
Stochastic Propositionalization for efficient
Multi-Relational Learning

N. Di Mauro, T.M.A. Basile, S. Ferilli, and F. Esposito

Department of Computer Science, University of Bari, ITALY
{ndm, basile, ferilli, esposito}@di.uniba.it

Abstract. The efficiency of multi-relational data mining algorithms,
addressing the problem of learning First Order Logic (FOL) theories,
strongly depends on the search method used for exploring the hypothe-
ses space and on the coverage test assessing the validity of the learned
theory against the training examples. A way of tackling the complexity
of this kind of learning systems is to use a propositional method that
reformulates a multi-relational learning problem into an attribute-value
one. We propose a population based algorithm that using a stochastic
propositional method efficiently learns complete FOL definitions.

1 Introduction

The efficacy of induction algorithms has been shown on a wide variety of bench-
mark domains. However, current machine learning techniques are inadequate for
learning in more difficult real-world domains. The nature of the problem can
be of different type as noise in the descriptions and lack of data, but also the
representation language exploited to describe the examples of the target concept.

It is well known that the choice of the right representation for a learning
problem has a significant impact on the performance of the learning systems. In
traditional supervised learning problems, the learner is provided with training
examples typically represented as vectors of attribute-value. In most complex
real-world domains, however, it is necessary to adopt a more powerful represen-
tation language, such as a FOL language, a natural extension of the propositional
representation, that is able to describe any kind of relation between objects. In-
ductive Logic Programming (ILP) systems are able to learn hypotheses expressed
with this more powerful language. However, this representation language allows a
potentially great number of mappings between descriptions (relational learning),
differently from the feature vector representation in which only one mapping is
possible (propositional learning). The obvious consequence of such a representa-
tion is that both the hypotheses space to search and the coverage test to assess
the validity of the learned hypotheses against positive (all covered) and negative
(all rejected) examples result more costly than in the case of propositional one.

A possible solution is a reformulation of the original multi-relational learning
problem in a propositional one [4, 3, 2, 5]. During the reformulation, a fixed set of
structural features is built from relational background knowledge and the struc-
tural properties of the individuals occurring in the examples. In such a process,

each feature is defined in terms of a corresponding program clause whose body
is made up of a set of literals derived from the relational background knowledge.
When the clause defining the feature is called for a particular individual (i.e., if
its argument is bound to some example identifier) and this call succeeds at least
once, the corresponding boolean feature is defined to be true.

Alternative approaches avoid the reformulation process and apply proposi-
tionalization directly on the original FOL context: the relational examples are
flattened by substituting them with all (or a subset of) their matchings with a
pattern. Following this idea, [7, 9, 1] proposed a multi-instance propositionaliza-
tion in which each relational example is reformulated in its multiple matchings
with a pattern. After that, to each initial observation correspond many feature
vectors and the search for hypotheses may be recasted in this propositional rep-
resentation as the search for rules that cover at least one instance per positive
observation and no instance of negative observations.

This work proposes a propositionalization technique in which the transposi-
tion of the relational data is performed by an online flattening of the examples.
The proposed method is a population based algorithm that stochastically propo-
sitionalizes the training examples in which the learning phase may be viewed as
a bottom-up search in the hypotheses space. The method is based on a stochastic
reformulation of examples that, differently from other proposed propositional-
ization techniques, does not use the classical subsumption relation used in ILP.
For instance, in PROPAL [1], each example E, described in FOL, is reformu-
lated into a set of matchings of a propositional pattern P with E by using the
classical θ-subsumption procedure, being in this way still bond to FOL context.
On the contrary, in our approach the reformulation is based on an rewriting of
the training examples on a fixed set of domain constants.

2 The proposed technique

In this section the underlying idea of the propositionalization technique along
with its implementation in the Sprol system will be given.

Let e an example of the training set, represented as a Datalog1 ground clause,
and let consts(e) the set of the constants appearing in e. One can write a new
example e′ from e by changing one or more constants in e, i.e. by renaming.

In particular, e′ may be obtained by applying an antisubstitution2 and a
substitution3 under Object Identity to e, e′ = eσ−1θOI . In the Object Identity
framework, within a clause, terms that are denoted with different symbols must
be distinct, i.e. they must represent different objects of the domain.

Definition 1 (Renaming of an example). A ground renaming of an example
E, is obtained by applying a substitution θ = {V1/t1, V2/t2, . . . Vn/tn} to Eσ−1,
1 Horn clause language without function symbols with arity greater than 0.
2 An antisubstitution is a mapping from terms into variables.
3 A substitution θ is a finite set of the form {V1/t1, V2/t2, . . . Vn/tn} (n ≥ 0) where in

each binding Vi/ti the Vi is a variable (Vi 6= Vj) and each ti is a term. θ is a ground
substitution when each ti is a ground term.

such that {V1, V2, . . . Vn} ⊆ vars(Eσ−1), {t1, t2, . . . tn} are distinct constants of
consts(E), and σ−1 is an antisubstitution.

In this way, we do not need to use the θ-subsumption test to compute the re-
namings of an example E, we just have to rewrite it considering the permutations
of the constants in consts(E).

2.1 Generalizing examples

In the general framework of ILP the generalization of clauses is based on the
concept of least general generalization originally introduced by Plotkin. Given
two clauses C1 and C2, C1 generalizes C2 (denoted by C1 ≤ C2) if C1 subsumes
C2, i.e. there exists a substitution θ such that C1θ ⊆ C2.

In our propositionalization framework, a generalization C (a non-ground
clause) of two positive examples E1 and E2 may be calculated by turning con-
stants into variables in the intersection between a renaming of E1 and a renaming
of E2. In order to obtain consistent intersections, it is important to note that all
the renamings, for both E1 and E2, must be calculated on the same fixed set of
constants. Hence, given E1, E2, . . . , En examples, the set C of the constants use-
ful to build the renamings may be chosen equal to C = arg maxEi

(|consts(Ei)|).
Furthermore, to avoid empty generalizations, the constants appearing in the

head literal of the renamings must be taken fixed. More formally, let ren(E,C)
a generic renaming of an example E onto the set of constants C, a generalization
G such that subsumes both E1 and E2 is (ren(E1, C) ∩ ren(E2, C))σ−1.

Example 1. Given two positive examples E1 : h(a) ← q(a, b), c(b), t(b, c), p(c, d)
and E2 : h(d)← q(d, e), c(d), t(e, f), let C = arg maxEi

(|consts(Ei)|) =
= consts(E1) = {a, b, c, d}. A generalization G of E1 and E2 is
G = (ren(E1, C) ∩ ren(E2, C))σ−1 =
= ({h(a),¬q(a, b),¬c(b),¬t(b, c),¬p(c, d)}∩{h(a),¬q(a, b),¬c(a),¬t(b, c)})σ−1 =
= {h(a),¬q(a, b),¬t(b, c)}σ−1 = (h(a)← q(a, b), t(b, c))σ−1 =
= h(X)← q(X,Y), t(Y, Z) with σ−1 = {a/X, b/Y, c/Z}.

2.2 Covering examples

In the classical ILP setting, generalizations are evaluated on the training exam-
ples using the θ-subsumption as a covering procedure. Here, the covering test is
based on a syntactic lazy matching more efficient than the θ-subsumption.

Given a generalization G and an example E, it is possible to prove that G
subsumes E under OI iff exists a permutation P (n, r) = (c1, c2, . . . , cr) of size r
of the constants consts(E), with r = |vars(G)|, n = |consts(E)| and r ≤ n, such
that Gθ ∩ E = G with θ = {V1/c1, V2/c2, . . . , Vr/cr}, Vi ∈ vars(G), Vi 6= Vj . In
order to be complete, the procedure must prove the test Gθ ∩E = G for all the
permutations P (n, r). However, we can make the test stochastic by randomly
choosing a number α of all the possible permutations.

To reduce the set of possible permutations we can fix the associations for the
variables in the head of the generalization G. In particular if

Algorithm 1 Sprol
Input: E+: pos exs; E−: neg exs; α: the parameter for neg coverage; β: the parameter

for pos coverage; k: the dimension of the population; r: number of restarts;
Output: the hypotheses h
1: C = arg maxEi∈E+(|consts(Ei)|);
2: while E+ 6= ∅ do
3: select a seed e from E+

4: Population ← ren(k, e, C); /* select k renamings of e */
5: PopPrec ← Population; i← 0;
6: while i < r do
7: P ← ∅;
8: for each element v ∈ Population do
9: for each positive example e+ ∈ E+ do

10: Ve+ ← ren(t, e+, C); /* select t renamings of e+ */
11: P ← P ∪{u|u = v ∩ wi, wi ∈ Ve+}; /* generalization */
12: Population ← P;
13: /* Consistency check */
14: for each negative example e− ∈ E− do
15: Ve− ← ren(α, e−, C); /* select α renamings of e− */
16: for each element v ∈ Population do
17: if v covers an element of Ve− then remove v from Population
18: /* Completeness check */
19: for each element v ∈ Population do completenessv ← 0;
20: for each positive example e+ ∈ E+ do
21: Ve+ ← ren(β, e+, C); /* select β renamings of e+ */
22: for each element v ∈ Population do
23: if ∃u ∈ Ve+ s.t. u ∩ v = v then completenessv ← completenessv + 1;
24: i← i+ 1;
25: if |Population| = 0 then
26: Population ← PopPrec; /* restart with the previous population */
27: else
28: leave in Population the best k generalizations only; PopPrec← Population;
29: add the best element b ∈ Population to h;
30: remove from E+ the positive examples covered by b

G : h(V1, V2, . . . , Vd)← . . . and E : h(c1, c2, . . . , cd)← . . .
then we can fix the associations {V1/c1, V2/c2, . . . , Vd/cd}, d ≤ r, n in all the
generated permutations. Furthermore, we can ulteriorly reduce the set of per-
mutations by taking into account the positions of the costants in the literals.
Supposing p(V1, V2, . . . , Vk) be a literal of the generalization G. Then, all the
constants that may be associated to Vi, 1 ≤ i ≤ k, are all those appearing in
position i in the literals p/k of the example E.

2.3 The algorithm

Algorithm 1 reports the sketch of the Sprol system, implemented in Yap Prolog
5.1.1, that incorporates ideas of the propositional framework we proposed. Sprol

is a population based algorithm where several individual candidate solutions
are simultaneously maintained using a constant size population. The population
of candidate solutions provides a straightforward means for achieving search
diversification and hence for increasing the exploration capabilities of the search
process. In our case, the population is made up of candidate generalizations over
the training positive examples. In many cases, local minima are quite common
in search algorithms and the corresponding candidate solutions are typically not
of sufficiently high quality. The strategy we used to escape from local minima
is a restart strategy that simply reinitializes the search process whenever a local
minimum is encountered.

Sprol takes as input the set of positive and negative examples of the training
set and some user-defined parameters characterizing its stochastic behavior. In
particular, α and β represent the number of renamings of a negative, respectively
positive, example to use for the covering test; k is the size of the population;
and, r is the number of restarts.

As reported in Algorithm 1, Sprol tries to find a set of clauses that cover
all the positive examples and no negative one, by using an iterative population
based covering mechanism. It sets the initial population made up of k randomly
chosen renamings of a positive example (lines 3-4). Then, the elements of the
population are iteratively generalized on the positive examples of the training
set (lines 9-11). All the generalizations that cover at least one negative example
are taken out (lines 14-17), and the quality of each generalization, based on the
number of covered positive examples, is calculated (lines 18-24). Finally, best
k generalizations are considered for the next iteration (line 28). In case of an
empty population a restart is generated with the previous population (line 26).

Renamings of an example are generate randomly choosing a number of k
renamings of the example E onto the set of its constants C.

It is important to note that our approach constructs hypotheses that are
only approximately consistent. Indeed, in the consistency check it is possible
that there exists a matching between an hypothesis and a negative example.
The number α of allowed permutations is responsible of the induction cost as
well as the consistency of the produced hypotheses. An obvious consequence is
that the more permutations allowed, the more consistent the hypotheses found
and, perhaps, the more learning time.

3 Discussion and Conclusion

In order to evaluate the system Sprol, we performed experiments on the classical
mutagenesis dataset [8],consisting of structural descriptions of molecules to be
classified into mutagenic and non-mutagenic ones, for which we considered the
atom bond descriptions, the indicator variables, logp and lumo. The size k of
the population has been set to 50, at the same way of α and β, and making 5
restarts.

As measures of performance, we use predictive accuracy and execution time.
Results have been compared to that obtained by Progol [6]. The experiments

were performed exploiting a 10-fold cross-validation. The Sprol results, averaged
over the 10-folds, show an improvement of the execution time with respect to
Progol (56.35 sec. of Sprol vs 546.25 sec. of Prolog) obtaining a good predictive
accuracy of the learned theory (80.4% of Sprol vs 79.81% of Prolog).

As a concluding remark, the proposed population based algorithm is able
to efficiently solve multi-relational problems by using a stochastic propositional
method. The result of an empirical evaluation on the mutagenesis dataset of the
proposed technique is very promising and proves the validity of the method.

It is important to note that α and β parameters used in the algorithm for
checking consistency and completeness lead to different behaviors of the induc-
tion process. In particular, in complex domains with a lot of failure derivations
between hypotheses and negative examples, low values for α may lead to incon-
sistent hypotheses. On the other way, low values for β may produce a theory with
many hypotheses. An extensive study of this problem is needed and it represents
an important future work. Furthermore, we plan to automatically discover, in an
online manner, the correct input parameters of Sprol for a given learning task.

Finally, more experiments, and comparisons with other classical ILP systems,
are needed to better evaluate the methodology, especially using synthetic data
well suited for a parameter setting study.

References

1. E. Alphonse and C. Rouveirol. Lazy propositionalization for relational learning. In
W. Horn, editor, Proceedings of ECAI’2000, pages 256–260. IOS Press, 2000.

2. M.-A. Krogel, S. Rawles, F. Zelezny, P. Flach, N. Lavrac, and S. Wrobel. Compar-
ative evaluation of approaches to propositionalization. In T. Horvath and A. Ya-
mamoto, editors, Proceedings of ILP’2003, volume 2835 of Lecture Notes in Com-
puter Science, pages 194–217. Springer-Verlag Heidelberg, 2003.

3. N. Lavrac and S. Dzeroski. Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, Chichester, 1994.

4. N. Lavrac, S. Dzeroski, and M. Grobelnik. Learning nonrecursive definitions of
relations with LINUS. In Y. Kodratoff, editor, Machine Learning - EWSL, volume
482 of Lecture Notes in Computer Science, pages 265–281. Springer, 1991.

5. N. Lavrač, F. Železný, and P. A. Flach. RSD: Relational subgroup discovery through
first-order feature construction. In S. Matwin and C. Sammut, editors, Proceedings
of ILP’2002, volume 2583 of LNAI, pages 149–165. Springer Verlag, 2002.

6. S. Muggleton. Inverse Entailment and Progol. New Generation Computing, Special
issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

7. M. Sebag and Rouveirol C. Tractable induction and classification in first order logic
via stochastic matching. In Proceedings of IJCAI’97, pages 888–893, 1997.

8. A. Srinivasan, S. Muggleton, and R.D. King. Comparing the use of background
knowledge by inductive logic programming systems. In L. De Raedt, editor, Pro-
ceedings of ILP’95, pages 199–230. Springer-Verlag Heidelberg, 1995.

9. J.-D. Zucker and J.-G. Ganascia. Representation changes for efficient learning in
structural domains. In Proceedings of ECML’96, pages 543–551, 1996.

