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INTRODUCTION

After some years in which it was seen as an area of interest only for research, Machine Learning (ML 
for short) techniques and systems have started to gain progressive credit in the everyday Computer Sci-
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This chapter proposes the application of machine learning techniques, based on rst-order logic as 
a representation language, to the real-world application domain of document processing. First, the 
tasks and problems involved in document processing are presented, along with the prototypical system 
DOMINUS and its architecture, whose components are aimed at facing these issues. Then, a closer 
look is provided for the learning component of the system, and the two sub-systems that are in charge 
of performing supervised and unsupervised learning as a support to the system performance. Finally, 
some experiments are reported that assess the quality of the learning performance. This is intended to 
prove to researchers and practitioners of the eld that rst-order logic learning can be a viable solution 
to tackle the domain complexity, and to solve problems such as incremental evolution of the document 
repository.
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ence landscape, and to be used for facing several real-world problems where classical systems show 
their limits. When ML systems work in real-world domains, they must typically deal with features such 
as complexity, need for efficiency and continuous adaptation to change. Optionally, humans may need 
to understand the inferred models in order to check and validate them. While the numeric and statistical 
setting, traditionally studied in the literature, can ensure efficiency, the other requirements call for more 
powerful representation formalisms. First-Order Logic (FOL for short) representation and processing 
techniques are more suitable than attribute-value and propositional ones for dealing with complexity 
and providing human understandability of the inferred models; moreover, they can deal with change 
and adaptation as well.

This work presents a suite of symbolic FOL learning algorithms and systems, that can serve as larger 
system components for satisfying these requirements in accomplishing real-world tasks. Their FOL rep-
resentation language allows to effectively and efficiently deal with complex domains, yielding uniform 
human-understandable descriptions for observations and models. The FOL learning system INTHELEX 
tackles all of these requirements in a supervised setting. Being based on an incremental algorithm, it can 
update and refine the inferred models, instead of learning new ones from scratch, in order to account for 
new available evidence. Interestingly, its incremental abilities are not limited to examples processing, but 
allow to add to the theory and handle even completely new classes as soon as their instances come up. 
Conversely, when new observations become available for which a target classification is not given, an 
unsupervised setting is needed. In such a case, another module of the suite, that implements a recently 
developed similarity framework for FOL (Horn clause) representations, allows to face the problem.

This chapter focuses on Document Processing and Management, a real-world application domain 
that is gaining increasing interest in recent years, due to the progressive digitization of information 
sources. It involves almost all of the above requirements: need for quick response to the users’ requests, 
complexity due to the high variability of documents, need for the librarians of checking and validating 
the inferred models, continuous flow of new documents. DOMINUS is a general-purpose document 
management framework that is able to process documents in standard electronic formats in order to 
recognize the type they belong to and their significant components based on their layout structure, and 
to selectively extract relevant information to be used for semantic indexing and later retrieval. Possible 
specific applications of the framework include support for the Semantic Web on Internet documents and 
content-based document management in organizations and libraries. Its architecture includes a module 
that provides Machine Learning services that support the different tasks involved in document process-
ing and management. The FOL techniques presented in this chapter were embedded in such a module 
to provide the core functionality for making the framework powerful and flexible enough to deal with 
real-world cases.

In the following, after presenting the tasks and problems involved in Digital Libraries management, 
and how they have been tackled in DOMINUS, a more technical presentation of the incremental FOL 
framework exploited for document classification and understanding will be provided. The basics of the 
first-order logic setting will be recalled, and the similarity assessment on which the framework is based 
will be presented. The supervised and unsupervised learning modules and their cooperation will be then 
discussed, followed by experiments on a real-world dataset that show how the proposed framework can 
successfully and effectively be exploited as a viable solution to the incremental extension of documents 
and document classes in a digital library.
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THE DOCUMENT PROCESSING DOMAIN

Recent evolution of computer technology in the last decades has provided the basis for exploiting 
computers as the principal source and repository of documents, and the Internet as the principal means 
of distribution, exchange and access for them. The consequent shift from paper to digital support for 
documents provided new opportunities for their management and processing activities, solving the 
problems of duplication and sharing that seriously affected legacy (paper) documents. However, making 
document production easy and cheap, it also introduced new problems, consisting in a huge amount of 
available documents (and in an associated decrease of their content quality) (Sankar, 2006). The well-
known information overload problem, indeed, consists of the users’ difficulty in accessing interesting 
information in large and heterogeneous repositories. Hence, the need to organize documents in a way 
that enables and makes easier, efficient and effective their retrieval and browsing based on an overview 
of the documents in the collection and of their relationships.

The primary criterion for searching interesting documents is by content. Hence, the documents in 
the repository should be grouped and organized accordingly. However, doing this manually is very 
expensive, and doing it automatically is very difficult due to the need of capturing document meaning 
(i.e., semantics). A more tractable starting point is exploiting layout similarity (i.e., syntax). The two 
approaches are often complementary, since documents of the same type/class usually have a similar 
spatial organization of their components and, conversely, different kinds of content are typically carried 
by documents having different layout styles. An additional, interesting and potentially useful relationship 
is that significant content is often placed in particular layout components, so that being able to identify 
the typical components of each group allows to selectively read only those components for identifying 
the document content. As a consequence, the ability to handle and manage documents according to layout 
structure similarity can be a key factor towards the ability to reach content-based management as well. 
Accordingly, document processing systems typically carry out two phases to identify the significant 
components of a digital document (Nagy, 2000). The former, called Layout Analysis, aims at identifying 
the geometrical organization of the components in a document page and at detecting relations among 
them, resulting in the so-called Layout Structure. The latter, called Document Image Understanding, 
aims at associating the proper logical role to each component, resulting in the so-called Document 
Logical Structure. Based on the assumption that the logical structure is different for different kinds of 
documents, Document Image Understanding can take advantage in terms of efficiency and accuracy 
if a particular sub-task, called Document Image Classification, is preliminarily carried out, aimed at 
identifying the document class (e.g., newspaper, scientific paper, email, technical report, call for papers) 
before associating each significant layout components for that class to a tag that expresses its role (e.g., 
signature, object, title, author, abstract, footnote, etc.).

Most work in the existing literature concerns the application of intelligent techniques to identify the 
document layout. In this chapter we focus on the identification of the proper layout class of a document, 
and of the main layout components of interest in it. Manual processing of the documents in the collec-
tion is clearly infeasible, not only, as already pointed out, for economic reasons, but also in principle, 
because of the huge amount of documents to be processed and, more seriously, due to the continuing 
extension of the document base which is typical in dynamic environments such as real-world Digital 
Libraries. This motivates the research for efficient and effective automatic techniques for document 
classification and understanding.
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A first characteristic of the document domain is the wide variety of existing layout styles. This 
requires a powerful and flexible representation and processing framework, that allows to express and 
compare documents with different number of components, related to each other in many different ways. 
Attribute-Value representations can describe a document by means of a fixed set of features, each of which 
takes a value from a corresponding pre-specified value set. But one cannot know in advance how many 
components make up a generic document, and classes of documents are characterized by the presence 
of peculiar components and by the specific way their mutual positions and alignments are organized, 
rather than by their size and absolute position, that may vary even significantly. Some examples: the 
length of the title block could range from 1 to 4 lines, which would result in very different position of 
other components (such as authors and abstract) in the page, making their range of placement very wide 
consequently; in a scientific paper, it is useful to know that the acknowledgements usually appear above 
the references section and in the end of the document, or that the affiliation of the authors is reported 
generally at the beginning of the document, below or on the right of their names. Thus, document layout 
classes are hardly captured by static models, and classical attribute-value formalisms are not suitable 
for this task. Conversely, relational representations can capture the page layout complexity, allowing 
to identify invariants that characterize document classes, and additionally producing human-readable 
descriptions that can be exploited by domain experts for validation or understanding purposes. For these 
reasons, we propose to apply incremental FOL ML techniques along these phases of document processing 
where the classical statistical and numerical approaches to classification and learning may fail, being not 
able to deal with the lack of a strict layout regularity in the variety of documents available on-line.

Another issue to be considered when dealing with the document domain is the continuous flow of 
new and different documents in a Web repository or Digital Library. This means that any system working 
in this environment must be able to deal with changes in the domain, the context, or the user needs (in a 
word, it must be incremental). Traditional ML methods work according to the so-called batch approach, 
that requires the set of training examples, belonging to a defined number of classes, to be entirely avail-
able since the beginning, and exploits them altogether to produce a model. Thus, they assume that the 
classes are known and fixed since the beginning as well. If any change happens, they must restart the 
entire learning process to produce a model capable of coping with the new scenario. This prevents the 
opportunity of dealing with new instances, possibly belonging to new classes, that the learned theory 
does not account for. Conversely, the ability to revise a domain theory instead of restarting from scratch 
would be more appropriate to enable continuous responsiveness to the changes in the context, thus 
dealing with concept evolution, and could significantly improve efficiency. The incremental setting 
implicitly assumes that the information (observations) gained at any given moment is incomplete, and 
thus that any learned theory could be susceptible of changes. Hence incremental learning, as opposed to 
classical batch one, is needed whenever either incomplete information is available at the time of initial 
theory generation, or the nature (and the kinds) of the concepts evolves dynamically. In the document 
processing scenario, this would happen when the typing style of documents in a given class changes in 
time or when a brand new class is considered in the document repository.

RELATED WORK

Much of the work that has been done on document image analysis refers to algorithms and techniques that 
are applied to images of documents in order to obtain a computer-readable description from a scanned 
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document (Nagy, 2000). Even recently, the work on document analysis involves techniques that oper-
ate on image documents and a variety of statistical, rule-based, grammar-based techniques have been 
proposed as briefly reported in the following.

In (van Beusekom, 2006; van Beusekom, 2007) a new class of distance measures for document layouts 
is defined, based on a two-step procedure: after computing the distances between the blocks of two lay-
outs, the blocks of one layout are assigned to the blocks of the other layout in a matching step. However, 
for layout structure discovering well-known layout algorithms from the literature are exploited, such as 
Voronoi (Kise 1998; Lu 2005), XY-Cut (Nagy, 1992), Run Length Smearing Algorithm (Wong, 1982), 
Docstrum (O’Gorman, 1993), Whitespace (Baird, 1994; Breuel, 2000). Sometimes, ideas in classical 
algorithms are enhanced with techniques for improving parameter setting, as in (Shi, 2005).

In (Marinai, 2006) a system for the retrieval of documents on the basis of layout similarity of docu-
ment images is described. The system extracts the layout regions and represents them as an XY tree 
(Nagy, 1992). The indexing method combines a tree clustering algorithm based on the Self Organizing 
Maps (SOM - a particular type of artificial neural network that computes, during learning, an unsuper-
vised clustering of the input data) with Principal Component Analysis. In such a way, similar pages are 
retrieved without comparing directly the query page to each indexed document. SOMs are applied in 
document image processing also for layout clustering aimed at document retrieval and page classifica-
tion (Marinai, 2008). Other works exploit Artificial Neural Networks in document layout analysis and 
recognition as showed in (Marinai, 2005) or for logical document structure extraction, as in (Rangoni, 
2006) extended in (Belaid, 2008). The document structure is described along a layer architecture. Each 
layer represents successive steps of the interpretation decomposition from physical (input) to logical 
(output) level of the document. The recognition process proceeds by repetitive perceptive cycles propa-
gating information through the layers.

Other techniques exploit statistical approaches. In (Laven, 2005) a statistical pattern recognition ap-
proach to the problem of physical and logical layout analysis is investigated. The authors proposed an 
algorithm based on a logistic regression classifier working on a set of manually segmented and labelled 
page images, followed by statistical classifiers for the logical layout analysis. A similar approach can 
be found in (Carmagnac, 2004a) in which a semi-supervised document image classification system is 
presented. Given a set of unknown document images, the system uses unsupervised clustering to obtain 
grouping hypotheses for the same physical layout images. Then the operator can correct or validate them 
according to an objective, e.g. to have homogeneous groups of images whose descriptions are used for 
the training of the supervised document image classifier (Carmagnac, 2004) that is able to find the class 
of unknown documents. Another approach based on multiple hypotheses is proposed by (Kagehiro, 
2008), where different hypotheses for layout segmentation, generated by low-level image analysis, are 
exploited by a final analysis aimed at character recognition.

A stream of works has concerned layout analysis of office documents, such as invoices, exploiting 
rule-based methods (Dengel, 2007), Case-Based Reasoning (Hamza, 2007) or formalized descriptions 
that can be compiled into executable code (Tuganbaev, 2005). Others have focused on collections of 
heterogeneous documents (Chen, 2007).

However, few works have faced the problem of discovering the layout and logical structure of docu-
ments in electronic formats, as opposed (but complementary) to document image analysis. (Seki, 2007) 
analyses document structure for simultaneous management of information in documents from various 
formats (image, PDF, and HTML). Most other contributions aim at extracting (some part of) the docu-
ment content by means of a syntactic parsing of the PDF (Futrelle, 2003; Chao, 2003; Ramel, 2003) or 



353

FOL Learning for Knowledge Discovery

at discovering the background by means of statistical analysis applied to the numerical features of the 
documents and its components (Chao, 2004).

Other approaches based on domain knowledge are reported in (Hadjar, 2004; Rigamonti, 2005), where 
an expert provides a model for each class of documents to be handled. Such a model is represented by 
means of a grammar, i.e. a hierarchy of logical entities. Thus, after a step of syntactic parsing of the 
PDF document, aimed at discovering document primitives such as text entities, images and graphics, 
and after grouping the homogeneous entities discovered, the logical layout structure is recognized by 
labeling text entities (e.g., title, author, body) projecting them in the provided document model. A similar 
approach which uses grammars to annotate document components is proposed in (Anjewierden, 2001). 
Here, based on the model provided by an expert, a set of possible roles is assigned to each layout object. 
Then, they are collected into more complex objects until the logical structure is produced.

Processing of digital documents not having a strict layout is also faced by other works, such as Web 
pages (Feng, 2005; Burget, 2007; Guo, 2007) or e-mail messages (Chao, 2005).

THE DOMINUS FRAMEWORK

DOMINUS (DOcument Management INtelligent Universal System) is a document processing framework 
characterized by the intensive exploitation of intelligent techniques in all involved tasks, from acquisition 
to analysis, indexing, categorization, storing and retrieval (Esposito, 2008). Its architecture, reported in 
Figure 1 along with the document processing flow, is general and flexible, so that it can be embedded 
as a document management engine into different Digital Library systems. A central role in DOMINUS 
is played by the Learning Server, which intervenes during different processing steps in order to continu-
ously adapt the acquired knowledge taking into consideration new experimental evidence and changes 
in the context. The models inferred by the different components embedded in the Learning Server are 
stored for future exploitation in the Theories knowledge base.

The document layout analysis process starts with the application of a pre-processing module, called 
WINE (Wrapper for the Interpretation of Non-uniform Electronic document formats), that takes as in-
put a digital document, translates it in an intermediate vector format that is independent on the original 
document format, and then produces the document’s XML basic representation. Such a representation 
describes the document as a set of pages made up of basic blocks, often corresponding to graphical lines 
or rectangles, images and (groups of) text characters. Due to the large number of basic blocks, they 
are preliminarily aggregated in a bottom-up fashion: first, based on overlapping or adjacency criteria, 
composite blocks corresponding to whole words are produced; then, a further aggregation of words into 
lines is performed, based on inter-word spacing size. Using a fixed threshold (e.g., the mean distance 
between blocks) for this aggregation could be ineffective on multi-column documents, possibly merg-
ing into a single line words belonging to co-linear lines in adjacent columns. This problem was tackled 
through ML techniques, by casting the task to a Multiple Instance Problem and solving it by means of 
the kernel-based method proposed in (Dietterich, 1997). Such a method was embedded in the Learning 
Server, and exploited to generate rewriting rules for setting some parameters that are able to properly 
group word blocks into lines and will be exploited by RARE (Rule Aggregation REwriter).

After the line-blocks have been identified and represented by extending accordingly the XML descrip-
tion of the document, layout analysis proceeds top-down for collecting the semantically related blocks 
into consistent frames. The page background is identified first, and then the frames that surround docu-
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ment content are derived as the complement of such a background. The DOC (Document Organization 
Composer) module, in charge of accomplishing this task, carries out the background structure analysis 
according to a modification of the algorithm proposed in (Breuel, 2002) to find iteratively the maximal 
white rectangles in a page. The original algorithm had to be modified in order to improve its efficiency 
and to stop when the significant frames are isolated, avoiding the retrieval of insignificant background 
white spaces such as inter-word or inter-line ones. Due to the great variability in layout both among 
and within documents, an all-purpose step where forcing termination of the process before its natural 
conclusion cannot be identified a priori. Rather, DOC applies some heuristics to decide, at each loop, 
whether exiting or continuing. Nevertheless, due to the background rectangles size and distribution, it 
can happen that the best stop point yields a final layout that is not ideal, because some significant white 
spaces have not yet been recognized by the background analysis or, conversely, because other insignificant 
ones have already been retrieved. These single wrong elements must be specifically corrected, usually 
by a manual intervention of an expert. To avoid whenever possible the user intervention, another module 
called DOCG (Document Organization Correction Generator) was implemented, in charge of learning 
and applying correction rules to be automatically applied on this task. These rules are automatically 

Figure 1. DOMINUS Architecture and Processing Flow



355

FOL Learning for Knowledge Discovery

learned from previous manual corrections collected by the system during the intervention of the experts 
on some training documents. Since the significance of a background rectangle in order to include or 
exclude it from the final layout is influenced by its relative size and position with respect to the other 
content and background rectangles around it, a FOL learning approach is needed to infer rules for this 
task, and a corresponding component has been added to the Learning Server to accomplish this task.

Once the layout structure recognition step successfully terminates, the Document Image Understand-
ing task must be started, in charge of recognizing the document class and of associating a semantic role 
to each significant frame. These two sub-tasks are strongly interrelated, since the kind of components to 
be expected and identified in a document depends on its class (e.g., title, authors and their affiliations, 
abstract and references are typical of scientific papers, while in a commercial letter one might look for the 
sender, object, date and signature). Hence, the document class must be identified first, in order to know 
which kinds of components are to be expected and located, and then each component is associated to a 
label that properly expresses its role in the document. This task is performed by exploiting again FOL 
theories, since the document class is identified according to the distribution of frames in the layout, and 
the role played by each frame is determined by its content and spatial relationships with respect to sur-
rounding frames. In DOMINUS, the classification and labelling theories are automatically learned, and 
the DLCC (Document and Layout Components Classifier) module takes care of managing and handling 
them. In a continuously evolving domain such as a digital document repository, not only new documents, 
but even completely new (known or unknown) classes can be expected to show up sooner or later, and 
hence the ability to refine and extend an existing theory according to new evidence is a fundamental 
feature. Hence, when a document/component of a class already known to the system is wrongly classified, 
the corresponding definition can be generalized or specialized accordingly, without re-starting learning 
from scratch. In case the document belongs to a class not yet considered by the theory, but an expert can 
identify it, the set of classes can be extended automatically. In case the class is unknown, the document 
is put in stand-by for future automatic discovery of new classes, this way dynamically extending the set 
of known classes. The incremental framework according to which these modifications and extensions of 
the theories take place in case of failure will be examined more thoroughly in the next sections. In the 
following, we will present the similarity-based learning framework underlying all steps of incremental 
learning and embedded in the Learning Server module. Such a framework is general, and in the case of 
DOMINUS works on FOL descriptions of the documents layout structure by identifying the description 
components that are more similar and hence more likely to correspond to each other.

At the end of this step both the original document and its XML representation, now including de-
scription of words, lines and frames, and enriched with class information and components annotation, 
have been stored in the Internal Document Database, IDD. Further steps, that are outside the scope 
of this work, concern text extraction from the significant components only and application of various 
Natural Language Processing, Information Retrieval and Information Extraction techniques that can 
support the semantic access to the document content. Specifically, indexing procedures are performed 
by the Indexing Server, useful for an effective content-based document retrieval. The IGT (IndexinG of 
Text) module currently includes full-text indexing, Latent Semantic Indexing, Keyword Extraction: the 
former supports classical retrieval, the second allows to retrieve documents that are related to a query 
although they do not contain exactly the same terms, and the latter aims at restricting the query focus 
only on key terms of the document.
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FIRST-ORDER LOGIC PRELIMINARIES

FOL is a powerful formalism that can overcome the typical limitations shown by propositional or 
attribute-value representations by being able to express relations between objects. Logic Programming 
(Lloyd, 1987) is a FOL-based paradigm for making logic a machinable formalism. Logic programs 
are made up of Horn clauses, i.e. logical formulae of the form l

1
 � ... � l

n
 � l

0
, often written in Prolog 

notation as l
0
:– l

1
, ..., l

n
, to be interpreted as “l

0
 (head) is true, provided that l

1
 and ... and l

n
 (body) are 

all true”. The l
i
’s are literals, where a literal is an atom (a predicate applied to terms) or its negation. A 

term is a constant, a variable or a function symbol applied to other terms. A predicate or function is a k-
ary symbol (or has arity k) if it applies to k terms. Program execution is cast to finding a proof for some 
query expressed as a conjunction of literals. Differently from attribute-value representations, in FOL 
there is no fixed representation of an observation, and hence no one-to-one mapping between attributes 
when comparing two representations can be assumed. Thus, different portions of one description can 
be mapped onto different portions of another, a phenomenon known as indeterminacy that causes seri-
ous computational problems both when inducing models and when exploiting them for prediction. A 
substitution is a mapping from variables to terms. The classical generalization model adopted in Logic 
Programming is θ-subsumption, according to which a clause C is more general than another clause D 
(C�

θ
D) if and only if there exists a substitution θ such that, applied to terms of C, yields a subset of D 

(Cθ�D). The algorithm for finding the (unique) least general generalization (lgg) under θ-subsumption 
between two clauses was introduced by Plotkin (1970).

Datalog (Ceri, 1990) is a restriction of logic programming, born to deal with relational databases, 
in which only variables and constants are allowed as terms (thus, nesting by means of functions is not 
allowed). Generic clauses can be translated into Datalog ones and vice-versa (Rouveirol, 1992). The 
Object Identity assumption (OI for short) requires that different terms must denote different objects of 
the domain (it is generally assumed for constants, but the OI framework applies to variables as well). 
DatalogOI is a restriction of Datalog in which clauses are interpreted under OI, which does not cause 
loss in expressive power (Semeraro, 1998). OI induces a new generalization model between clauses, 
θ

OI
-subsumption, whose associated space is not a lattice (as under classical θ-subsumption), with the 

consequence that uniqueness of the lgg is not guaranteed but the clause structure is fixed since two 
different literals can never collapse because of their variables being bound on the same terms (which 
makes them more mechanizable).

Given a clause C, we define its associated graph as a Directed Acyclic Graph G
C
 = (V,E), stratified 

(i.e., with the set of nodes partitioned) with

 V = {l
0
} � { l

i
 | i�{1,...,n}, l

i
 built on k-ary predicate, k > 1}

 E � {(a’,a’’) � V × V | terms(a’) � terms(a’’) � � }

(where terms(f) denotes the set of terms that appear in the sub-formula f) built as follows. The head 
is the only node at level 0 (first element of the partition). Then, each successive element of the partition 
is made up by adding new nodes (not yet reached by edges) that have at least one term in common with 
nodes in the previous level. Hence, each node in the new level is linked by an incoming edge to each 
node in the previous level having among its arguments at least one term in common with it. The head 
literal, being unique, is exploited as a starting point in the graph (a kind of root) and provides a unique 
and well-defined perspective on the clause structure among the many possible, and hence significantly 
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reduces indeterminacy. For our purposes, there is no loss of generality in restricting to linked clauses 
(i.e., clauses whose associated graph is connected (Lloyd, 1987)): indeed, linked sub-parts of non-linked 
clauses can be dealt with separately, having no connection between each other.

SIMILARITY FRAMEWORK

Logic formalisms typically work on truth values, and thus only allow for binary (true/false) answers 
on whether a given (more general) formula accounts for another (more specific) one. Hence, the need 
for mechanisms to assess a degree of similarity among logic descriptions. Previous works on similar-
ity/distance measures and techniques developed for comparing first-order descriptions are concerned 
with flexible matching (Esposito, 1992), supervised learning (Bisson, 1992a; Emde, 1996; Domingos, 
1995; Sebag, 1997; Nienhuys-Cheng, 1998; Ramon, 2002; Kodratoff, 1986) and unsupervised learning 
(Thompson, 1989; Ramon, 1999; Bisson, 1992b; Blockeel, 1998). The similarity framework for FOL 
descriptions presented in the following overcomes some problems that are present in those works: it does 
not require assumptions and simplifying hypotheses (statistical independence, mutual exclusion) to ease 
the probability handling, no prior knowledge of the representation language is required and is not based 
on the presence of ‘mandatory’ relations, the user must not set weights on the predicates’ importance, it 
can be easily extended to handle negative information, it avoids the propagation of similarity between 
sub-components that poses the problem of indeterminacy in associations, it yields a unique value as a 
result of a comparison, which is more understandable and comfortable for handling, it is based directly 
on the structure, and not on derived features.

Similarity Function

The first step in setting up a similarity framework is designing a similarity function to evaluate the 
similarity between two items i’ and i’’ based on the presence of common and different features among 
them (Lin, 1998), that can be expressed by the following parameters:

 n, the number of features owned by i’ but not by i’’ (residual of i’ wrt i’’);
 l, the number of features owned both by i’ and by i’’;
 m, the number of features owned by i’’ but not by i’ (residual of i’’ wrt i’).

Intuitively, a larger l should increase the similarity value, while larger values of n and m should de-
crease it. A classical formula in the literature based on these parameters is that by Tverski (1977), but its 
behaviour in extreme cases (full similarity or no overlapping between items features) can be problematic, 
for which reason we developed a novel similarity function based on the above parameters and on an 
additional parameter α (0 � α � 1) that weights the importance of either item:

sf(α, i’, i’’) = sf(α, n, l, m) = (l+1) (α/(l+n+2) + (1 – α)/(l+m+2)) � ]0,1[ 

(in the following, we will just write sf(i’, i’’) and sf(n, l, m), implicitly assuming α = 0.5). Since FOL 
formulae are complex expressions, evaluating the above parameters in a comparison is not straightfor-
ward. Hence we propose to evaluate those parameters for progressively large subcomponents of FOL 
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formulae: for basic components the similarity is computed directly from the above formula, whereas 
for complex components the similarity comes from a composition of the formula applied on their direct 
features with the similarity of their lower level sub-components involved. In FOL formulae, terms rep-
resent specific objects, that are related to each other by means of predicates. Accordingly, two levels of 
similarity can be defined for pairs of first-order descriptions: the object level, concerning similarities 
terms in the descriptions, and the structure one, referring to how the nets of relationships in the descrip-
tions overlap.

Object Similarity

Let us consider two clauses C’ and C’’. When comparing a pair of terms a’ taken from C’ and a’’ taken 
from C’’, two kinds of object features can be distinguished: the properties they own (characteristic 
features), usually expressed by unary predicates (e.g. female(X)), and the roles they play (relational 
features), generally expressed by the position the object holds among n-ary predicate arguments (indeed, 
different positions refer to different roles played by the objects: e.g., in mother(X,Y) the first argument 
position identifies the role of the mother and the second one represents the role of the child).

If P’ and P’’ are the sets of characteristic features of a’ and a’’, respectively, the characteristic simi-
larity between a’ and a’’ is computed as sf

c
(a’,a’’) = sf(n

c
, l

c
, m

c
) for the following parameters:

 n
c
 = |P’ \ P’’| number of properties owned by a’ in C’ but not by a’’ in C’’ ;

 l
c
 = |P’ � P’’| number of common properties between a’ in C’ and a’’ in C’’;

 m
c
 = |P’’ \ P’| number of properties owned by a’’ in C’’ but not by a’ in C’ .

Similarly, if R’ and R’’ are the multisets (indeed, one object can play many times the same role in 
different atoms: e.g., a mother of many children) of relational features of a’ and a’’, respectively, the 
relational similarity between a’ and a’’ is computed as sf

r
(a’, a’’) = sf(n

r
, l

r
, m

r
) for the following pa-

rameters:

 n
r
 = |R’ \ R’’| how many times a’ plays in C’ role(s) that a’’ does not play in C’’;

 l
r
 = |R’ � R’’| number of times that both a’ in C’ and a’’ in C’’ play the same role(s);

 m
r
 = |R’’ \ R’| how many times a’’ plays in C’’ role(s) that a’ does not play in C’.

Overall, the object similarity between two terms is defined as

sf
o
(a’,a’’) = sf

c
(a’,a’’) + sf

c
(a’,a’’) � ]0,2[. 

Structural Similarity

When checking for the structural similarity of two formulae, many objects can be involved, and hence 
n-ary atoms expressing their mutual relationships represent a constraint on how each of them in the 
former formula can be mapped onto another in the latter. This is the most difficult part, since relations 
are specific to the first-order setting and are the cause of indeterminacy. Since we want to compare any 
two (sub-)formulae, in the following we will consider term associations as an extension of substitutions 
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that map terms onto terms, and call compatible two FOL (sub-)formulae that can be mapped onto each 
other without yielding inconsistent term associations (i.e., a term in one formula cannot be mapped onto 
different terms in the other formula).

Given an n-ary atom, we define its star as the multiset of n-ary predicates corresponding to the atoms 
linked to it by some common term (indeed, a predicate can appear in multiple instantiations among these 
atoms). Intuitively, the star of an atom depicts ‘in breadth’ how it relates to the rest of the formula. The 
star similarity between two compatible n-ary atoms l’ and l’’ having stars S’ and S’’, respectively, is 
computed based on the number of common and different elements in each of the two stars, represented 
by the following parameters:

 n
s
 = |S’ \ S’’| how many more relations l’ has in C’ than l’’ has in C’’;

 l
s
 = |S’ � S’’| number of common relations between l’ in C’ and l’’ in C’’;

 m
s
 = |S’’ \ S’| how many more relations l’’ has in C’’ than l’ has in C’.

Since atoms include terms as arguments, the object similarity of the involved terms must be consid-
ered as well, for all pairs of terms included in the association θ that map l’ onto l’’ of their arguments 
in corresponding positions:

sf
s
(l’,l’’) = sf(n

s
, l

s
, m

s
) + Avg({sf

o
(t’,t’’)}

t’/t’’�θ
) � ]0,3[. 

Moreover, we can consider all possible paths starting from the head and reaching leaf nodes (those 
with no outcoming edges) in the graph associated to the clauses: being such paths uniquely determined 
gives a leverage for significantly reducing the amount of indeterminacy in the comparison. Intuitively, 
a path in a clause depicts ‘in depth’ a given portion of the relations it describes. Paths can be interpreted 
as the basic components of the clause structure, and exploited instead of single atoms when checking 
similarity between clauses.

Given two paths p’=<l’
0
,l’

1
,...,l’

n’
> in G

C’
 and p’’=<l’’

0
,l’’

1
,...,l’’

n’’
> in G

C’’
, their intersection is defined 

as the pair of longest compatible initial subsequences of p’ and p’’, excluding the head:

p’ � p’’ = (<l’
1
,...,l’

k
>,<l’’

1
,...,l’’

k
>) s.t. � i = 1,...,k: l’

0
,l’

1
,...,l’

i
 compatible with l’’

0
,l’’

1
,...,l’’

i
 � (k = n’ 

� k = n’’ � l’
0
,l’

1
,...,l’

k+1
 incompatible with l’’

0
,l’’

1
,...,l’’

k+1
) 

Hence, the path similarity between p’ and p’’ is computed according to the following parameters:

 n
p
 = n’ – k length of the trail incompatible sequence of p’ wrt p’’;

 l
p
 = k length of the maximum compatible initial sequence of p’ and p’’;

 m
p
 = n’’ – k length of the trail incompatible sequence of p’’ wrt p’

by considering also the star similarity values for all pairs of atoms associated by the initial compatible 
sequences:

sf
p
(p’,p’’) = sf(n

p
,l

p
,m

p
) + Avg({sf

s
(l’

i
,l’’

i
)}

i=1,...,k
) � ]0,4[. 
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Clause Similarity

Clause similarity is to be interpreted as follows: given two clauses, whose head literals contain the same 
number of arguments, the similarity between these two tuples of terms is computed as the similarity 
between the two bodies describing them. As for stars and paths, to assess the overall similarity between 
two clause bodies we need to evaluate the three parameters both globally and specifically for each body 
component, and then to merge the outcomes in a unique formula. As to the global parameters, they can 
be applied both to the number of common and different literals in the two clauses and to the number of 
common and different terms between them. To define what “common” means in this case, we exploit 
the concept of least general generalization (lgg), i.e. the most specific model for the given pair of de-
scriptions. After computing the lgg, this is considered the common part in which counting the number of 
common literals and objects, while the literals and objects not covered by the lgg will be the residuals. 
Then, the similarity between each pair of literals of the two clauses that correspond to the same literal 
in the generalization can be taken into account as well.

More formally, given two clauses C’ and C’’, call C = {l
1
,...,l

k
} their lgg, and consider the substitu-

tions θ’ and θ’’ such that �i = 1,...,k: l
i
θ’ = l’

i
 � C’ and l

i
θ’’ = l’’

i
 � C’’, respectively. Thus, the number 

of common and different atoms between the two clause is as follows:

 n = |C’| – |C| how many atoms in C’ are not covered by its least general generalization with respect 
to C’’ ;

 l = |C| = k maximal number of atoms that can be put in correspondence between C’ and C’’ accord-
ing to their least general generalization;

 m = |C’’| – |C| how many atoms in C’’ are not covered by its least general generalization with re-
spect to C’.

and the number of common and different objects is:

 n
o
 = |terms(C’)| – |terms(C)| how many terms in C’ are not associated by its least general general-

ization to terms in C’’;
 l

o
 = |terms(C)| maximal number of terms that can be put in correspondence in C’ and C’’ as associ-

ated by their least general generalization;
 m

o
 = |terms(C’’)| – |terms(C))| how many terms in C’’ are not associated by its least general gen-

eralization to terms in C’.

Hence, the overall similarity between C’ and C’’, can be computed according to a function called 
formulae similitudo and denoted fs, by considering also the star similarity values for all pairs of atoms 
associated by the least general generalization, as expressed by the following formula:

fs(C’,C’’) = sf(n,l,m) � sf(n
o
,l

o
,m

o
) + Avg({sf

s
(l’

i
,l’’

i
)}

i= 1,...,k
) � ]0,3[ 

that can obviously be normalized to ]0,1[ if needed. This function evaluates the similarity of two clauses 
according to the composite similarity of a maximal subset of their atoms that can be put in correspon-
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dence (which includes both structural and object similarity), smoothed by adding the overall similarity 
in the number of atoms and objects between the two.

Similarity-Based Generalization

Implementing the theoretical least general generalization under θ
OI

-subsumption would be NP-hard, and 
hence too much computationally expensive. Thus, one might prefer to have a good approximation in 
acceptable time. To find such an approximation, the similarity between clause paths, as defined in previ-
ous sections, can be exploited, in order to quickly locate subcomponents of the clauses to be generalized 
that best match to each other. The algorithm, presented in (Ferilli, 2007) and reported below, works as 
follows: generalizations of all couples of paths in the original clauses to be generalized are scanned by 
decreasing similarity and added to the current partial generalization if compatible with it, or ignored 
otherwise. When all path generalizations have been considered, a generalization is obtained. Here, the 
former clause is taken as a pattern for the generalization, but in the end constants in such a pattern must 
be replaced with new variables (not yet appearing in the generalization, a different variable for each 
constant) to get the actual generalization. Although this is a typical greedy approach, backtracking can 
be performed to get more generalizations.

function lgg
OI
(E, C: clause): clause; 

P
C
 ← paths(C); P

E
 ← paths(E); 

P ← {(p
C
,p

E
) � P

C
 × P

E
 | p

C
 � p

E
 � (< >,< >)}; 

G ← �; θ ← � 
while (P � �) 
 (p

C
,p

E
) ← argmax

(pC,pE) � P(sf(pC
,p

E
)) 

 P ← P \ {(p
C
,p

E
)} 

 (g
C
,g

E
) ← p

C
 � p

E
 

 θ
q
 ← mapping between terms s.t. g

C
θ
q
 = g

E
if (θ

q
 compatible with θ) 

  G ← G � g
C
; θ ← θ � θ

q
 

 G ← replace all constants in G with new variables 
returnG

INCREMENTAL LEARNING FRAMEWORK

The proposed general incremental learning framework works as follows. Initially, a theory is provided, 
according to which classifying new observations that the system must process. Such a theory can be 
provided by an expert (the logical setting allows an easy formalization by humans thanks to its under-
standability), or have been previously learned by a ML system from examples, or even be empty (in 
which case the system must learn it instead of simply revising it). When the classifier is not able to 
recognize new incoming observations (which can be recognized because of no classification given, or 
multiple inconsistent classification, or a classification confidence under a given threshold, or a direct 
intervention of an expert), two cases can occur. If an expert can provide the correct classification, the 
system should modify accordingly the available theory. Such a modification can involve a refinement of 
the available definitions for known concepts, or require the addition of a brand new class in the theory 
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(which is a problem for all current ML systems, that require the whole set of concepts to be learned to 
be known since the beginning). Otherwise, if no class information can be provided for the problematic 
observation, it is put in stand-by until a sufficient number of rejections is reached, so that unsupervised 
learning can be run on them in order to automatically identify new classes according to their similarity. 
The clustering task aims at organizing a collection of unlabelled patterns into groups (clusters) of ho-
mogeneous elements based on their similarity. The similarity measure exploited to evaluate the distance 
between elements is responsible for the effectiveness of the clustering algorithms. Each discovered cluster 
becomes a new class, to be taken into account when considering new observations.

The supervised part of the above framework is carried out by INTHELEX (INcremental THEory 
Learner from Examples), a learning system for the induction of hierarchical theories from positive and 
negative examples. It is fully and inherently incremental: the initial theory can be empty and examples 
are considered and processed one by one according to a closed loop process, where feedback on per-
formance (incorrectness of the theory on a new example) is used to activate the theory revision phase 
(Becker, 1985) in order to restore completeness and consistency. Theories learned by INTHELEX are 
Prolog programs implementing a classifier for the learned concepts. Examples in INTHELEX are definite 
ground Horn clauses, whose body describes the observation by means of only basic non-negated predi-
cates of the representation language adopted for the problem at hand, and whose head reports the target 
class of a (tuple of) object(s) in the observation. In case of a negative example, the head is negated. A 
single observation may stand as an example or a counterexample for many concepts: a positive example 
for a concept is not considered as a negative example for all the other concepts (unless it is explicitly 
stated). A historical memory of all processed examples guarantees correctness of the future versions of 
the theory on the whole set of known examples.

INTHELEX is endowed with multiple inference strategies, according to the Inferential Theory of 
Learning framework (Michalski, 1994), in order to improve effectiveness and efficiency of the learning 
task. Deduction exploits the definitions in the learned theory and/or those in the Background Knowledge, 
if any, to recognize known objects in an example description. A dependency graph describes which 
concepts can contribute to the definition of which others. Whenever a new example is taken into ac-
count, its description is saturated with all instances of its sub-concepts in the dependency graph that can 
be recognized in its description. Abstraction allows to describe examples in a higher-level language to 
facilitate the generation of rules. In the abstraction framework adopted by INTHELEX (Zucker, 1998), 
abstraction operators defined in an Abstraction Theory, if any, can eliminate superfluous details, group 
specific component patterns into compound objects, reduce the number of object attributes, ignore the 
number of instances of a given object and obtain a coarser grain-size for attribute values. Abduction 
consists in hypothesizing unknown facts to be added to an observation, provided they are consistent with 
given integrity constraints, in such a way that the examples they represent are explained (if positive) or 
rejected (if negative) without modifying the current theory. INTHELEX adopts the abductive procedure 
by Kakas and Mancarella (Kakas, 1990), adapted to cope with OI.

As to induction, INTHELEX can learn simultaneously various concepts, possibly related to each 
other. When a new example is not correctly classified by the current theory, it is exploited by the refine-
ment operators to fix the incorrect hypotheses. In particular, when a positive example is not covered, the 
theory can be revised in one of the following ways (listed by decreasing priority) such that completeness 
is restored:
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replacing a clause in the theory with one of its generalizations against the problematic example;• 
adding a new clause to the theory, obtained by properly turning constants into variables in the • 
problematic example (such a clause can even refer to a brand new concept);
adding the problematic example as a positive exception.• 

When a negative example is covered, the theory consistency can be restored by performing one of 
the following actions (by decreasing priority):

adding positive literals that characterize all the past positive examples of the concept (and exclude • 
the problematic one) to the clauses that concur to the example coverage (starting from the lowest 
possible level);
adding a negative literal that is able to discriminate the problematic example from all the past • 
positive ones to the top-level clause in the theory by which the problematic example is covered;
adding the problematic example as a negative exception.• 

Thus, examples are never rejected. Moreover, it does not need to know in advance what is the whole 
set of concepts to be learned: it learns a new concept as soon as examples about it are available. Thus, 
the algorithm implemented in INTHELEX allows to deal with two cases of incremental refinement of 
a theory: modification of the available hypotheses for known concepts (either extending or restricting 
their domains), and addition of hypotheses concerning new concepts not yet considered by the theory.

As to the unsupervised part of the framework, the proposed distance measure for FOL Horn Clauses 
can be exploited by any of the clustering techniques developed in the literature (Jain, 1999). As cluster 
prototypes, medoid must be exploited instead of centroids. The medoid of a cluster is defined as the 
observation in the cluster that has the minimum average distance from all the other members of the 
cluster, and is needed in a relational setting since first-order logic formulae do not induce an Euclidean 
space. Once the new clusters/class have been induced, three possibilities are available to assign new 
observations to one of them:

such classes can be incorporated in the old theory, exploiting again INTHELEX to learn deni-• 
tions for each of them according to the corresponding observations (Conceptual Clustering);
otherwise, a • k-Nearest Neighbour classication technique can be exploited, based on the same 
distance measure, in order to assign the new observation to the majority class among the closest 
instances;
the new observation can be associated to the nearest medoid in the discovered classes.• 

EXPERIMENTS

The proposed strategy has been applied to real-world cases of document collections managed by 
DOMINUS. The system was run under Microsoft WindowsXP ProfessionalTM on a PC endowed with 
a 2.13 GHz Intel processor and 2GB RAM. The dataset consisted in 353 scientific papers in PostScript 
or Portable Document Format, whose first pages layout descriptions were automatically generated by 
DOMINUS. According to these descriptions, the objective was identifying the papers’ series and sig-
nificant components. The documents belong to 4 different classes: Elsevier journals, Springer-Verlag 
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Lecture Notes (SVLN) series, Journal of Machine Learning Research (JMLR) and Machine Learning 
Journal (MLJ). Processing such a dataset involves a number of difficulties, due to several considerably 
complex aspects which were purposely introduced when choosing the documents to be included. First 
of all, the layout styles of the classes are quite similar to each other, which forces the automatic system 
to be able to grasp subtle differences in order to properly group them in distinct classes. Moreover, on 
the computational complexity side, efficiency is stressed since the 353 documents are described with a 
total of 67920 atoms, which yields an average of more than 192 atoms per description (however, some 
particularly complex layouts required more than 400 atoms). Lastly, the description language extensively 
exploits an inclusion relation between layout components that increases indeterminacy and hence can 
stress significantly the similarity computation. Runtime for the computation of the similarity between 
two observations in this dataset is on average of about 2sec, which is a reasonable time considering the 
descriptions complexity and the fact that the prototype has not been optimized in this preliminary ver-
sion. A sample (short) document description is the following:

[not(icml(ferilli02)), svln(ferilli02), not(elsevier(ferilli02)), 
not(ecai(ferilli02))]:- 
 first_page(ferilli02, ferilli02_p1), 
 frame(ferilli02_p1, ferilli02_p1_f5), text(ferilli02_p1_f5), 
 to_right(ferilli02_p1_f1, ferilli02_p1_f5), 
 on_top(ferilli02_p1_f5, ferilli02_p1_f1), 
 on_top(ferilli02_p1_f12, ferilli02_p1_f5), 
 to_right(ferilli02_p1_f12, ferilli02_p1_f5), 
 on_top(ferilli02_p1_f3, ferilli02_p1_f5), 
 to_right(ferilli02_p1_f3, ferilli02_p1_f5), 
 on_top(ferilli02_p1_f2, ferilli02_p1_f5), 
 to_right(ferilli02_p1_f2, ferilli02_p1_f5), 
 on_top(ferilli02_p1_f4, ferilli02_p1_f5), 
 to_right(ferilli02_p1_f4, ferilli02_p1_f5), 
 frame(ferilli02_p1, ferilli02_p1_f12), text(ferilli02_p1_f12), 
 to_right(ferilli02_p1_f1, ferilli02_p1_f12), 
 on_top(ferilli02_p1_f12, ferilli02_p1_f1), 
 center_vertical_aligned(ferilli02_p1_f12, ferilli02_p1_f1), 
 on_top(ferilli02_p1_f3, ferilli02_p1_f12), 
 center_vertical_aligned(ferilli02_p1_f12, ferilli02_p1_f3), 
 to_right(ferilli02_p1_f2, ferilli02_p1_f12), 
 on_top(ferilli02_p1_f12, ferilli02_p1_f2), 
 center_vertical_aligned(ferilli02_p1_f12, ferilli02_p1_f2), 
 to_right(ferilli02_p1_f4, ferilli02_p1_f12), 
 on_top(ferilli02_p1_f12, ferilli02_p1_f4), 
 center_vertical_aligned(ferilli02_p1_f12, ferilli02_p1_f4), 
 frame(ferilli02_p1, ferilli02_p1_f4), text(ferilli02_p1_f4), 
 on_top(ferilli02_p1_f4, ferilli02_p1_f1), 
 center_vertical_aligned(ferilli02_p1_f4, ferilli02_p1_f1), 
 on_top(ferilli02_p1_f3, ferilli02_p1_f4), 
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 to_right(ferilli02_p1_f4, ferilli02_p1_f3), 
 center_vertical_aligned(ferilli02_p1_f4, ferilli02_p1_f3), 
 on_top(ferilli02_p1_f4, ferilli02_p1_f2), 
 to_right(ferilli02_p1_f4, ferilli02_p1_f2), 
 center_vertical_aligned(ferilli02_p1_f4, ferilli02_p1_f2), 
 frame(ferilli02_p1, ferilli02_p1_f1), text(ferilli02_p1_f1), 
 on_top(ferilli02_p1_f3, ferilli02_p1_f1), 
 to_right(ferilli02_p1_f1, ferilli02_p1_f3), 
 center_vertical_aligned(ferilli02_p1_f1, ferilli02_p1_f3), 
 on_top(ferilli02_p1_f2, ferilli02_p1_f1), 
 to_right(ferilli02_p1_f1, ferilli02_p1_f2), 
 center_vertical_aligned(ferilli02_p1_f1, ferilli02_p1_f2), 
 frame(ferilli02_p1, ferilli02_p1_f2), text(ferilli02_p1_f2), 
 on_top(ferilli02_p1_f3, ferilli02_p1_f2), 
 to_right(ferilli02_p1_f2, ferilli02_p1_f3), 
 center_vertical_aligned(ferilli02_p1_f2, ferilli02_p1_f3), 
 frame(ferilli02_p1, ferilli02_p1_f3), text(ferilli02_p1_f3), 
 width_medium(ferilli02_p1_f5), height_very_very_small(ferilli02_
p1_f5), 
 width_medium_large(ferilli02_p1_f12), height_very_
small(ferilli02_p1_f12), 
 width_medium_large(ferilli02_p1_f3), height_very_small(ferilli02_
p1_f3), 
 width_large(ferilli02_p1_f2), height_medium(ferilli02_p1_f2), 
 width_very_large(ferilli02_p1_f1), height_large(ferilli02_p1_f1), 
 width_very_large(ferilli02_p1_f4), height_medium_small(ferilli02_
p1_f4), 
 pos_left(ferilli02_p1_f5), pos_center(ferilli02_p1_f1), 
 pos_center(ferilli02_p1_f12), pos_center(ferilli02_p1_f2), 
 pos_center(ferilli02_p1_f3), pos_center(ferilli02_p1_f4), 
 pos_upper(ferilli02_p1_f12), pos_upper(ferilli02_p1_f3), 
 pos_upper(ferilli02_p1_f4), pos_middle(ferilli02_p1_f2), 
 pos_middle(ferilli02_p1_f5), pos_lower(ferilli02_p1_f1). 

where clause body contains the actual description of the ferilli02 document’s first page layout, and 
the head states this document belongs to class svln (Springer Verlag Lecture Notes series), and does not 
belong to the other classes ICML, Elsevier, ECAI.

As to supervised learning, it was started with an empty theory. This means that no class was initially 
known and all classes in the final theory result from incremental revisions. Two versions of INTHELEX 
were run and compared to each other: the classical one (I), and a new one endowed with the similarity-
guided generalization (SF) of (Ferilli, 2007). It is interesting to note that, on the document dataset, the 
similarity-driven generalization was very effective, preserving on average more than 90% atoms of the 
shortest clause, with a maximum of 99.48% and just 0.006 variance. This confirms the ability of the 
similarity technique to guide the generalization, so that the theoretical least general one is strictly ap-
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proximated and often exactly caught. The experiment on learning classification theories was set up as 
a 10-fold cross-validation, whose results according to different parameters are reported in Table 1. The 
similarity-driven version outperformed the classical one in all considered parameters:

runtime• 
learning behaviour (number of alternative denitions per concept, number of exceptions, number • 
of generalizations/specializations performed)
predictive accuracy (ratio of correctly classied examples): (TP + TN) / (TP + FP + TN + FN)• 
F-measure, a weighted average of the following two indicators (in our experiments equal weight • 
was assigned to both, a setting known as F1-measure):

Precision (ratio of correctly classied positive examples to the total number of examples  ◦
classied as positive): TP / (TP + FP)
Recall (ratio of correctly classied positive examples to the number of actual positive ex- ◦
amples): TP / (TP + FN)

where:

TP (True Positive): number of positive examples predicted as positive by the theory;• 
FP (True Positive): number of negative examples predicted as positive by the theory;• 
TN (True Positive): number of negative examples predicted as negative by the theory;• 
FN (True Positive): number of positive examples predicted as negative by the theory.• 

In the whole experiment, the similarity-driven version saved 1.15 hours, resulting in averages of 
98% for predictive accuracy and 96% for F1-measure (+1% and +2%, respectively, with respect to the 
classical version). The high value of F-measure, in particular, is very encouraging, since it ensures that 
the technique behaves equally well on both positive and negative examples, although the latter are three 
times the former. A supervised experiment was run also for the understanding task. Specifically, the 
following labels were considered significant and searched for, where applicable: Title, Abstract, Author 
and Keywords, Logo. Overall averages are slightly worse than the classical version: 95% for accuracy 
and 89% for F-measure (–1% and –2%, respectively, with respect to the old version), but with huge 
runtime savings (between 1/3 and 1/2 of the time in single folds, for a total amount of 76.46 hours – i.e. 
3.19 days! – overall). Since the proposed similarity framework is made up of a new similarity function 
and a similarity composition strategy, we have also checked whether the strategy alone, or the similarity 
function as well, are responsible for the good performance. For this purpose, we replaced the novel func-
tion with other well-known measures in the literature (Jaccard’s, Tverski’s and Dice’s) in the proposed 

Table 1. Document classification results. 

JMLR Elsevier MLJ SVLN

SF I SF I SF I SF I

Time 589 1962 53 304 3213 2975 399 663

Acc 0.98 0.98 1 0.99 0.96 0.93 0.98 0.94

F1 0.97 0.97 1 0.97 0.94 0.91 0.97 0.93
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strategy. The new measure produced improvements up to +5.48% for precision, up to + 8.05% for recall 
and up to +2.83% for accuracy, which confirmed its actual contribution to advance the state-of-the-art. 
Here is a sample definition learned for classification:

ecai(A):- 
 first_page(A, B), frame(B, C), text(C), height_very_very_
small(C), 
 on_top(D, C), text(D), pos_upper(D), frame(B, D). 

to be read as “A document A belongs to class ECAI if in its first page B it contains two text frames, 
C and D, the latter in upper position in the page and above the former, having very very small height”.

As to the unsupervised setting, a classical K-means algorithm based on the same similarity computa-
tion was exploited on the same dataset, by hiding each document’s class to the system and asking it to 
identify 4 clusters (that would hopefully correspond to the actual document classes). The stop criterion 
was set as the moment in which the output of a new iteration is equal to a partition already seen in previ-
ous iterations (Ferilli, 2008). Specifically, the conceptual clustering option was chosen: i.e., after cluster-
ing, definitions for each cluster were learned exploiting INTHELEX on the same descriptions, tagged 
with the cluster label to which they were assigned. To evaluate performance, i.e. whether the clustering 
procedure was able to autonomously infer the correct classes, we checked the quality of the result by 
measuring the overlapping of each group with the correct classes (supervised clustering) according to 
precision, recall and purity (informally, this expresses the overlapping between classes and clusters and 
can be considered for clustering what predictive accuracy is in supervised learning). To do this, we had 
to decide which class each cluster had to be compared to. In fact, for each cluster the precision-recall 
values were neatly high for one class and considerably low for all the others, thus the choice of which 
was the best-matching class to be associated to each cluster became straightforward. Results, summarized 
in Table 2, show overall values well above 90%, near to those obtained by supervised learning, which 
indicates that the proposed method is highly effective in recognizing the original classes.

More in-depth analysis reveals that clusters associated to Elsevier and JMLR classes include all of 
the correct documents, reaching 100% recall; precision is also very high for JMLR, still high but neatly 

Table 2. Document clustering results 

Elsevier SVLN JMLR MLJ TOTAL

Prec (%) 80 98.46 90.48 97.46 91.60

Rec (%) 100 85.33 100 87.79 93.28

Pur (%) 92.35

Table 3. k-Nearest Neighbour classification results 

Elsevier SVLN JMLR MLJ TOTAL

Acc (%) 100 89.70 90.03 100 94.73
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lower in the case of Elsevier. On the other hand, the quality of clusters corresponding to SVLN and 
MLJ are very similar among them, but opposite to the former cases, with a high precision balanced by 
a slightly lower recall. I any case, it should be taken into account that the layout styles of some of the 
classes in the dataset are very similar. Overall clustering runtime was in the order of hours, but since this 
task is not frequently carried out one could think, in a real Digital Library environment, to run it off-line 
and make the new classes available only after the procedure has been accomplished.

To complete the similarity-based framework for document image understanding, we also ran experi-
ments on instance-based classification. Specifically, a k-NN approach was run to check its viability by 
comparing its performance to that of the theories learned by INTHELEX on the same dataset. k was set 
to 17, that is the square root of the number of learning instances (9/10 of the whole dataset in a 10-fold 
cross-validation setting, hence about 317) according to usual practice. Although we chose an odd (and 
prime) k, it should be noticed that, since the task was run on a multi-class dataset, the nearest neighbours 
are not bound to a binary classification and ties are possible. The average predictive accuracy results for 
the 10 folds on each class are reported in Table 3.

These results, very close to those obtained by learning conceptual definitions for each class, mean that 
few documents were associated to the wrong class, and hence are a further confirmation that the distance 
technique is very effective in identifying the proper similarity features within the given descriptions. 
Actually, very often in the correct cases not just a tiny majority, but almost all of the nearest neighbours 
to the description to be classified were from the same class. Errors were concentrated in the SVLN and 
JMLR classes, where, however, high accuracy rates were reached. MLJ seems quite distinct from the 
other classes, while Elsevier, although well-recognizable in itself, is somehow in between JMLR and 
SVLN, which are also close to each other. Interestingly, wrong classifications concerning Elsevier are 
unidirectional: JMLR and SVLN are sometimes confused with Elsevier, but the opposite never hap-
pened. Conversely, in the case of JMLR and SVLN it is bidirectional, suggesting a higher resemblance 
between the two. As to the comparison to the concept-learning algorithm, it is interesting to note that, 
while high performance on Elsevier and low performance on SVLN are confirmed from the conceptual 
learning case, for MLJ and JMLR the behaviour of the two approaches is opposite, suggesting somehow 
complementary advantages of each. This can be explained with the fact that printed journals impose a 
stricter fulfilment of layout style and standards, and hence their instance are more similar to each other. 
Thus, the concept learning algorithm is more suitable to learn definitions that generalize on peculiar 
features of such classes.

CONCLUSION

Digital libraries management is gaining increasing attention in a world in which the amount of avail-
able documents is growing so quickly that finding the needed information is harder and harder. Many 
tasks involved in document management can be profitably faced by Artificial Intelligence and Machine 
Learning techniques. This chapter specifically deals with the document image understanding, where 
first-order logic representation formalisms can provide the flexibility needed to manage documents with 
very different and variable layout, and incremental approaches are needed to deal with the continuous 
extension of the knowledge base by means of new documents and new document classes. A similarity-
based framework for supervised and unsupervised learning is presented, as embedded in the prototypical 
document management system DOMINUS, that is able to refine existing class definitions according to 
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new evidence, but also to autonomously extend the set of known or unknown classes whenever needed, 
without restarting from scratch the learning process.

Experimental results on a real-world document dataset concerning scientific papers confirm that 
the proposed framework can efficiently and effectively face the problem, and that first-order logic 
representations and incremental approaches are a viable solution to document image understanding, 
with performance above 90% for all tasks: supervised learning, clustering and k-Nearest Neighbour 
classification. This is very encouraging, considering that precision and recall are typically contrasting 
parameters, and especially in the perspective of the representation-related difficulties. Future work will 
concern experimentation on different document types, optimization of the technique for reducing runtime 
and further extension of the framework with other techniques that can improve the overall behaviour, 
such as numerical and statistical techniques for sub-tasks that do not require the full power of first-order 
logic and can provide more efficiency.
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KEY TERMS AND THEIR DEFINITIONS

Artificial Intelligence: “the science and engineering of making intelligent machines” (J. McCa-
rthy).

Inductive Logic Programming: a subfield of Machine Learning which uses Logic Programming 
as a uniform representation for examples, background knowledge and hypotheses.

Incremental Learning: a learning algorithm is incremental if it can process training examples that 
become available over time, usually one at a time, modifying the learned theory accordingly if neces-
sary without restarting from scratch.

Clustering: for the aims of this work, we deliberately focus on one definition of clustering, that is 
the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some 
common trait – often proximity according to some defined distance measure.

Document Processing: in the scope of this work, the conversion of typed and handwritten text and 
images on paper-based & electronic documents into electronic information that can be easily searched 
and inter-related.

Document Image Understanding: “the formal representation of the abstract relationships indicated 
by the two-dimensional arrangement of the symbols” (G. Nagy).

Digital Libraries: a library in which collections are stored in digital formats and accessible by 
computers


