive learner,
making incomplete a) the validation test (query answering) of the acquired knowl-
edge, and b) the inductive generalization task.

The resulting learning algorithm, of the objective O1, belongs to the class of any-
time algorithms [3] whose quality of results improves gradually as computation time
increases, hence trading this quality against the cost of computation. They are resource
constrained algorithms that return the best solution within a specified computational
budget.



The validation test of the acquired knowledge, in objective O2, corresponds to the
classical query answering task, that in relational learning is obtained by solving a sub-
sumption problem known to be NP-complete. In many cases it is less important to
obtain an exact query result than keeping query response time short. For instance, the
following conjunctive FOL query

author(Al, P1), journal(P1, J),impact(J, I F), author(A2, P2), journal(P2, J)

may be used to test if there exist two authors A1 and A2 that have published a paper
(resp. P1 and P2) in a journal J with an impact factor I F'. Sometimes, instead of a
correct answer, it may be suitable knowing the response for a subset of the authors in
the domain, sacrificing the accuracy to improve running time. The approximate query
answering used in this work is a sampling based technique, in which a random sample
of the individuals involved in the domain is selected and used to solve the query.

2 Related Work

Various strategies have been proposed in order to overcome the limitation imposed by
the inborn complexity of most real-word applications whose descriptions involve many
relationships. One of the classical approaches consists in the reformulation of the rela-
tional learning in a propositional one followed by the application of well known propo-
sitional learners and by the mapping back in relational form of the resulting hypothe-
ses. During the reformulation, a fixed set of structural features is built from relational
background knowledge and the structural properties of the individuals occurring in the
examples. In such a process, each feature is defined in terms of a corresponding pro-
gram clause whose body is made up of a set of literals derived from the relational
background knowledge. When the clause defining the feature is called for a particular
individual (i.e., if its argument is bound to some example identifier) and this call suc-
ceeds at least once, the corresponding boolean feature is defined to be true for the given
example; otherwise, it is defined to be false. Examples of systems that implement such
kind of propositionalization process are LINUS [4], and its extensions DINUS [5] and
SINUS [6], and RSD [7].

Alternative approaches avoid the reformulation process and apply propositional-
ization directly on the original FOL context: the relational examples are flattened by
substituting them with all (or a subset of) their matchings with a pattern. To this con-
cern, it was noted [8—10] that a most suitable setting for supervised relational learning
is that of multiple instance problems (MIP), first introduced by Dietterich [11], where
each example consists of a set of literals (instances) built on a same predicate sym-
bol. The multiple instances representation is an extension that offers a good trade-off
between the expressive power of relational learning and the low complexity of propo-
sitional learning. Unfortunately, most of the existing inductive learning systems are not
able to face efficiently with this problem. In some cases the learning system has an in-
complete knowledge about each training example: It does not know the features vector
but it only knows that each example can be represented by means of one (or more)
potential feature vectors (a bag of instances).



Following this idea, [12,9, 10] proposed a multi-instance propositionalization. In
such a framework each relational example is reformulated in its multiple matchings
with a pattern (a formula of the initial hypotheses space that can be built from the
training data or provided by the user). After the reformulation, each initial observation
corresponds to many feature vectors and the search for hypotheses may be recasted in
this propositional representation as the search for rules that cover at least one instance
per observation. Consequently, the learning task is no longer to induce an hypothesis
that is consistent with all the feature vectors reformulated but an hypothesis that cov-
ers at least one reformulated example of each positive initial training example and no
reformulated example of any negative initial training example.

Specifically, the approach proposed in [9] consists in limiting the number of possible
mappings by means of a selective mapping and then searching inductive generalizations
in the hypotheses space defined by the selected mapping type. The type of mapping, i.e.
the relevant propositionalization pattern, is provided by the user/expert and represents
a (strong) bias which allows to dramatically reduce the matching space. On the con-
trary, in [12] the propositionalization process is done through a stochastic selection on
each example of a user-defined number of example matchings with the pattern, which
allows to reduce the dimensionality of the reformulated problem. In other words, for
each example it is constructed the set of a user-defined number of hypotheses cov-
ering the example and not covering any example belonging to other classes. Then a
representative of such a set for each example is learned that classifies unseen examples
via a nearest-neighbour-like process. Finally, [10] proposed a method that selectively
propositionalizes the relational data by interleaving attribute-value reformulation and
algebraic resolution avoiding, as much as possible, the generation of reformulated data
which are not relevant with respect to the discrimination task and obtaining a reformu-
lated learning problem of tractable size. The obtained set of attribute-value instances is
then used to solve the initial relational problem by applying a data-driven strategy.

Based on this kind of more suitable propositionalization and on the existing effective
and efficient techniques for feature selection, [13] proposed an extension of classical
feature selection methods for coping with the problem of relational data by firstly trans-
forming the original relational data in propositional ones by means of a multi-instance
propositionalization and successively applying methods for feature selection on such a
new transformation.

3 The anytime induction method

In this paper we propose a technique that, reformulating the training positive and neg-
ative examples, solves the multi-relational learning problem by applying a data-driven
bottom-up strategy.

3.1 Logic background

We used Datalog [14] as representation language for the domain and induced knowl-
edge, that here is briefly reviewed. For a more comprehensive introduction to logic
programming and ILP we refer the reader to [15, 16, 5].



A first-order alphabet consists of a set of constants, a set of variables, a set of
Sfunction symbols, and a non-empty set of predicate symbols. Each function symbol and
each predicate symbol has a natural number (its arity) assigned to it. The arity assigned
to a function symbol represents the number of arguments the function has. Constants
may be viewed as function symbols of arity 0. A term is a constant symbol, a variable
symbols, or an n-ary function symbol f applied to n terms ¢1, to, . .., t,.

An atom p(t1,...,t,) (or atomic formula) is a predicate symbol p of arity n ap-
plied to n terms ¢;. Both [ and its negation [ are said to be literals (resp. positive and
negative literal) whenever [ is an atomic formula. A clause is a formula of the form
VX1VXo .. VX, (LiV LyV...VL;VLiy1 V...V L,,) where each L; is a literal and
X4, Xs,... X, are all the variables occurring in Ly V Lo V .. .L;V...L,,. Most com-
monly the same clause is written as an implication Ly, Lo, ... L;—1 < L;, Liy1,... Ly,
where Ly, Lo, ... L;_; is the head of the clause and L;, L; 41, . .. Ly, is the body of the
clause. Clauses, literals and terms are said to be ground whenever they do not contain
variables. A Horn clause is a clause which contains at most one positive literal. A Dat-
alog clause is a clause with no function symbols of non-zero arity; only variables and
constants can be used as predicate arguments.

A substitution 0 is defined as a set of bindings {X; < a1,...,X,, < a,} where
X;,1 <i < nisavariable and a;,1 < i < n is a term. A substitution 6 is applicable
to an expression e, obtaining the expression e, by replacing all variables X; with their
corresponding terms a;.

The learning problem for ILP can be formally defined:

Given: A finite set of clauses B (background knowledge) and sets of clauses E* and
E~ (positive and negative examples).

Find: A theory X' (a finite set of clauses), such that X' U B is correct with respect to
Et and E~,ie.:a) X U B is complete with respect to E: X U B = E™; and, b)
X U B is consistent with respectto E—: Y UB £ E~.

Given the formula YUB | E™, deriving E* from X UB is deduction, and deriving
X from B and E7 is induction. In the simplest model, 3 is supposed to be empty and
the deductive inference rule |= corresponds to 6-subsumption between clauses.

Definition 1 (6-subsumption). A clause cq 6-subsumes a clause cy if and only if there
exists a substitution o such that cyo C co. ¢1 is a generalization of co (and co a spe-
cialization of c1) under 0-subsumption. If c¢1 0-subsumes cs then ¢, = ca.

f-subsumption is the test used in relational learning for query answering. It corre-
sponds to the most time consuming task of the induction process being it a problem
NP-complete. In Section 3.4 we will present an approximate §-subsumption test based
on a sampling method described in the following section.

3.2 Data Reformulation

The method we propose is based on a stochastic reformulation of examples that, dif-
ferently from other proposed propositionalization techniques, does not use the classical
subsumption relation. For instance, in PROPAL [10], each example F, described in



FOL, is reformulated into a set of matchings of a propositional pattern P with E by
using the classical #-subsumption procedure, being in this way still bound to the FOL
context. On the contrary, in our approach the reformulation is based on a synfactic
rewriting of the training examples based on a fixed set of domain constants.

Let F be an example, represented as a Datalog ground clause, and let consts(FE)
be the set of the constants appearing in E. One can write a new example E’ from E
by changing one or more constants in F, i.e. by renaming. In particular, £’ may be
obtained by applying an antisubstitution (i.e., a mapping from terms onto variables)
and a substitution under Object Identity (OI) to F, E' = Eo~'90;, where o~ 1 is an
antisubstitution that maps terms to variables, and o is a substitution under OI. In
the Object Identity framework, within a clause, terms that are denoted with different
symbols must be distinct, i.e. they must represent different objects of the domain. In
the following we will omit the OI notation, and we will consider substitutions under the
Object Identity framework.

Definition 2 (Renaming of an example). A ground renaming of an example E, R(E),
is obtained by applying a substitution 0 = {Vi/t1,Va/ta,... Vi /tn} to Ec™1, ie.
R(E) = Ec=0, such that o~ is an antisubstitution, {V1, Va, ...V, } Cvars(Ec~1),
and {ty,ta, .. .t,} are distinct constants of consts(E), n = consts(E).

Example 1. Let E : h(a) < q(a,b),c(b),t(b,c) an example, C = consts(E) =
{a,b,c}, and 0=' = {a/X,b/Y,c/Z} an antisubstitution. All the possible ground
renamings of £, R(E) in the following, are

E; : h(a) < q(a,b), c(b),t(b,c),

Es : h(a) < q(a,c)

E3 : h(

E4 : h(

Es : h(c) < q(c,a),c(a),t(a,b),

Es : h(c) < q(c,b), c(b),t(b,a)
obtained by applying to Eo~! : h(X) « q(X,Y),c(Y), (Y, Z) all the possible injec-
tive substitutions from vars(Eo~!) = {X,Y, Z} to consts(E).

In this way, we do not need to use the f-subsumption test to compute the renamings
of an example F, we just have to rewrite it considering the permutations of the constants
in consts(E).

Lemma 1. Given an example E, let m =| consts(E) |. The number of all possible
renamings of E, |R(E)|, is equal to the number of permutations on a set of m constants,
Le. |R(E)| = P =ml

m

Proof. Letconsts(E) = {c1,¢2,...,cm},and ot = {e1/Vi,ca/Vay ...y Cm/Vin} be
an antisubstitution. By Definition 2, a renaming R(E) € R(E) is obtained by choosing
a substitution 0; = {V;/t1;, Va/tas, ..., Vin/tms}, where {t1;,t0;...,tm;} are ele-
ments of consts(E), s.t. R(E) = Eo~'6;. Letting fixed variables Vi,j=1...m,all
the possible substitutions ; can be obtained by selecting permutations (¢1;t2; -« - tyn; )i
of the elements in the set {c1, co, ..., ¢y }. Being P/ = ml, it follows that |R(E)| =
HR(E) | R(E) = Ec~10;}| = P = ml. q



Lemma 2. All the renamings of an example E belong to the same equivalence class,
[E] = R(E) = {R(F) € £ | R(E) ~s E}, based on the equivalence relation ~
defined by a ~ b iff a is syntactically equivalent to b, where £ is the set of all the
possible ground clauses. In particular, given an example E, VE' € [E],30,07! s.t.
E'c™'0=E.

Proof. Let consts(E) = {c1,ca,...,cm}. If R,Q € R(E) then, by Definition 2,
Jo=t = {c1/Vi,c2/Vay .o yem/Vin '}, and O = {Vi/tig, ..., Vin/tmg} and 0 =
Vi/tig, -, Vin/tmq}, where (tig---tmpg) and (t1g - - - tm() are permutations of
the elements in the set consts(E), st. R = Eo~'0p and Q = Eo '6g. Now,
RiG'o = Qb5 o, where 0" = {t1z/Va, . tmp/Vin}, 05" = {t1ig/Vi, -+ tmq/Vim}
and 0 = {Vi/c1,...,Vin/cm}, and hence R and @ are syntactically equivalent, R ~

Q.

Table 1 reports the propositional representation of the renamings belonging to the
equivalence class of the clause reported in the Example 1.

h(a)|h(b)|h(c)|q(a,b)|q(a,c)|q(b,a)|q(b,c)|q(c.a)|q(c,b) [c(a) [c(b)|c(c)|t(a,b)|t(a,c) |t(b,a) [t(b,c)[t(c,a)|t(c,b)
FEi| e 3 . °
Es| e . . °
E3 . . . .
Ey . . . °
FEs5 . . . . B
FEg . . . .

Table 1. Renamings of the clause h(a) < g(a,b), c(b), t(b, c)

3.3 Approximate Model Construction

In the general framework of ILP, the generalization of clauses, and hence the model con-
struction, is based on the concept of least general generalization originally introduced
by Plotkin. Given two clauses C and Cs, C; generalizes Cs (denoted by C; < Cs) if
C subsumes Cy, i.e. there exists a substitution  such that C;10 C Cs.

In our propositionalization framework, a generalization C' (a non-ground clause) of
two positive examples F; and F; may be calculated by turning constants into variables
in the intersection between a renaming of F; and a renaming of Fj.

Definition 3. Let E and E5 be two positive examples, n and m the number of con-
stants in Fy and Fs respectively. Let C be a set of p constants such that p > n and
p > m. R(E1){cy and R(Es)(cy indicate two generic renamings of the examples Ey
and Es, respectively, onto the set of constants C.

Proposition 1 (Generalization). Given E,, E5 examples, a generalization G such that
subsumes both Ey and Ey, G < E1, Es is

G = (R(E1)(cy N R(E2)cy)o "



Proof. We must show, by generalization definition, that there exist 61, 6> substitutions,
such that G6; C Eq and GOy C FEs. VZ] e Go; . lj € (R(El){c} N R(Eg){c})ailei,
and hence [; € R(Ei){c}aflﬁi. 0; are substitutions that map variables in G onto terms
in E;. Since R(E;){cyo~'0; € [E;] then R(E;)(cyo~6; ~s E; by Lemma 2. Thus,
Vlj e GO, : lj € F;, hence GO; C E;. N

In order to obtain consistent intersections, it is important to note that all the renam-
ings, for both E; and E», must be calculated on the same fixed set of constants. Hence,
given E, Es, ..., E, examples, the set C of the constants useful to build the renamings
may be chosen equal to

C= argn}gax(\consts(Ei)D.

Furthermore, to avoid empty generalizations, the constants appearing in the head literal
of the renamings must be take fixed.

Example 2. Given two positive examples
Ey - h(a) — Q(av b)a C(b)7 t(ba C)7p(C, d) and
Es - h(d) - Q(dv 6), C(d)a t(ea f)

We calculate C as:

C= argrr}lgaxﬂconsts(Ei)D = consts(Ey) = {a, b, c,d}.

Now,
R(El){C} = {h(a)v _‘q(a7 b), _'C(b)v _'t(b» C)u —|p(c, d)}’
R<E2){C} = {h(a)7 jC](a’ b)a jc(a)v ﬁt(bv C)}
A generalization G of E; and Ej is
G = (R(E1)(cy N R(Es)(cy)o~" = {h(a), ~q(a,b),=t(b,c)}o~ " =
= (h(a) — Q(av b)a t(ba C))O—il = h(X) — q(X, Y)a t(Ya Z)
with o=t = {a/X,b/Y,c/Z}.

3.4 Approximate Model Validation

The model validation we adopt in the proposed framework to assess and exploit the
generated model on the seen and unseen data is based on a syntactic lazy matching.

Corollary 1 (Subsumption). Given a generalization G and an example E, G sub-
sumes E iff R(GO)(cy N R(E){cy ~s GO.

Proof. —) If G subsumes F then, by definition, there exists a substitution 6 s.t. G C
E. This means that VI € GO : | € E and hence GO N E = GO ~, R(GO)cy =
R(GON E){C} = R(GG){C} N R(E){C}.

) If R(GO)(cy N R(E) ¢y ~s GO, then by Proposition 1,

(R(GO) oy NR(E)(cy)o ' < E

= R(G@){C}O_l <FE

=36: R(GG){C}U_l(S CE

= (GOo'"16") oS CE

=G0 CFE



Algorithm 1 Sprol

Input: E*: positive examples; E_: negative examples; o the parameter for negative coverage; [3: the parameter for
positive coverage; k: the dimension of the population; r: number of restarts;

Output: the hypotheses h

1:c= argmaxp. cp_ g+ p- (

2: while ET # 0 do

consts(E;)|);

3:  selectaseed e from B

4:  /#select k renamings of e */

5:  Population < ren(k, e, C);

6:  PopPrec « Population; i < 0;

7:  whilei < r do

8: P—0;

9: for each element v € Population do

10: for each positive example e € ET do
11: /# select t renamings of e #/

12: V4 «—ren(t,e™,C);

13: /* generalization */

14: PhPU{ulu:vﬁwi,wiEVCJF};
15: Population « P;

16: /* Consistency check */

17: for each negative example e~ € E~ do
18: /* select o renamings of e~ */

19: V,— «—ren(a,e”,C);

20: for each element v € Population do
21: if v covers an element of V,_ then
22: remove v from Population

23: /* Completeness check */

24 for each element v € Population do

25: completeness,, < 0;

26: for each positive example et € E * do
27: /* select 3 renamings of et #/

28: Vp — ren(3,e",C);

29: for each element v € Population do
30: ifJu € V4 st.unNv=vthen
31: completeness,, «— completeness,, + 1;
32: ie— i1

33: if [Population| = O then

34: /* restart with the previous population */
35: Population «— PopPrec;

36: else

37: leave in Population the best k& generalizations only;
38: PopPrec «<— Population;

39:  add the best element b € Population to h;
40:  remove from E7 the positive exs covered by b

To be complete, the procedure must prove the test G0 N E = GO for all P! =
(n%!r)! renamings of GO and E, where n = max{|consts(G0)|, |consts(E)|} and r =
min{|consts(GO)|, |consts(E)|} and by taking fixed the renaming for the clause G or
FE containing less constants. However, we can make the test approximate by randomly
choosing a number « of all the possible permutations.

Definition 4 (Subsumption degree). Let be n the number of all possible renamings of
GO and E, and o, o < n, the renamings to test the subsumption between G and E. The
subsumption degree between G and E is defined as

1 if R(G9) ¢y N R(E) oy ~s GO:
sd(G,E) = |R(GO) (o} NR(E) (o1 ] to o

argmaxe TR(GO) o] otherwise.




In this paper we do not use the subsumption degree to access the validity of gen-
eralizations. Each generalization G is considered complete with respect to a positive
example E if R(GO)(cy N R(E)(cy ~s GO (exact completeness) for a given renam-
ing, and it is considered consistent with respect to a negative example £’ if R(G0)cy N
R(E'){cy ~s GO does not hold for all the chosen « renamings (approximate consis-
tency). The induction with subsumption degree represents a future work.

To reduce the set of possible permutations we can fix the associations for the vari-
ables in the head of the generalization G. In particular if G : h(V1, Va,... , Vy) «— ...
and E : h(cq,c,...,¢cq) < ... then we can fix in all the generated permutations the
associations {V; /e1, Va/ca, ..., Vy/cat, d < r.n.

Finally, we can further reduce the set of permutations by taking into account the
positions of the costants in the literals. Suppose p(V1, Va, ..., Vi) be a literal of the
generalization GG. Then, all the constants that may be associated to V;, 1 < ¢ < k, are
all those appearing in position ¢ in the literals p/k of the example E.

3.5 Sprol system

Algorithm 1 reports the sketch of the Sprol system, implemented in Yap Prolog 5.1.1,
that incorporates ideas of the propositional framework we proposed. Sprol is a popu-
lation based algorithm where several individual candidate solutions are simultaneously
maintained using a constant size population implementing the anytime nature of the
algorithm. The population of candidate solutions provides a straightforward means for
achieving search diversification and hence for increasing the exploration capabilities of
the search process. In our case, the population is made up of candidate generalizations
over the training positive examples. In many cases, local minima are quite common in
search algorithms and the corresponding candidate solutions are typically not of suf-
ficiently high quality. The strategy we used to escape from local minima is a restart
strategy that simply reinitializes the search process whenever a local minimum is en-
countered.

Sprol takes as input the set of positive and negative examples of the training set and
some user-defined parameters characterizing its approximate and anytime behaviour.
In particular, « and (3 represent the number of renamings of a negative, respectively
positive, example to use for the covering test; k is the size of the population; and r is
the number of restarts.

As reported in Algorithm 1, Sprol tries to find a set of clauses that cover all the
positive examples and no negative one, by using an iterative population based covering
mechanism. It sets the initial population made up of k randomly chosen renamings of a
positive example (lines 3-5). Then, the elements of the population are iteratively gener-
alized on the positive examples of the training set (lines 9-15). All the generalizations
that cover at least one negative example are taken out (lines 16-22), and the quality of
each generalization, based on the number of covered positive examples, is calculated
(lines 23-31). Finally, best k generalizations are taken into account for the next itera-
tion (line 37). In case of an empty population a restart is generated with the previous
population (line 35).

Renamings of an example are generated according to the procedure reported in
Algorithm 2, that randomly chooses k renamings of the example £ onto the set of



constants C'. This procedure implements the approximate and anytime nature of the
method. Indeed, the parameter k represents at the same time both the approximation
degree and the time allocated for the algorithm. The more renamings the algorithm
select, the more accurate generalizations and subsumptions will be, but the more time
to compute them will be needed.

It is important to note that our approach constructs hypotheses that are only ap-
proximately consistent. Indeed, in the consistency check it is possible that there exists
a matching between an hypothesis and a negative example. The number « of allowed
permutations is responsible of the induction cost as well as of the consistency of the
produced hypotheses. An obvious consequence is that the more permutations allowed,
the more consistent the hypotheses found and, perhaps, the more learning time.

Algorithm 2 ren(k, E, C)
Input: k: the number of renamings; E: the example; C': a set of constants;
Output: aset S of renamings of £/

I: S0

2: fori=1to kdo

3: S«— Su {R(E){C}}

4 Experiments

In order to evaluate the system Sprol, we performed experiments on the classical ILP
mutagenesis dataset [17] consisting of structural descriptions of molecules. The Muta-
genesis dataset has been collected to identify mutagenic activity in a compound based
on its molecular structure and is considered to be a benchmark dataset for multi-relational
learning. The Mutagenesis dataset consists of the molecular structure of 230 com-
pounds, of which 138 are labelled as mutagenic and 92 as non-mutagenic. The mu-
tagenicity of the compounds has been determined by the Ames Test. The task is to
distinguish mutagenic compounds from non-mutagenic ones based on their molecular
structure. The Mutagenesis dataset basically consists of atoms, bonds, atom types, bond
types and partial charges on atoms. The dataset also consists of the hydrophobicity of
the compound (logP), the energy level of the compound’s lowest unoccupied molecular
orbital (LUMO), a boolean attribute identifying compounds with 3 or more benzyl rings
(I1), and a boolean attribute identifying compounds which are acenthryles (Ia). Ia, I1,
logP and LUMO are relevant properties in determining mutagencity.

The size of the population has been set to 50, the parameter « to 50, the parameter 3
to 50, and making 5 restarts. As measures of performance, we use predictive accuracy
and execution time. Results have been compared to those obtained by running, on both
the same machine and dataset, the system Progol [18]. A 10-fold cross-validation pro-
duced the results reported in Table 2, averaged over the 10-folds, where we can note that
there is an evident improvement of the execution time with respect to Progol obtaining
a comparable predictive accuracy of the learned theory.



Progol SPROL
Time Accuracy|Time Accuracy
M1 (330.76 84.21 |[56.73 57.89
M2 |479.03 7895 |41.15 89.47
M3 |53595 84.21 |48.51 73.68
M4 |738.54 68.42 |63.67 84.21
M5 |699.90 89.47 [55.56 84.21
M6 |497.08 7895 |53.55 78.49
M7 |498.22 84.21 [71.97 84.21
M8 |584.00 78.95 |56.29 89.47
M9 |511.88 68.42 |50.44 83.33
M10|587.18 82.35 |65.63 70.59

Mean|546.25 79.81 |56.35 79.60
Table 2. Execution time (in seconds) and accuracy of Progol and Sprol on the mutagenesis
dataset.

A second experiment, whose result are reported in Table 3, has been made in order
to evaluate how the behaviour of the algorithm change by altering parameters &, o and

8.

Time Accuracy

k=50 7549 71.14
a=5008=50k=75 9680 75,35
k=100 117.29 71.67
B =40 78.84 78.67
B=50 7549 71.14
B=60 7439 76.85
6 =100 114 78.02
a=40 7549 70.19
a=50 7549 71.14
a=60 5635 79.6
Table 3. Results on parameter settings.

o =50k =50

B =50k =50

As we can see in Table 3, the first row reports the case in which we fixed a and 3
and letting k to change. Obviously, taking more elements in the population make grow
the execution time. Furtherome, the second and the third row show that changing 3 does
not change the accuracy of the theory. On the contrary o seems to be more important
than (3 in improving the system performances. A further investigation of this behaviour
deserve a more accurate experiment on an ad-hoc artificial dataset.

5 Conclusion

Efficient multi-relational data mining algorithms have to tackle the problem of selecting
the best search method for exploring the hypotheses space and the problem of reducing



the complexity of the coverage procedure that assessis the validity of the learned theory
against the training examples. A way of tackling the complexity of this kind of learning
systems is to use a propositional method, that reformulates a multi-relational learning
problem into an attribute-value one.

In this paper we proposed a population based algorithm able to efficiently solve
multi-relational problems by using an approximate propositional method. The result of
an empirical evaluation on the mutagenesis dataset of the proposed technique is very
promising and proves the validity of the method.

As a future work, we plan to perform more in-depth experiments, on a purposely
defined artificial dataset, in order to evaluate the method dependence from the param-
eters k, o and (3. A solution should be to automatically discover, in an online manner,
the correct input parameters of Sprol for a given learning task.

Furthermore, we want to investigate the behaviour of the algorithm in the case of ap-
proximate completeness. In particular, we want to use the subsumption degree between
clauses in order to induce theories when noisy or uncertain data are available.
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