
Markov Logic Networks

for Document Layout Correction

Stefano Ferilli, Teresa M.A. Basile, and Nicola Di Mauro

Department of Computer Science, LACAM laboratory
University of Bari “Aldo Moro”, via Orabona 4, 70125 - Bari,

{ferilli, basile, ndm}@di.uniba.it

Abstract. The huge amount of documents in digital formats raised the
need of effective content-based retrieval techniques. Since manual index-
ing is infeasible and subjective, automatic techniques are the obvious
solution. In particular, the ability of properly identifying and under-
standing a document’s structure is crucial, in order to focus on the most
significant components only. Thus, the quality of the layout analysis out-
come biases the next understanding steps. Unfortunately, due to the va-
riety of document styles and formats, the automatically found structure
often needs to be manually adjusted. In this work we present a tool
based on Markov Logic Networks to infer corrections rules to be applied
to forthcoming documents. The proposed tool, embedded in a prototypi-
cal version of the document processing system DOMINUS, revealed good
performance in real-world experiments.

1 Introduction

The task aimed at identifying the geometrical structure of a document is known
as Layout Analysis, and represents a wide area of research in document process-
ing, for which several solutions have been proposed in literature. The quality
of the layout analysis outcome is crucial, because it determines and biases the
quality of the next understanding steps. Unfortunately, the variety of document
styles and formats to be processed makes the layout analysis task a non-trivial
one, so that the automatically found structure often needs to be manually fixed
by domain experts.

The geometric layout analysis phase involves several processes, among which
page decomposition. Several works concerning the page decomposition step are
present in the literature, exploiting different approaches and having different ob-
jectives. Basic operators of all these approaches are split and merge: they exploit
the features extracted from an elementary block to decide whether splitting or
merging two or more of the identified basic blocks in a top-down [8], bottom-up
[15] or hybrid approach [12] to the page decomposition step. Since all methods
split or merge blocks/components based on certain parameters, parameter esti-
mation is crucial in layout analysis. All these methods exploit parameters that
are able to model the split or merge operations in specific classes of the docu-
ment domain. Few adaptive methods, in the sense that split or merge operations
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are performed using estimated parameter values, are present in the literature [2,
10]. A step forward is represented by the exploitation of Machine Learning tech-
niques in order to automatically assess the parameters/rules able to perform the
document page decomposition, and hence the eventual correction of the per-
formed split/merge operations, without requiring an empirical evaluation on the
specific document domain at hand. To this regard, learning methods have been
used to separate textual areas from graphical areas [5] and to classify text re-
gions as headline, main text, etc. [3, 9] or even to learn split/merge rules in order
to carry out the corresponding operations and/or correction [11, 16].

However, a common limit of the above reported methods regards the consid-
eration that they are all designed with the aim of working on scanned documents,
and in some cases on documents of a specified typology, thus lacking any gener-
ality of the proposal with respect to the online available documents that can be
of different digital formats. On the other hand, methods that work on natively
digital documents assume that the segmentation phase can be carried out by
simply performing a matching of the document itself with a standard template,
even in this case, of a specified format. In this work we propose the application
of a Statistical Relational Learning [7] (SRL) technique to infer a probabilistic
logical model recognising wrong document layouts from sample corrections per-
formed by expert users in order to automatically apply them to future incoming
documents. Corrections are codified in a first-order language and the learned
correction model is represented as a Markov Logic Network [14] (MLN). Exper-
iments in a real-world task confirmed the good performance of the solution.

2 Preliminaries

In this section we briefly describe DOC (Document Organization Composer) [4],
a tool for discovering a full layout hierarchy in digital documents based primarily
on layout information. The layout analysis process starts with a preprocessing
step performed by a module that takes as input a generic digital document and
extracts the set of its elementary layout components (basic-blocks), that will be
exploited to identify increasingly complex aggregations of basic components.

The first step in the document layout analysis concerns the identification
of rules to automatically shift from the basic digital document description to a
higher level one. Indeed, the basic-blocks often correspond just to fragments of
words (e.g., in PS/PDF documents), thus a preliminary aggregation based on
their overlapping or adjacency is needed in order to obtain blocks surrounding
whole words (word-blocks). Successively, a further aggregation of word-blocks
could be performed to identify text lines (line-blocks). As to the grouping of
blocks into lines, since techniques based on the mean distance between blocks
proved unable to correctly handle cases of multi-column documents, Machine
Learning approaches were applied in order to automatically infer rewriting rules
that could suggest how to set some parameters in order to group together rect-
angles (words) to obtain lines. To do this, a kernel-based method was exploited
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to learn rewriting rules able to perform the bottom-up construction of the whole
document starting from the basic/word blocks up to the lines.

The next step towards the discovery of the high-level layout structure of a
document page consists in applying an improvement of the algorithm reported
in [1]. To this aim, DOC analyzes the whitespace and background structure of
each page in the document in terms of rectangular covers and identifies the white
rectangles that are present in the page by decreasing area, thus reducing to the
Maximal White Rectangle problem as follows: given a set of rectangular con-
tent blocks (obstacles) C = {r0, . . . , rn}, all placed inside the page rectangular
contour rb, find a rectangle r contained in rb whose area is maximal and that
does not overlap any ri ∈ C. The algorithm exploits a priority queue of pairs
(r,O), where r is a rectangle and O is a set of obstacles overlapping r. The
priority of the pair in the queue corresponds to the area of its rectangle. Pairs
are iteratively extracted from the queue and if the set of obstacles corresponding
to its rectangle is empty, then it represents the maximum white rectangle still
to be discovered. Otherwise, one of its obstacles is chosen as a pivot and the
rectangle is consequently split into four regions (above, below, to the right and
to the left of the pivot). Each such region, along with the obstacles that fall in
it, represents a new pair to be inserted in the queue. Complement of the found
maximal white rectangles yield the document content blocks.

However, taking the algorithm to its natural end and then computing the
complement would result again in the original basic blocks, while the layout
analysis process aims at returning higher-level layout aggregates. This raised the
problem of identifying a stop criterion to end this process. An empirical study
carried out on a set of 100 documents of three different categories revealed that
the best moment to stop the algorithm is when the ratio of the last white area
retrieved with respect to the total white area in the current page of the document
decreases up to 0, since before it the layout is not sufficiently detailed, while after
it useless white spaces are found.

3 Learning Layout Correction Theories

The proposed strategy for automatically assessing a threshold to decide when
stopping the background retrieval loop allows to immediately reach a layout that
is already good for many further tasks of document image understanding. Nev-
ertheless, such a threshold is clearly a trade off between several document types
and shapes, and hence in some cases the layout needs to be slightly improved
through a fine-tuning step that must be specific for each single document. To
handle this problem, a tool was provided that allows the user to directly point
out useful background fragments that were not yet retrieved and add them ex-
plicitly (white forcing), or, conversely, to select useless ones that were erroneously
retrieved and remove them from the final layout (black forcing).

The forcing functionality allows the user to interact with the layout analysis
algorithm and suggest which specific blocks are to be considered as background
or content. To see how it can be obtained, let us recall that the algorithm, at



4 Stefano Ferilli, Teresa M.A. Basile, and Nicola Di Mauro

each step, extracts from the queue a new area to be examined and can take three
actions correspondingly: if the contour is not empty, it is split and the resulting
fragments are enqueued; if the contour is empty and fulfils the constraints, it is
added to the list of white areas; if the contour is empty but does not fulfil the
constraints, it is discarded.

Allowing the user to interact with the algorithm means modifying the algo-
rithm behaviour as a consequence of his choices. It turns out that the relevance
of a (white or black) block to the overall layout can be assessed based on its
position inside the document page and its relationships with the other layout
components. According to this assumption, each time the user applies a manual
correction, the information on his actions and on their effect can be stored in a
trace file for subsequent analysis. In particular, each manual correction (user in-
tervention) can be exploited as an example from which learning a model on how
to classify blocks as meaningful or meaningless for the overall layout. Applying
the learned models in subsequent incoming documents, it would be possible to
automatically decide whether or not any white (resp., black) block is to be in-
cluded as background (resp., content) in the final layout, this way reducing the
need for user intervention.

3.1 Description Language

Now let us turn to the way in which the trace of manual corrections are codified.
The assumption is that the user changes the document layout when he considers
that the proposed layout is wrong, then it forces a specific block because he
knows the resulting effect on the document and considers it as satisfactory. Thus,
to properly learn rules that can help in automatically fixing and improving the
document layout analysis outcome, one must consider what is available before the
correction takes place, and what will be obtained after it is carried out. For this
reason, each example, representing a correction, will include a description of the
blocks’ layout both before and after the correction. However, the modification is
typically local, i.e. it does not affect the whole document layout, but involves just
a limited area surrounding the forced block. This allows to limit the description
to just such an area. To sum up, the log file of the manual corrections, applied by
the user after the execution of the layout analysis algorithm, will include both
the white and the black blocks he forced, and will record, for each correction,
information about the blocks and frames surrounding the forced block, both
before and after the correction.

In the following b stands for block, f for frame and r for rectangle. Each
log example is represented as a set of first-order predicates and it is labelled
as positive for forcing black (merge(b)) or white block (split(b)). Negative
examples are denoted by negating the predicate with the not predicate.

A set of facts describing the other blocks in the area of interest before and
after the correction are reported. It contains information on the document page
in which the correction took place, the horizontal/vertical size and position of
a block in the overall document, whether it is at the beginning, in the middle
or at the end of the document, furthermore the forced block and the layout
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situation both before and after the correction are represented in the log example.
The description of each of the two situations (before and after the correction)
is based on literals expressing the page layout and describing the blocks and
frames surrounding the forced block, and, among them, only those touching or
overlapping the forced block. Each involved frame frame(r) or block block(r)

is considered as a rectangular area of the page, and described according to the
following parameters: horizontal and vertical position of its centroid with respect
to the top-left corner of the page (posX(r,x) and posY(r,y)), height and width
(width(r) and height(r)), and its content type (type(r,t)).

The relationships between blocks/frames are described by means of a set
of predicates representing the spatial relationships existing among all consid-
ered frames and among all blocks belonging to the same frame (belongs(b,f)),
that touch or overlap the forced block; furthermore for each frame or block that
touches the forced block a literal specifying that they touch (touches(b1,b2));
finally, for each block of a frame that overlaps the forced block the percent-
age of overlapping (overlaps(b1,b2,perc). It is fundamental to completely
describe the mutual spatial relationships among all involved elements. All, and
only, the relationships between each block/frame and the forced blocks are ex-
pressed, but not their inverses (i.e., the relationships between the forced block
and the block/frame in question). To this aim, the model proposed in [13] for
representing the spatial relationships among the blocks/frames was considered.
Specifically, according to such a model, fixed a rectangle, its plane is partitioned
in 25 parts and its spatial relationships to any other rectangle in the plane can
be specified by simply listing the parts to which the other rectangle overlaps
(overlapPart(r1,r2,part)).

3.2 Markov Logic Networks background

Here, we briefly introduce the notions of a SRL approach combining first-order
logic and probabilistic graphical models in a single representation. SRL seeks to
combine the power of statistical learning to deal with the presence of uncertainty
in many real-world application domains, and the power of relational learning in
dealing the complex structure of such domains. We provide the background on
Markov Logic Networks [14] (MLNs) representing first-order knowledge base
with a weight attached to each formula.

A Markov Network (MN) models the joint distribution of a set of variables
X = (X1, . . . , Xn) made up of an undirected graph G and a set of potential
functions φk. Each variable is represented with a node in the graph, and the
model has a potential function for each clique in the graph. The joint distribution
represented by a MN is given by

P (X = x) =
1

Z

∏

k

φk(x{k}),

where x{k} is the state of the k-th clique, and the partition function Z is given by
Z =

∑

x∈X

∏

k φk(x{k}). MNs may be represented as log-linear models, where
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each potential clique is replaced by an exponentiated weighted sum of features
of the state, as in the following formula

P (X = x) =
1

Z
exp





∑

j

wjfj(x)



 .

A first-order knowledge base (KB) is a set of formulas in first-order logic
constructed using constants, variables, functions and predicates. A formula is
satisfiable iff there exists at least one world (Herbrand interpretation) in which
it is true. A first-order KB can be seen as a set of hard constraints on the set
of possible worlds: if a world violates even one formula, it has zero probability,
and MLNs soften these constraints. When a world violates one formula it is less
probable, but not impossible. The fewer formulas a world violates, the more
probable it is. In MLNs each formula has an associated weight representing how
strong a constraint is. An high weight corresponds to a great difference in log
probability between a world that satisfies the formula and one that does not.

More formally, A MLN L is a set of pairs (Fi, wi), where Fi is a formula in
first-order logic and wi is a real number. Together with a finite set of constants
C = {c1, . . . , cn}, it defines a MN ML,C that a) contains one binary node1 for
each possible grounding of each predicate appearing in L, and one feature2 for
each possible grounding of each formula Fi in L, whose weight is the wi associated
with Fi in L. A MLN can be viewed as a template for constructing MNs, named
ground Markov networks. The probability distribution over possible worlds x

specified by the ground MN ML,C is given by

P (X = x) =
1

Z
exp

(

∑

i

wini(s)

)

=
1

Z

∏

i

φi(x{i})
ni(x), (1)

where ni(x) is the number of true groundings of Fi in x, x{i} is the state (truth
values) of the atoms appearing in Fi, and φi(x{i}) = ewi .

Reasoning with MLNs can be classified as either learning or inference. Infer-
ence in SRL is the problem of computing probabilities to answer specific queries
after having defined a probability distribution. Learning corresponds to infer
both the structure and the parameters of the true unknown model. An inference
task is computing the probability that a formula holds, given an MLN and set
of constants, that, by definition, is the sum of the probabilities of the worlds
where it holds. MLN weights can be learned generatively by maximizing the
likelihood of a relational database consisting of one or more possible worlds that
form our training examples. The inference and learning algorithms for MLNs
are publicly available in the open-source Alchemy system3. Given a relational
database and a set of clauses in the KB, many weights learning and inference pro-
cedures are implemented in the Alchemy system. For weight learning, we used

1 The value of the node is 1 if the ground atom is true, and 0 otherwise.
2 The value of the feature is 1 if the ground formula is true, and 0 otherwise.
3 http://alchemy.cs.washington.edu/
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the generative approach tha maximise the pseudo-likelihood of the data with
standard Alchemy parameters (./learnwts -g), while for inference, we used
the MaxWalkSAT procedure (./infer) with standard Alchemy parameters.

Predicates split(b) and merge(b) represent the query in our MLN, where b
is the forced block. The goal is to assign a black (merge) or white (split) forcing
to unlabelled blocks. The MLN clauses used in our system are reported in the
following. There is one of the following rule for each of the 25 planes capturing
the spatial relationships among the blocks:

overlapPart(b1,b,part) => split(b), merge(b)

Other relations are represented by the MLN rules:
belongs(b1,b) => split(b), merge(b)

touches(b1,b) => split(b), merge(b)

overlaps(b1,b,perc) => split(b), merge(b)

belongs(b1,b) => split(b1), merge(b1)

touches(b1,b) => split(b1), merge(b1)

overlaps(b1,b,perc) => split(b1), merge(b1)

Running weight learning with Alchemy, we will learn a weight for every clause
representing how good a relation is for predicting the label. Then, whit this
classifier, each test instance can be classified using inference.

4 Experimental evaluation

The proposed description language was used to run an experiment aimed at
checking whether it is possible to learn a theory that can profitably automatize,
at least partially, the layout correction process. Two target concepts were consid-
ered: split (corresponding to the fact that a block discarded or not yet retrieved
by the layout analysis algorithm must be forced to belong to the background)
and merge (corresponding to the fact that a white rectangle found by the lay-
out analysis algorithm must, instead, be discarded). A 10-fold cross-validation
technique was exploited to obtain the training and test sets.

The experimental dataset concerned the corrections applied to obtain the
correct layout on about one hundred documents, evenly distributed in four cat-
egories. According to the strategy described above, the examples concern signif-
icant background blocks that were not retrieved (split) or useless white blocks
erroneously considered as background (merge) by the basic layout analysis al-
gorithm. For the first dataset this activity resulted in a set of 786 examples of
block correction, specifically 263 for split and 523 for merge. Positive examples
for split were considered as negative for merge and vice versa, this way exploit-
ing the whole dataset. Thus, each single correction was interpreted from two
perspectives: as a positive example for the kind of forcing actually carried out
by the user, and additionally as a negative example for the other kind of forcing.

The performances of the algorithm is evaluated by computing the area under
the Receiver Operating Characteristic (ROC) curve, which shows how the num-
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ber of correctly classified positive examples varies with the number of incorrectly
classified negative examples, and the Precision-Recall (PR) curve.

Table 1. Area under the ROC and PR curves for split (S) and merge (M).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean ± St.Dev.

S
ROC 0.992 0.961 0.913 0.910 0.964 0.917 0.916 0.984 0.968 0.940 0.946 ± 0.031
PR 0.989 0.968 0.810 0.868 0.949 0.916 0.762 0.967 0.946 0.852 0.903 ± 0.076

M
ROC 0.941 0.971 0.964 0.950 0.966 0.950 0.978 0.952 0.952 0.920 0.954 ± 0.017
PR 0.966 0.983 0.933 0.970 0.985 0.972 0.989 0.934 0.963 0.930 0.962 ± 0.023

Table 1 reports the results for the queries split and merge in this first exper-
iment. The outcomes of the experiment suggest that the description language
proposed and the way in which the forcings are described are effective to let
the system learn clause weights that can be successfully used for automatic lay-
out correction. This suggested to try another experiment to simulate the actual
behavior of such an automatic system, working on the basic layout analysis al-
gorithm. After finishing the execution of the layout analysis algorithm according
to the required stop threshold, three queues are produced (the queued areas
still to be processed, the white areas discarded because not satisfying the con-
straints and the white blocks selected as useful background). Among these, the
last one contains whites that can be forced to black, while the other two contain
rectangles that might be forced white.

Since the rules needed by DOC to automatize the layout correction pro-
cess must be able to evaluate each block in order to decide whether forcing it
or not, it is not sufficient any more to consider each white block forcing as a
counterexample for black forcing and vice versa, but to ensure that the learned
MLN is correct, also all blocks in the document that have not been forced must
be exploited as negative examples for the corresponding concepts. The adopted
solution was to still express forcings as discussed above, including additional
negative examples obtained from the layout configuration finally accepted by
the user. Indeed, when the layout is considered correct, all actual white blocks
that were not forced become negative examples for concept merge (because they
could be forced as black, but weren’t), while all white blocks, discarded or still
to be processed become negative examples for the concept split (because they
weren’t forced). The dataset for this experiment was obtained by running the
layout analysis algorithm until the predefined threshold was reached, and then
applying the necessary corrections to fix the final layout. The 36 documents con-
sidered were a subset of the former dataset, evenly distributed among the four
categories. Specifically, the new dataset included 113 positive and 840 negative
examples for merge, and resulted in the performance reported in Table 2.

As to the concept split, the dataset was made up of 101 positive and 10046
negative examples. The large number of negative examples is due to the number
of white blocks discarded or still to be processed being typically much greater
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Table 2. Area under the ROC and PR curves for split (S) and merge (M).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Mean ± St.Dev.

S
ROC 0.920 0.987 0.959 0.969 0.977 0.925 0.989 0.982 0.915 0.977 0.960 ± 0.029
PR 0.841 0.917 0.699 0.909 0.692 0.914 0.778 0.774 0.807 0.913 0.824 ± 0.088

M
ROC 1.000 0.998 1.000 0.964 1.000 0.973 1.000 0.996 0.994 0.996 0.992 ± 0.013
PR 1.000 0.986 1.000 0.804 1.000 0.874 1.000 0.971 0.966 0.967 0.957 ± 0.066

than that of white blocks found. Since exploiting such a large number of neg-
ative examples might have significantly unbalanced the learning process, only
a random subset of 843 such examples was selected, in order to keep the same
ratio between positive and negative examples as for the merge concept. The
experiment run on such a subset provided the results shown in Table 2.

Figure 1 reports the plot obtained averaging ROC and PR curves for the
ten folds. As reported in [6], a technique to evaluate a classifier over the results
obtained with a cross validation method is to merge together the test instances
belonging to each fold with their assigned scores into one large test set.
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Fig. 1. ROC (left) and PR (right) curve by merging the 10-fold curves.

5 Conclusions

The variety of document styles and formats to be processed makes the layout
analysis task a non-trivial one and often the automatically found structure often
needs to be manually fixed by domain experts. In this work we proposed a tool
able to use the steps carried out by the domain expert, with the aim of correcting
the outcome of the layout analysis phase, in order to infer models to be applied to
future incoming documents. Specifically, the tool makes use of a first-order logic
representation of the document structure as it is not fixed and a correction often
depends on the relationships of the wrong components with the surrounding ones.
Moreover, the tool exploits the statistical relational learning system Alchemy.
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Experiments in a real-world domain made up of scientific documents have been
presented and discussed, showing the validity of the proposed approach.
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