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Abstract. First-Order Logic formulae are a powerful representatiomfalism characterized by the
use of relations, that cause serious computational prabdkra to the phenomenon of indeterminacy
(various portions of one description are possibly mappelifiarent ways onto another description).
Being able to identify the correct corresponding parts af tkescriptions would help to tackle the
problem: hence, the need for a framework for the comparisdrsanilarity assessment. This could
have many applications in Artificial Intelligence: guidisgbsumption procedures and theory re-
vision systems, implementing flexible matching, suppgrtirstance-based learning and conceptual
clustering. Unfortunately, few works on this subject araikable in the literature. This paper focuses
on Horn clauses, which are the basis for the Logic Programmparadigm, and proposes a novel
similarity formula and evaluation criteria for identifygrthe descriptions components that are more
similar and hence more likely to correspond to each othexedb@nly on their syntactic structure.
Experiments on real-world datasets prove the effectiven€the proposal, and the efficiency of the
corresponding implementation in the above tasks.

Keywords: First-Order Logic, Logic Programming, Similarity/DiseamMeasures

1. Introduction

First-order logic FOL for short) is a powerful formalism, that is able to expredatiens between objects
and hence can overcome the typical limitations shown bygsitipnal or attribute-value representations.
As a consequence and tradeoff for their expressive poweprisence of relations causes various por-
tions of one description to be possibly mapped in (often mdifferent ways onto another description,

*Address for correspondence: Dipartimento di Informatidgaiversita di Bari, via E. Orabona, 4 - 70125 Bari - Italia
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a problem known asdeterminacy which poses serious problems of computational effort winem
descriptions have to be compared to each other. Hence, dtefoea set of general criteria that are
able to support the comparison between formulee. Specyfi@ll objective is developing a similarity
framework for FOL descriptions, based on a measure and aeuohbriteria that must be simple (in or-
der to ensure efficient computation), sensible (they haveftect as much as possible the intuitive way
in which humans compare two descriptions), effective (nwagiture as much information as possible
about the items to be compared), flexible (allow to weigHedintly the two items) and general (aret
devisedad-hocfor some problem).

This could have many applications, particularly in the #gtal Intelligence and Machine Learn-
ing community. For instance, the similarity criteria colld exploited by a subsumption procedure to
converge quickly towards the correct associations. Moregsly, even when two formulee do not cor-
respond exactly, one could nevertheless be interestedsassiag a degree of similarity between them,
which is typically obtained by means of functions that caialke advantage from the same criteria. This
would help to overcome the strict distinction operated by F@tween true and false assertions, that
sometimes is too rigid to deal with real-world cases (e.tenmva definition does not completely account
for an observation, even if this is due to just a few chargaites), so that dlexible matchingorocedure
would be more appropriate than an exact one. Instance-bedtiques (e.g. Case-Based Reasoning and
k-Nearest Neighbor) strongly rely on similarity measureasclassifying unseen observations according
to the closest known prototypes. From the opposite perispeet similarity measure can be interpreted
as a means for estimating the distance between the formulee, éxploited by unsupervised learning
techniques for grouping observations into homogeneousegis (calledconceptual clusteringn FOL).

As regards supervised learning techniques, it often happ®at a concept is expressed by many
alternative definitions each of which, at least in principkeintended to represent a particular form
of the concept, according to the intuition that the concegdlfi is polymorfous, and hence cannot be
captured by a single definition. As a consequence, such tigfisiare expected to show a high degree
of orthogonality, referring to distinct portions (ideallyefining a partition of the whole set) of concept
instances. In practice, when the definitions are learnedreralty and do not undergo a systematization
process, this is not always the case, and the scope of dafmitften overlap. Hence, the need for
some tool that could help Machine Learning systems in cimgoie best definition to be refined when
the current theory proves unable to account for a new giveserohtion. More operationally, there
is a need for a function that, given an observation and varefinitions for the concept it belongs
to, assigns to each of the latter a value expressing its degfrayntactic similarity with the former.
Additionally, when two descriptions (e.g., a definition aaal observation) must be generalized, the
similarity criteria could help the procedure in focussingthe components that are more similar and
hence more likely to correspond to each other. Clearlydbingerns the semantic aspects of the domain,
and hence there is no precise (i.e., algorithmic) way foogeizing the correct (sub-)formulae. Thus, the
problem must be attacked heuristically, by developing sorathod that can hypothesize which (part of
a) description refers to which (part of the) other, based onltheir syntactic structure. To these aims,
partial similarities among subparts of the descriptionsinibe searched for.

A particular kind of FOL formulee arelorn clausesi.e. expressions of the form iy A---Al, = [
(usually represented in Prolog style ad :- l4,...,1,) to be interpreted asl} (called head of the
clause) is true, provided thatand ... and,, (calledbodyof the clause) are all true”. THgs areatoms
where an atom is a predicate applied to a proper number oftératied itsarity). A predicatep of arity
k is usually denoted gs/k. Given a claus€’, head(C') denotes the head atom 6fandbody(C') the
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set of atoms in the body @f'. An interesting perspective on FOL is that, by restrictingéts of Horn
clauses (called Logic programs), it defines Logic Programgnil9], an important paradigm in Artificial
Intelligence (many first-order Machine Learning systenieritheories in the form of logic programs).
terms(F) denotes the set of terms that appear in a FOL expregsidnformally, a claus&” is linked if

any two of its atoms can be connected by a chain of atorésdnch that adjacent atoms in the chain have
some term in common (see [19] for a formal definition): linlsedb-parts of non-linked clauses, having
no connection between each other, can be dealt with selyarBalog [6] is (at least, syntactically) a
restriction of Logic Programming that allows only variabbnd constants as terms (and hence avoids the
use of function symbols): thiattening/unflatteningorocedures [26] can translate generic Horn clauses
into Datalog ones and vice-versa. Thus, we can focus on 8eeafdinked Datalog clauses without loss
of generality.

In the next sections, the criteria and a corresponding farand on which basing similarity consid-
erations between descriptions will be presented, folloled pool of techniques to assess the similarity
between clause components, that are intended to repregewidaradeoff between significance, effec-
tiveness and expressiveness on one side, and computatitini@incy on the other. Then, Section 4 will
discuss computational complexity issue, present relateidk \@nd summarize experimental results on
different tasks. Lastly, Section 5 will conclude the papad autline future work directions.

2. Similarity Parameters and Formula

Intuitively, the evaluation of similarity between two ewgsionsi’ andi” might be based both on the
presence of common featutesvhich should concur in a positive way to the similarity exatlon, and

on the features of each expression that are not owned byhke @@t us define this as tmesidualof the
former with respect to the latter), which should concur tiggly to the whole similarity value assigned
to them [18]. More precisely, two distinct residuals exéstich expressing the features of one of the two
expressions that the other does not dwrhus, plausible parameters on which basing similarityvbeh

7 and¢” are:

n , the number of features owned Bybut not by:” (residualof i’ wrt i");
[ , the number of features owned both®wand by:”;
m , the number of features owned BYbut not by:’ (residualof " wrt ’).

Indeed, other classical and state-of-the-art distancesmnesiin the current literature, mostly developed
in the propositional setting, are based on the same paresnetg., the one developed by Tverski [30],

The exact definition ofeaturedepends on the kind of expressions to be compared, and vglba in the following for terms,
atoms and sequences of atoms.

2The situation is immediately visualized through a Venn diag in which each of the two sets represents the features of
an expression, so that their intersection represents tinencm features, while the two symmetrical differences regme the
residuals.
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by Dice (S = 21/(n+2l+m)) or Jaccard’s indexA(4, B) = I/(n+1+m)) and distance.f; (4, B) =
1—-J(A,B) = (n+m)/(n+ 1+ m)). However, all of them show a behaviour that is not desiréble
specific cases. For instance, Dice’s measure and Jaccaxl évdluate to O when the two expressions
have no feature in common, independently of how many diffiefeatures they have, and hence cannot
distinguish between expressions that have no featuresimaom but a different amount of extra features
each. Such considerations led us to the definition of a giyilfunction that could overcome these
limitations.

We developed a novel similarity functiosf («, i’,4"), that intuitively expresses the degree of sim-
ilarity between two expression$ and:” based on the above parameters, also including an additional
parametery, 0 < « < 1, that weights the importance of either expression. Thi(gy,:',:”) can be
written assf(a,n,l,m), wheren, [ andm are the similarity parameters referreditcand”. In the
following we will use both forms indifferently, as needed.

[+1 [+1

T i) — 1
e S Cl)) Sy (1)

sf(a,i’,i") = sf(a,n,l,m) =
First of all, note that the left-hand-side ratio refers tpmssion’, while the right-hand-side ratio refers
to expression”. However, forae = 0.5, the function is symmetric with respect to the two exprassio
to be compared. It takes values ranging in the classicatsped0, 1], to be interpreted as the degree
of similarity between the two expressions. This can reprieaa aid for human interpretation, since
we are used to it from the theory of probability. Thus, one camsider the returned value as the level
of likelihood/confidence that the two expressions under amison are actually similar. A complete
overlapping of the twor{ = m = 0) tends to the limit ofl as long as the number of common features
grows. The full-similarity valuel is never reached, consistently with the intuition that théy @ase
in which this should happen & = i (i.e. the two expressions are exactly the same formula, lwhic
can be immediately checked before applysfy Indeed, in the following, we assume that#£ i”,
thus excluding such an obvious case (that rarely occursearrdhl world). Conversely, in case of no
overlapping { = 0) the function will tend to0 as long as the number of non-shared features grows.
This is consistent with the intuition that there is no linot the number of different features owned
by the two descriptions, which contribute to make them eviferént. One last case is worth being
considered: when there are no features at all associateslot@éscriptions under comparison (i.e.,
n = | = m = 0) the function evaluates tb/2, which can be considered intuitively correct for a case
of maximum uncertainty. Although it might seem a meanirglease, it could happen, for instance,
when comparing a model against an observation, both of wikdtriptions might include an object
with no features: when comparing such objects, one canrmt kmhether the overlapping is actually
total because in fact both of them have indeed no relevatirieat all, or the observed object actually
has no relevant features but it just happened that previensrglizations have dropped from the model
all the features that it previously owned.

2.1. Weight Definition

Some considerations are worth concerning weight assignrfamameter was introduced to give dif-
ferent importance to either of the two structures being canegb (this might be typically needed when the
comparison concerns a model against an observation); besuariated to the left-hand-side ratio, it ac-
tually weights the relative importance of expressionith respect to expressiafi (a = 0.5 would yield
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the basic function). Although can, of course, be manually setin order to reflect the ingnelative im-
portance of the model and the observation, it would be usefatitomatically set it, both for freeing the
experimenters from further parameters estimation (wtsch typically heuristic and experience-based
task), and for making the function itself more flexible in ptilag to the specific model-observation pair
at hand.

Intuitively, the importance of any of the two expressionsigtl increase as long as the number of
overlapping features grows, and as long as the number obwerlapping features decreases, which
leads (as a first approximation) td = [/n for ' anda” = [/m for i”. This suffers of problems of
infiniteness or indefiniteness as soon as any of the threenptees evaluates to zero, hence a better
settingisa’ = (I +1)/(n+1);0” = (I +1)/(m + 1). Now, their sum:

g LT I+1  (I+1)(m+1+n+1)
T n+l o om+1l (n+1)(m+1)

must be normalized tb, so thato can be obtained by switching to the portions thaanda” represent
of this sum:

o — ,%11 __m +1
HD(m+n+2) 4 m+ 2
(n+1)(m+1)
I+1
(1—a) = T __n+l
(+D(m+n+2)  p4m+ 2
(n+1)(m+1)

Notice that, ifi is the modely is expected to be generally less thansince the model has probably
lost some properties due to previous generalizations. ,Thasabove weights actually give more credit
to the model than to the observation, as desired. Moreavierestingly, the weights do not depend on
the overlapping.

Being an evaluation of the automatic weighting techniquisida the scope of this paper, in the
following o = 0.5 will always be assumed, in which case we will writ]i’,i") = sf(n,l,m) =
sf(0.5,n,1,m).

3. Similarity Criteria for Horn Clause Components

Although the new similarity function definition is deterramt in improving performance over the previ-
ous ones, as we will see in the experiments, the main cotitribof this paper lays in the repeated and
pervasive exploitation of the formula in various combioa$ that can assign a similarity degree to the
different clause constituents, up to the whole clausesQh formulae, terms represent specific objects,
that are related to each other by means of predicates. Aogbydtwo levels of similarity can be defined
for pairs of first-order descriptions: ttubjectlevel, concerning similarities between the terms referred
to in the descriptions, and tistructureone, referring to how the nets of relationships in the dpsioris
overlap.

In the case of clauses, since the head is unique (and hend® aanquely matched), we can use it
as a starting point for the comparison. Specifically, we walhsider as comparable only clauses having
atoms of the same arity in the head, and the comparison outcome will be interpreteth@ degree
of similarity between the twa-tuples of terms in the heads. In case the predicates in thdshef
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the two clauses to be compared are different, for the sakaitdrmity, we will assume that they are
replaced by a new (not already present in the clauses) dumedjcpte during the comparison. Thus,

comparison of two clauses(t/,...,t,) - I{,...,Il, andp”(¢{,... ,¢) == 1{,.... 1", will provide a
degree of similarity between the-tuples< #|,...,¢, > and< t{,...,¢! >, and will be actually
carried out on two corresponding clausgsnmy(t},...,t,) - Ii,...,Il, anddummy(t],...,t}) :-

W,....U,.

Example 3.1. Comparison of two clause&ither (carl, mary) :- 11, ..., 1/, andmother(ann, john) :-

1{,..., ", will provide a degree of similarity between the couptesarl, mary > and< ann, john >,

which will be actually evaluated on clausésmmy(carl, mary) -1, ..., I, anddummy(ann, john)

N SN L
Let us consider, as a running example throughout the pdpefmliowing two clauses (in this case, a
rule C' and a classified observatidiy, although all considerations will apply to the general casevell):
C:h(X) - p(X,Y),p(X,2),p(W,X),r(Y,U),0(Y, Z),q(W,W),s(U, V),
m(X), p(X), p(X), 7(Y),0(Y),7(Y),6(Z), (W), (W), n(U), (V).
E: h(a) - p(a,b),p(a, ), p(d, a), (b, f), 0(b, c), q(d, €),t(f, 9),
m(a), #(a),o(a),7(a),o(b), 7(b), ¢(b), 7(d), p(d), = (f), &(f), o (f)-

3.1. Term Similarity

Consider in the following two clauses’ andC”. Call T" = terms(C’) = {t},...,t,}, andT” =
terms(C") = {t{,...,t! }. Intuitively, for evaluating the similarity between a pafrterms(¢',t") €

T’ x T", two kinds of term features can be distinguished: the pt@sethey own and the roles they play
in relation to other terms.

Definition 3.1. (Term features)

Consider a clausé€’, and an atom ir”’ built on predicatep and having a termh among its arguments. If
p is a unary predicate, then it ischaracteristic featurdor property) of ¢ in C'; otherwise, letn be the
arity of p, andi the position oft among its arguments, thernn.i is arelational feature(or role) of ¢ in
C.

Two corresponding similarity values can be associatéfidndt”: a characteristic similarity where
(1) is applied to values related to the properties, amelational similarity, based on how many times
the two terms play the same or different roles inthary predicates.

Definition 3.2. (Characteristic Similarity)
Let P’ be the set of characteristic features’ah C’ and P” be the set of characteristic featureg’6fn
C". Thecharacteristic similaritybetweent’ andt” is computed as

Sfc(t/v t//) = Sf(nCa l07 mc)

wheren, = |P’\ P”| (characteristic residuabf ¢’ wrt t”), . = |P' n P"| andm, = |P" \ P/|
(characteristic residuabf ¢ wrt t')3.

3Intuitively, P’ \ P” are the properties df in C’ but not oft” in C”; P’ n P" are the common properties betweéin C’
andt” in C"; P" \ P’ are the properties af’ in C” but not oft’ in C".



S. Ferilli et al. / A General Similarity Framework for Horn &lse Logic 7

Relational features represent roles played by terms, slifftarent argument positions in a pred-
icate actually refer to different roles played by its argatse For instance, in the binary predicate
on_top/2, the first argument positioro(1 top/2.1) identifies the role of the upper object, and the second
one pn.top/2.2) represents the role of the lower one. Due to the pdisgithat the same term plays
multiple times the same role in different relations (e.g.phject laying on many others), we have to take
into account the number of occurrences, and hence considiéisets instead of sets.

Definition 3.3. (Relational Similarity)
Let R’ be the multiset of relational features#in C’ and R” be the multiset of relational featuresf
in C”. Then, therelational similarity betweent’ andt” can be computed as

st .(t',t") = sf(ny, 1., m;)

wheren, = |R'\ R"| (relational residualof ¢’ wrt t”), I, = |R' N R"| andm, = |R" \ R'| (relational
residualof t” wrt t')*.

Overall similarity between two terms, callethject similarity is defined as
sfo(t',t") = sf (¢, ") + sf . (¢, ") 2
that ranges in0, 2[ (but can obviously be normalized o, 1] if needed).

Example 3.2. The sets of properties and roles for each terr'iand F/, and the comparison for some
of the possible pairs, are reported in Table 1.

3.2. Structural Similarity

When checking for the structural similarity of two formuleeany terms can be involved, and hence their
mutual relationships represent a constraint on how eacheof tin the former formula can be mapped
onto another in the latter. The structure of a formula is @efiby the set ofi-ary predicates, and
specifically the way in which they are applied to the variarsnis to relate them (i.eatoms according

to the terminology introduced above), for which reason enftillowing we will deal only with predicates
and atoms with arity greater thann the rest of this section. This is the most difficult pancs relations
are specific to the first-order setting and are the cause efenthinacy in mapping (parts of) a formula
into (parts of) another one.

Definition 3.4. Given two clause§” andC”, aterm associatiorf is a subset oferms(C") x terms(C").
A pair (t',t") € 0 is writtent’ /t” and called dinding A term association is said to leensistentf it is
a bijection, otherwise it is said to lneconsistent

Note that the union of term associations is a term assoniéself.

Definition 3.5. (Matching association)
The matching associatiobetween two atom& = p/(¢/,...,t,) andl” = p”(¢{,...,t!) is defined as
Op i = {ty/t1,...,t,,/t,}; it is undefined for atoms built on predicates having diffeerarity. The

“Intuitively, R’ \ R are the occurrences of roles thaplays inC’ butt” does not play irC”’; R’ N R” are the occurrences of
roles that botit’ in C’ andt” in C” play; R” \ R’ are the occurrences of roles thétplays inC” butt’ does not play irC’.
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Table 1. Object Similarity

c | E
¢ P’ R Kz P R"
X {m, ¢, p} {p/2.1,p/2.1,p/2.2} a {m,¢,0,7} {p/2.1,p/2.1,p/2.2}
Y {m,o,7} | {p/2.2,7/2.1,0/2.1} b {o,7} {p/2.2,7/2.1,0/2.1}
Z {o} {p/2.2,0/2.2} c {o} {p/2.2,0/2.2}
%% {o,7} {p/2.1,p/2.1,p/2.2} d {7, p} {p/2.1,p/2.1}
U {m, ¢} {r/2.2,s/2.1} f {m,¢,0} {r/2.2,t/2.1}
Some comparisons:

70 | (AP, (P P, (PP\P) | (AR, (R AR, (R\ )

Xla {p}, {m, ¢}, {0, 7} 0,{p/2.1,p/2.1,p/2.2},0

Y/b {r},{o,7},0 0,{p/2.2,r/2.1,0/2.1},0

Y/c {m,0,7},0,{¢} {r/2.1,0/2.1},{p/2.2},{0/2.2}

Zlb {6},0,{o,7} {0/2.2},{p/2.2},{r/2.1,0/2.1}

Zlc 0,{¢},0 0,{p/2.2,0/2.2},0

wid {o}. {7} {p} {p/2.2},{p/2.1,p/2.1},0

U/t 0, {m, o},{c} {s/2.1},{r/2.2},{t/2.1}

Corresponding similarity evaluation:

VI | (s loyme) | Ste(tst") | (esloymn) | st (8,87) | sto(t,t")

X/a (1,2,2) 0.55 (0,3,0) 0.80 1.35

Yib (1,2,0) 0.68 (0, 4,0) 0.83 1.51

Yic (3,0,1) 0.27 (2,1,1) 0.45 0.72

Zlb (1,0,2) 0.29 (1,1,2) 0.45 0.74

Zlc (0,1,0) 0.67 (0, 2,0) 0.75 1.42

wid | (1,1,1) 0.50 (1,2,0) 0.68 1.18

ulf (0,2,1) 0.68 (1,1,1) 0.50 1.18

matching associatiobetween two sequences of atord’, ... I} >and< l{,...,l} > is defined as

Ociy,. it sy<iyar> = Uiz g O 1ff Vi =1,k : 7 andl are built on the same predicate and

QlZ/l;, is deflned itis undefined otherwise.

Two expressions areompatiblef they can be mapped onto each other without yielding insbest
term associations (i.e., a term in one of them cannot be ia$sddo different terms in the other).

Definition 3.6. (Compatibility)

Two term association® and#” are compatible iff)’ U 6" is consistent. Two atoms, or two sequences of
atoms, areompatibleiff their matching association is defined and consistento Tlauses areompati-
bleiff their heads are compatible.

3.2.1. Star Similarity

Intuitively, the star of an atom depicts ‘in breadth’ howatates to the rest of the formula.
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Definition 3.7. (Star)
Thestar of an aton; in the body of a claus€’ = Iy :- I1, ..., [, is the multiset

{p/k | i, 1<i<mji#i:l;=pts,... te), k> 1, terms(l;) Nterms(l;) # 0}

It includes the predicates on which are built other atom$&iéntody of the clause that have some term
in common with the given atom. Multisets are needed sincedigaite can have multiple instantiations
among the considered atoms.

Definition 3.8. (Star similarity)
Thestar similaritysf(I’,1"”) between two compatible atortisand!” having starss” andS”, respectively,
is computed as

sfo(I',1") = sf(ng, ls,ms) + C5({sfo (¥, t//)}t//tuegl,/l”) (3)

wheren, = |S”\ S”| (star residualof I’ wrt "), [s = |S" N 5"
"y andC*® is a composition function (e.g., the average).

,mg = |S”\ S| (star residualof " wrt

It is computed based on the number of common and differemtesiés in each of the two stérs
Since this value refers only to atom-related informationg does not take into account the similarity of
the involved terms, an overall more adequate evaluatioimufasity between!’ and!” can be obtained
by taking into account also the object similarity values dtirpairs of terms included in the matching
associatiordy ;. In casesf, ranges in0, 2 it ranges inj0, 3[, but can obviously be normalized fi@ 1]
if needed.

Example 3.3. Table 2 reports the stars for a sample of atoms emd £ and some comparisons between
them.

3.2.2. Clauses as Stratified Graphs

Then, we can note that any first-order logic formula can beesgmted as a graph in which atoms are
the nodes, and edges connect two ndiffethey are related in some wayFrom such an equivalence
between formuleae structures and graphs, it follows that goeoison between two formulae to assess their
structural similarity corresponds to the computation obgraph homomorphisms, a problem known
to be NP-hard due to the possibility of mapping a (sub-)graph ontatlzgr in many different ways. As

a consequence, we are interested in heuristics that casigivdicant hints on the structure overlapping
between two formulee with little computational effort. Imde leveraging on the fact that clauses are
made up by just a single atom in the head and a conjunctioroofsin the body, we can exploit a graph
representation that is easier than that for general formaaelescribed in the following. In particular,
we will deal withlinked clauses only (i.e. clauses whose associated graph is dedheand will build
the graph based on a simple (as to the details it expressastabdomula), yet powerful (as regards the
information it conveys) feature, that is term sharing bemveouples of atoms.

SIntuitively, S’ \ S” are the occurrences of relatiotiss involved inC” but!” is notinC”’; S’ N S are the relations in which
both!’ in C" andi” in C"" are involved;S” \ S’ are the occurrences of relatiofisis involved inC"” but!’ is notinC".

5The actual definition of the graph can be made more or less lesyrgmiding or deleting edges or introducing labels for them
in order to represent different details according to itemaied use, up to a complete translation of all informatioweged by
the formula.
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Table 2. Star Similarity

C E
v s & S
p(X.Y) | {p/2,p/2,v/2,0/2} || pla,b) | {p/2,p/2,7/2,0/2}
p(X, Z) {p/2,p/2,0/2} p(a,c) {p/2,p/2,0/2}
p(W, X) {p/2,p/2,q/2} p(d,a) {p/2,p/2,q/2}
r(Y,U) {p/2,0/2,s/2} r(b, f) {p/2,0/2,t/2}
o(Y,Z2) {p/2,p/2,7/2} o(b, ) {p/2,p/2,7/2}
a(W, W) {p/2} q(d, e) {p/2}
s(U,V) {r/2} t(f.9) {r/2}
Some comparisons:

U " (S"\8"), (8"NS"), (S"\S") | (ns,ls;ms) | sf(ns, ls,ms)
p(X,Y) | pla,b) 0,{p/2,p/2,7/2,0/2},0 (0,4,0) 0.83
p(X,Y) p(a,c) {r/2},{p/2,p/2,0/2},0 (1,3,0) 0.73
p(X, 2) p(a,c) 0,{p/2,p/2,0/2},0 (0,3,0) 0.80
p(X,Z) p(a,b) 0,{p/2,p/2,0/2},{r/2} (0,3,1) 0.73
p(W, X) | p(d,a) 0,{p/2,p/2,q/2},0 (0,3,0) 0.80
r(Y,U) | (b f) {s/2},{p/2,0/2},{t/2} (1,2,1) 0.60
oY, Z) o(b,c) 0,4{p/2,p/2,7/2},0 (0,3,0) 0.80

Corresponding similarity evaluatio®'¢ = avg):

g Iz f, SE (U 1)
p(X,Y) | pla,b) | sfo(X,a)=1.35 sfo(Y,b) = 1.51 2.26
p(X,Y) pla,c) | sto(X,a) =135 sto(Y,c) =0.72 1.77
(X, 2) pla,c) | sto(X,a) =135 sfo(Z,c) = 1.42 2.19
p(X,Z) | pla,b) | sfo(X,a) =135 | sf,(Z,b)=0.74 1.78
p(W,X) | p(d,a) | sto(W,d)=1.18 | sf,(X,a)=1.35 2.07
r(,U) | om0, f) | sto(Y,0) = 1.51 | st (U, f) = 1.18 1.95
o(Y,2) o(b,c) sto(Y,b) = 1.51 sfo(Z,c) = 1.42 2.27

Definition 3.9. Given a claus€’, its associated graplizc = (V, E) is defined as
o V={lp}U{li]i € {1,...,n},I; built on k-ary predicatek > 1} and
e £ C{(a1,a2) € V x V | terms(ay) Nterms(ag) # 0}

where the edges to be includedihare chosen according to Algorithm 1.

Algorithm 1 builds a Directed Acyclic Graph (DAGiratified(i.e., with the set of nodes partitioned)
in such a way that, for any fixed stratum (element of the pantitalso calledeve), all the incoming
edges come from nodes in a single (different) stratum, ahth@loutcoming edges reach nodes in a
single stratum (different from both the previous ones),dsws. The head is the only node at level O
(first element of the partition). Then, each successivd [@lement of the partition) includes new nodes
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Algorithm 1 Construction of the graph associated to C

Require: C =1y :-1y,...,1,: Clause

i« 0; Levely <+ {lo}; E < 0; Atoms «— {l1,...,1,}

while Atoms # () do
1—1i+1
Level; — {l € Atoms | A" € Level;_1 : terms(l) Nterms(l') # 0}
E—FEU{(',l")| U € Level;_1,l" € Level;, terms(l") N terms(l") # 0}
Atoms «— Atoms \ Level,;

end while

returnG = (|, Level;, F): graph associated 0

(not present in previous levels) that have at least one tearnmon with nodes in the previous level. In
particular, each node (atom) in the new level has an incomilyg from each node (atom) in the previous

level having some argument (term) in common with it.

Example 3.4. Figure 1 shows the graphs associated to clausaesd D. Let us build the graplizo =

(V,E). We have

V ={h(X)} U{p(X,Y),p(X, Z),p(W, X),r(Y,U),0(Y, Z),q(W,W),s(U,V)}

E = Levely U Levely U Levely U Levels, where:

e The head represents the 0-level of the stratification:
Levely = {h(X)}.

e Then directed edges may be introduced friofX ) to p(X,Y"), p(X, Z) andp(WW, X), that are the
only atoms havingX as an argument, which yields level 1 of the term stratificatio
Levely = {p(X,Y),p(X, Z),p(W, X)}.

Now the next level can be built, adding directed edges fravmatin level 1 to the atoms not yet
considered that share a variable with them:

— r(Y,U) : end of an edge starting frop{ X, Y);

— o(Y, Z) : end of edges starting frop( X, V) andp(X, Z); and

— q(W, W) : end of an edge starting frop{IV, X).

Levely = {r(Y,U),o(Y, Z),q(W,W)}.

e The third and last level of the graph includes the only reimgiatom,s(U, V'), having an incoming
edge fromr (Y, U):
Levels = {s(U,V)}.

Similarly for the graphGp.

Theorem 3.1. Given a claus€’ and its associated grajgh, any term appearing i@ appears in at most
two adjacent levels ofs.
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Figure 1. Graphs associated to clause@®n the left) andD (on the right)

Proof:

Any pair of adjacent levels it obviously share terms, being by construction (accordingldorithm 1)
term sharing the condition for adding a directed edge beaivwe® nodes (atoms) in order to build a
new level. Now, supposad absurdumthat there are two atonisand!” sharing a ternt, such that’
appears irGG at level: and!” appears irG at level: + j with j > 1. Then, by construction” should
have been included in leveH 1 according to Algorithm 1, and thus it should not be considexaen
building next levels, which contradicts the hypothesis. O

Each level can be divided into two subsets: the nodes intiadunew terms with respect to the previ-
ous levels and those having as arguments only terms alreidguced (in this latter case, Theorem 3.1
ensures that all such terms appear only in the previous)leMalte that, as a further consequence, the
stratification of the atoms straightforwardly induces aesponding stratification of the terms (i.e., ob-
jects) that appear in the clause, based on their minimurardistfrom the head (intended as the number
of atoms one has to traverse before encountering that teem asggument). Let us call thedratification
signatureof the clause: it allows to limit the possible binding betweaermss in two formulae, since only
terms in the same level can be mapped onto each other.

Example 3.5. The stratification signatures 6f and E' are, respectively:

< (X}, {Y,Z, W} {U}{V} > and < {a}, {b,e,d}, {e, f},{g} >.

This means thatX mustbe associated te; Y, Z, W can be associated only toc,d; U can be
associated only to eitheror f; V should be associated g but since the predicates they appear in are
different in the two clauses: (n C, ¢ in D) such a binding is not valid and hence they can be ignored in
the comparison.
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3.2.3. Path Similarity

The presence of a single atom in the clause head is the levépalgave a unique starting point for
building the associated graph, which also gives a uniquesaqooint for traversing it according to precise
directions represented the directed edges. As a consegjughen comparing two compatible clauses,
since their heads must necessarily match to each otherg(bleénonly head atom in the clause and
being compatible by hypothesis), having such a well-defipedpective among the many possible on
their structure allows to significantly reduce indeternasinaSpecifically, all possible paths starting from
the head and reachirlgaf nodes (those with no outcoming edges) are univoquely detedn Thus,
they can be interpreted as the basic components of the bgttaiture of the clause, and be exploited
instead of single atoms when checking similarity betweans#s. This gives a leverage for significantly
reducing the amount of indeterminacy in the comparisomitinmely, a path in a clause depicts ‘in depth’
a given portion of the relations it describes.

Definition 3.10. (Path similarity)
Given two compatible clauses’ and C” with associated graphS§: and G~ respectively, and two
pathsp’ =< 1y, 1},...,1/, >in Gor andp” =< [, 1{,...,1", > in Ger. Theintersectionbetweerp’
andp” is defined as
P Op’ = (pi,p2) =(<l,.... 0 > <U,....[ >)s.
0<k< min(n n") A 9<167 > /<t..1y is defined and consistent
(k=n'Vk=n"Vo_y > /<t > is undefined or inconsistent)

0 7k
and theirdifferencesare defined as the trailing parts: o

PP =<l ...l > PIND =<Ulq, U >
Then, thepath similaritybetweernp’ andp” is computed as
sfp(p/,p”) = sf(nyp, I, my) + CP({sfs (I3, lgl)}z:l,...,k) (4)

wheren, = [p' \ p"| =n' — k, 1, = |p1] = |p2| = k, mp = [p” \ /| = n” — k andC? is a composition
function (e.g., the average)

It is based on the pair of longest compatible initial subseges of the two paths (excluding the heads),
and takes into account also the star similarity values fopaits of atoms associated by those subse-
guences. Note that the intersection could be empty (in@@{§§/1>/<lg,l/1/> is undefined or inconsistent),
and that either difference could be empty as well. In cdiseanges in0, 3] it ranges in0, 4], but can
obviously be normalized tfo), 1[ if needed.

Example 3.6. Let us now find all paths i@’ and E:

Path No. C E
1. <p(X,Y),r(Y,U),s(U, V) > | <pla,b),rb, f),t(f g) >
2. <p(X,Y),0(Y,Z) > < p(a,b),o(b,c) >
3. <p(X,Z2),0(Y,Z) > p(a,c),o(b,c) >
4 <p(W,X),q(W, W) > p(d,a),q(d ) >

"Intuitively, n,, is the length of the trail incompatible sequencepbfnrt p” (path residualof p’ wrt p”); 1, is the length of
the maximum compatible initial sequencepdfandp’’; m,] is the length of the trail incompatible sequencepdfwrt p” (path
residualof p” wrt p’).
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Table 3. Path Similarity@? = avg)

4 pnp” p\p” % (s Lp, mp)
P’ P\Y stp (0, p")
Cl]| <pX,V),r(Y,U)> <s(U,V) > (X/a,Y/b,U/f} (1,2,1)
E.1 < p(a,b),r(b, f) > <t(f,g) > 2.71
Cc.1 <p(X,Y) > <r(Y,U),s(U, V) > {X/a,Y/b} (2,1,1)
E.2 < p(a,b) > < o(b,c) > 2.71
Cc.1 <p(X,Y) > <r(Y,U),s(U, V) > {X/a,Y/c} (2,1,1)
E.3 < pla,c) > < o(b,c) > 2.22
C.2 <p(X,Y) > <oY,Z) > {X/a,Y/b} (1,1,2)
E.1 < p(a,b) > <r(b, ), t(f,g9) > 271
C2 | <pX,¥),0Y,2) > <> {X/a,Y/b,Z/c} (0,2,0)
E2 | <plab),olbc)> <> 3.02
C.2 <pX,Y)> <o(Y,Z) > {X/a,Y/c} (1,1,1)
E.3 < pla,c) > < o(b,c) > 2.27
C.3 <pX,Z)> <oY,Z) > {X/a,Z/b} (1,1,2)
E.1 < p(a,b) > <r(, f),t(f,g) > 2.23
C.3 <pX,Z)> <oY,Z) > {X/a,Z/b} (1,1,1)
E.2 < p(a,b) > < o(b,c) > 2.28
C3 | <pX,2),0(Y,2) > <> {(X/a,Z/c,Y/b} (0,2,0)
E.3 < pla,c),o(b,c) > <> 2.98
C.4 <p(W,X)> < q(W, W) > {W/d, X/a} (1,1,1)
E.4 < p(d,a) > < q(d,e) > 2.57

All other intersections are empty, and hence ignored.

As a sample comparison, considérl and E.1: the longest compatible initial subsequence compatible
both for predicates and as to overall term associations gerog by their first two atoms; then, being
the third atoms different by predicate, the rests of the aeges (actually, in this case just the third atom
itself) belong to the residuals. The list of path similastiis reported in Table 3 (note that similarities
C.1-E.4 and C.2-E.4 are empty since the head forces varittebe bound to constanj).

3.3. Clause Similarity

The overall similarity between two (tuples of) terms repdrin the head atoms of two compatible
clauses, according to their description reported in thpaets/e bodies, can be computed based on their
generalization, that informally represents what the tvamisés have in common, where the notion of gen-
erality depends on the generalization model adopted. licpkar, one would like to exploit theleast
general generalizationin order to preserve in the generalization as much infaonads possible of the
original clauses. Unfortunately, such a generalizatiomoiseasy to find: either classicgisubsumption

is used as a generalization model, and then one can commikenR| least general generalization [23],
at the expenses of some undesirable side-effects congeh@imeed of computing its reduced equivalent
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(and also of some counter-intuitive aspects of the resmlf)as most ILP learners do, one requires the
generalization to be a subset of the clauses to be genetaliz¢he latter option, that we choose for the
rest of the work, théo; generalization model [9], based on the Object Identity axggion, represents a
supporting framework with solid theoretical foundatione exploited.

Definition 3.11. (formulge similitudo)

Given two clause”’ and C” with headsl;, and (] respectively, callC’ = Iy :- l1,...,[; their least
general generalization, and consider the substitutibrend ¢” such thatly¢’ = I, (6" = I and
Vi=1,....k:1;0/ =1, € body(C") andl;0" = 1! € body(C"), respectively. The formula for assessing
the overall similarity betweet” andC”, calledformulee similitudaand denoteds, is the following:

fs(C', C") = sf(n,l,m) - sf(no, lo, mo) + C({sfs (1}, l;')}izl,m’k)

wheren = |body(C")| — |body(C)|, I = |body(C)| = k, m = |body(C")| — |body(C)|; n, =
[terms(C")| — |terms(C)|, l, = |terms(C)|, m, = |[terms(C")| — |terms(C))|; andC* is a compo-
sition function (e.g., the average).

It is based on the amounts of common and different afcans term3, and takes into account also
the star similarity values for all pairs of atoms associdigdhe least general generalization. In case
sfs ranges ino, 2] it ranges in0, 3[, but can obviously be normalized @, 1] if needed. This function
evaluates the similarity of two clauses according to themusiie similarity of a maximal subset of their
atoms that can be put in correspondence (which includessbatttural and object similarity), smoothed
by adding the overall similarity in the number of overlapgpend different atoms and terms between the
two (whose weight in the final evaluation should not ovenmh#te similarity coming from the detailed
comparisons, hence the multiplication).

Example 3.7. The least general generalization betwééandD is
H(X) : —p(X,Y),p(X, Z), p(W, X),0(Y. Z), (Y, U)
with associationg X /a,Y /b, Z/c,W/d,U/ f }. The corresponding similarity, far'“ = avg is
fs(C, D) = sf(2,5,2) - sf(1,5,2) + avg({2.26,2.19,2.07,2.27,1.95}) = 0.67-0.71 4+ 10.74/5 = 2.62

or, normalized tqo, 1], 0.87.

8Intuitively, n represents how many atomsdH are not covered by its least general generalization witheetstoC” (clause
residualof C” wrt C"'); [ is the maximal number of atoms that can be put in correspaedeatweerC’ andC" according to
their least general generalization; represents how many atomsGH’ are not covered by its least general generalization with
respect taC” (clause residuabf C” wrt C”).

®Intuitively, n, represents how many terms@ are not associated by its least general generalizatiorresta C” (object
residualof C’ wrt C"); I, is the maximal number of terms that can be put in corresparedenC’ andC”’ as associated by
their least general generalization,, represents how many termsdi’ are not associated by its least general generalization to
terms inC’ (object residuabf C” wrt C”).
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Algorithm 2 Similarity-based generalization
Require: C' =1:-11,...,ll,,C" =1 :-1{,...,1",: Clauses
Peor — paths(C"); Porn < paths(C");
P — {(pcr,pcr) € Por x Pon | por Npen # (<>, <>)};
G<—@;9<—9l6/l8
while P # () do
(Pery Do) — argmax(, , n ., )epP (sfp(pcr,pcr))
P — P\{(Pcr.Pcn)}
(gcrqom) < Per NPen
if 64, /4., compatible withf then
G—GUgqe, 0000
end if
end while
returnly :- G: generalization betweefi’ andC”; §: matching association

qcv /qc//

3.4. Exploitation in Clause Generalization

Given a Horn clause, instead of working on its single atoimes paths univoquely determined according
to the technigue proposed in Section 2 can be safely (i.¢how loss of generality) considered as its
basic components. Indeed, considering paths insteadgieésatoms allows the generalizer to have more
information about the pieces to be composed for buildinghgpgeneralization [12], and hence gives
it the opportunity of taking better choices, that will hopif lead more quickly towards the proper
sub-formulee associations.

Once the set of paths for the two clauggésand C” to be generalized are obtained, each pair of
paths, in which the former is taken fro@f and the latter fronC”, can be compared for assessing their
similarity. Of course, pairs that show a higher similaritg anore likely to correspond to each other, and
hence their common part (i.e., thémtersection should be taken as part of the generalization. Thus,
a generalization can be computed according to Algorithm @rti8g from the empty generalization,
the path couples are considered in turn by decreasing sityilatarting from the top and going down
the ranking, and their intersection is added to the pargalegalization generated thus far whenever it
is compatible with it (intersections that are not compatiblith the current partial generalization are
just skipped). Further generalizations can then be oldaimeugh backtracking. Since this procedure
takes into account the most similar sub-parts of the clafirstsit can optionally be stopped when some
threshold is reached, even before complete analysis ofatieligt, in order to cut the generalization and
prevent it from becoming too specific, still ensuring thalydhe less significant similarities are dropped.

Example 3.8. The path intersection with highest similarity value is €2/, and hence the first partial
generalization becomg®(X,Y),o(Y, Z)}, with associationd X /a,Y /b, Z/c}. Then C.3/E.3 is con-
sidered, whose associations are compatible with the dusress, so it contributes witfp(X, Z)} to the
generalization (there are no new associations). Then c@€g.1, that being compatible extends the
generalization by adding-(Y, U)} and the association witfi// f }. It is the turn of C.1/E.2 and then of
C.2/E.1, that are compatible but redundand, and hence dadadatnything to the current generalization
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(nor to the association$) Then C.4/E.4 is considered, that is compatible and extesttis{p(1V, X)}
and {W/d} the current generalization and associations, respegtivelstly C.3/E.2, C.2/E.3, C.3/E.1
and C.1/E.3 are considered, but discarded because of gsgiciations being incompatible. The final
generalization ig7(X) : —p(X,Y),p(X, Z),p(W, X),0(Y, Z),r(Y,U), which is also the least general
one (as previously stated), with overall associatiohSa, Y /b, Z/c, W /d, U/ f}.

4. Discussion

The similarity framework for Horn Clauses presented in théper is made up of a set of similarity
parameters and a similarity function based on them, plus af ggiteria that focus on particular clause
components to tackle the problem of indeterminacy whilem#serving a considerable amount of infor-
mation about the description structures. Itis importarsitess the point that the similarity framework is
syntax-based, and hence totally general, since it doessotree domain-related knowledge for assessing
the similarity degree between two descriptions.

As to the similarity parameters, they are standard and widetepted in the past literature of the
field. As to the similarity function, a novel one was develbe avoid cases in which other standard
functions proposed and accepted in the literature are hetallistinguish between different cases (e.g.,
whenl = 0 for differentn andm values), or might have definition problems (e.g., wheg [ =m =0
a division by zero would be raised) or could assign the fullilsirity value 1 just because the syntactic
structure of two expressions is the same (whereas we behevequality should be reserved to exact
identification between the two).

As to the criteria, they refer to increasingly complex dggimn components, from terms to atoms
to groups of atoms to whole clauses. More precisely, thelaiityi of each component type is based on
the similarity of simpler components (only), so that no ms@n nor indeterminacy can be present. It
should be noted that no single criterion is by itself neaibgdminant, but their cooperation succeeds in
assigning sensible similarity values to the various kinfdsoonponents, and in distributing on each kind
of component a proper portion of the overall similarity, sattthe difference becomes ever clearer as long
as they are composed one ontop the previous ones. This nfekprsoposed approach robust to lacks of
information due to some of the criteria. For instance, iresas which the clause head does not provide
helpful information on the structure (e.g., when it incladdl, or almost all the terms as arguments, since
the whole description in the body must be evaluated withoci$sing on any particular object), only the
last step is missing contribution, and the similarity calhstnefit from the information coming from all
the other parameters in order to identify good matchingfeuinula candidates.

4.1. Computational Complexity Issues

As to the computational complexity, the cost for computing tormula is clearly constant. Then, note
that each term (respectively atom, path) in one clause neisbmpared with each term (respectively
atom, path) in the other by means of the formula; assuminghieanaximum number of terms (respec-
tively atoms, paths) in either of the two clauses:jsve have less than? applications of the formula,

and hence a quadratic complexity in the number of terms étsely atoms, paths) to be compared.

©pctually, C.1/E.1, C.1/E.2 and C.2/E.1 have the same vdluebeing all compatible among each other the actual orgerin
which depends on the sort algorithm used, is not signifiaattte final outcome.
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Now, since the number of terms and atoms is fixed in the cladisesnly thing still to evaluate is the
number of paths. Note that the DAG resulting from the linlesinbased stratification of the atoms in
a clause is not necessarily a hierarchy (a tree), but morergiyr a heterarchy (i.e., each node may
have many parents, although loops are not allowed in thetate), where each edge can connect nodes
only at adjacent strata (see discussion above). In the was#, every node at each level is connected
to every node at the levels just above and below, in which taseverall number of paths is equal to
the product of the number of nodes at each level. For suchduptdo be largest, the nodes should be
equally distributed among levels (each atom appears just onthe DAG). Let us calin the number

of nodes at each level: hence, since each path is made up ofoglgefrom each level, its maximum
length is the DAG depth, equal tg/m, and the associated number of paths:i¥™ (number of nodes at
each level, multiplied by itself so many times as the numibée\@ls), i.e. it is exponential in the DAG
depth. Indeed, in the worst case of the atoms being abspletglally distributed botln andamong

levelsm = i = m™™ = /n™/V" = /nY™. However, in more realistic cases, in which atoms are
irregularly distributed in breadth and/or depth, and agljitevels are not completely connected, the com-
plexity moves towards the two extremes= 1 = m"/™ = 1" = 1 andm = n = m"/™ =n! = n.

4.2. Related Works

Despite of a large number of possible distance measuresopedefor attribute-value representations
[17], few works are present in the literature that face thebfam of defining similarity or distance
measures for first-order descriptions. A work in this ditiwas carried out in [11], where a distance
measure between structural symbolic descriptions is m@ghdoased on probability theory applied to the
formula components. Compared to that proposal, our fungti@serves the probabilistjo, 1] range.
However, rather than resorting to probabilistic model$ thaht be hard to understand and justify, it is
based on heuristic and intuitive premises, which yieldsralmer of advantages: the underlying principles
are easier to understand, it is far easier to compute andrawesquire the assumptions and simplifying
hypotheses (statistical independence, mutual exclusi@ge in [11] to ease the probability handling,
no a-priori knowledge of the representation language is required (gac¢he type domains that in [11]
allow the distance computation between references). k& doé require the user to set weights on the
single predicates’ importance, which is a difficult task rever trained people, but limits the human
intervention to a setting of the relative importance of twe tlescriptions involved, that can be easily
understood. It is not based on the presence of ‘mandatdatioas, like for theG1 subclause in [11].
Last but not least, its application range is not limited to addl-Observation matching comparison, but
can be properly weighted so that both descriptions haveaime glignity in the similarity evaluation.

Many systems, in the field of supervised learning, prove tiygortance of a distance measure. For
instance KGB [3] uses a similarity function specifically designed for F@@hguages and parameterized
by the user, in order to guide generalization; our ideas afaitteristic and relational similarity are very
close to those in [3], but then the actual similarity comgatais much more straightforward. WhikeGB
cannot handle negative information possibly present irctheses, our approach can be easily extended
to deal with them, by applying Algorithm 1 only to positiveoats and just ignoring in Algorithm 2 the
path pairs whose corresponding associations are incensisith the negative atoms.

The k-Nearest Neighbor classifiBiBL [8] is based on a FOL similarity function that is a modified
version of that proposed in [3]. The basic idea of the meassee inRIBL is that objects are described
by values (e.g., size and position) and their relation teothbjects. Their similarity depends on the
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similarity of their attributes’ values (the similarity dieir size) and the similarity of the objects related
to them. The similarity of the related objects in turn depend the attribute values of these objects
and their relation to other objects and so on. Such a propegpbses the problem of indeterminacy in
associations, that our technique avoids thanks to thereliffestructural approach. Although the indeter-
minacy problem could be handled by using some CSP techni&ge [32]), there is no reason for not
exploiting the information provided by the clause heads;esi{as already pointed out) they are purposely
exploited for highlighting the focus-of-attention, ancdhhbemustmatch. The basic idea is to compute the
similarity between two objects by considering the immealia¢ighborhood of the objects. For instance,
the similarity between two identifiers is determined by timeilsrity between the set of facts where these
identifiers occur. Also, the similarity between two factddetermined by the similarity between their
arguments. If some of these arguments are identifiers aga@can get a cycle. Therefore, a depth para-
meter is introduced and similarity is only computed up ts tiepth.RISE[7] combines a rule classifier
with a k-NN: when the instance to classify is not covered by rate, the distance of the instance to the
different rules is evaluated and the instance is classiftedrding to the majority vote of its “neighbor”
rules .

While the distances underlyingBG and RIBL or RISEare basically syntax-driven, [27] presents a
discrimination-based approach for the induction of a disgaon FOL examples, that mainly depends on
the pattern discriminating the target conceptslauses are choosen and the truth value of the clause on
the examples (whether the clause covers the example ormeatsad ag features. In a second step, one
uses a distance on the spd@e1}* of these features as a distance between the examples.

In [22] a distance between terms is proposed that treatstasa hierarchy where the top of high-
level structure (the main functor) is most important anddbeper nested subterms are less important.
Then a distance is proposed between interpretations baseteeel mapping, a function that maps every
simple expression on a natural number. [24] presents andsstaunction between two atoré and B
based on the difference with their Ilgg. Such a distance stmef a pair whose first component is based
on the differences between the functors on both terms. it exgension of the notion of distance used in
[22]: it is also defined for non-ground atoms and it introduesights. The second component is based
on the differences in occurrences of variables, it allowdiffierentiate distances in cases where the first
component cannot. Then, this distance between atoms idaisedhpute distances between clauses.

More related to the generalization task, the approach penbdy Kodratoff [16] is based on just
an evaluation of similarity between objects, whose overadkt likely associations are then set so to
maximize the global fitness; our proposal in some way extémaise ideas by exploiting the structural
features to progressively exclude impossible or lesslsleit@rms associations.

Cluster analysis concerns the organization of a colleaifamlabeled patterns into groups (clusters)
of homogeneous elements based on their similarity. Thdagityimeasure exploited to evaluate the dis-
tance between elements is responsible for the effectigenfehie clustering algorithms. Many research
efforts on data representation, elements’ similarity araliging strategies have produced several suc-
cessful clustering methods (see [15] for a survey). Thesmakstrategies can be divided in bottom-up
and top-down. In the former, each element of the datasetrisidered as a cluster. Successively, the
algorithm tries to group the clusters that are more simidé@oeding to the similarity measure. This step
is performed until the number of clusters the user requisea final result is reached, or the minimal
similarity value among clusters is greater than a giverstiotl. In the latter approach, known as hierar-
chical clustering, at the beginning all the elements of thmskt form a unique cluster. Successively, the
cluster is partitioned into clusters made up of elementsat@more similar according to the similarity
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measure. This step is performed until the number of clustgaired by the user as a final result is
reached.

A further classification is based on whether an element caassgned (NotExclusive or Fuzzy
Clustering) or not (Exclusive or Hard Clustering) to moraritfone cluster. Also the strategy exploited
to partition the space is a criterion used to classify thateling techniques: in Partitive Clustering a
representative point (centroid, medoid, etc..) of thetelus the space is chosen; Hierarchical Clustering
produces a nested series of partitions by merging (HieieathAgglomerative) or splitting (Hierarchical
Divisive) clusters, Density-based Clustering consideesdensity of the elements around a fixed point.

Closely related to data clustering is Conceptual ClusgeranMachine Learning paradigm for un-
supervised classification which aims at generating a cdraegcription for each generated class. In
conceptual clustering both the inherent structure of thia dad the description language, available to
the learner, drive cluster formation. Thus, a concept (eggy) in the data could not be learned by the
system if the description language is not powerful enougteseribe that particular concept (regularity).
This problem arises when the elements simultaneously ilesseveral objects whose relational struc-
tures change from one element to the other. First-Orderdiegresentations allow to overcome these
problems. However, most of the clustering algorithms arstissys work on attribute-value representation
(e.g.,CLUSTER/2 [20], CLASSIT [14], COBWEB [13]). Other systems such &4BYRINTH [29] can deal
with structured objects exploiting a representation thaat powerful enough to express the dataset in a
lot of domains. There are few systems that cluster exampfgesented in FOL (e.qA\JTOCLASS-1ike
[25], ¥BG [2]), some of which still rely on propositional distance reeges (e.g.TIC [4]).

4.3. Experimental evaluation

Some experiments were designed to check whether the pabgesaework is actually able to give
significant similarity hints when comparing two structuresll of them were run under WindowsXP
Professional on a PC endowed with a 2.13 GHz Intel procesgbP&B RAM. For supervised learning
tasks, 10-fold cross-validation was exploited to assesgigiive accuracy. The 10 folds were created so
that the distribution of examples from the 4 classes wastmifin each fold (each training and test set
contained approximately 90% and 10%, respectively, of glasfrom each class).

Two real-world datasets, requiring first-order logic dggns for capturing the complexity of the
domain and concerning very different domains from eachrpthere identified for performing the ex-
periments and ensure general applicability and performahthe proposed approach. Mutagenesis is a
classical ILP dataset [28] representing 188 chemical cam@® that are to be distinguished, according
to their behavior, between those that are Active and thasteatie NonActive with respect to mutagenic-
ity, for which regression-based techniques are not ableamluseful theories. The dataset is described
with a total of 25917 atoms, for an average of nearly 138 atpersdescription. In particular, we ex-
ploited an automatic discretization procedure [1] for lmgnnumeric descriptors into symbolic ones,
each corresponding to an interval of the original ranges dther dataset concerns automatically gen-
erated layout descriptions of first pages of scientific pgpa&ccording to which identifying the papers’
series and significant components. It contains 353 desmmgtbelonging to 4 different classes: Elsevier
journals, Springer-Verlag Lecture Notes series (SVLN)rdal of Machine Learning Research (JMLR)
and Machine Learning Journal (MLJ). For each class, sonmutasomponents of interest are selected:
Title, Abstract and Author for all classes, plus KeywordsJMLR and MLJ, and Logo and Keywords
for Elsevier. The complexity of such a dataset is consideratue to several aspects: the journals layout
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styles are quite similar, so that it is not easy to grasp tHerdnce when trying to group them in dis-
tinct classes; moreover, the 353 documents are descriltbcavdtal of 67920 atoms, for an average of
more than 192 atoms per description (some descriptions ade mmp of more than 400 atoms); last, the
description is heavily based on a membership relafiem(@ that increases indeterminacy.

The first question concerns whether the proposed similantgtion is actually able to lead towards
the identification of the proper sub-parts to be put in caoesience in the two descriptions under com-
parison. Since the ‘correct’ association is not known, tais be evaluated only indirectly. A way for
doing this is evaluating theompression factorof the guided generalization, i.e. the portion of atoms
in the clauses to be generalized that is preserved by theajzatdion, defined as the ratio between the
length of the generalization over that of the shortest @dosbe generalized: the higher such a value,
the more confident one can be that the correct associatioresspwavided by the similarity criteria and
formula. Indeed, since it is usual in ILP systems that a gdizattion must be a subset of either clause
to be generalizéd, the more atoms the generalization preserves from thesse;lghe less general it
is. Of course, the more the difference in length betweenwutedauses to be generalized, the more
indeterminacy is present, and hence the more difficult ibigléntify the proper corresponding parts
between them. Interestingly, on the document dataset thiéasity-driven generalization preserved on
average more than 90% atoms of the shortest clause, with anmaxof 99,48% (193 atoms out of
194, against an example of 247) and just 0,006 variance. Amsecuence, one woud expect that the
produced generalizations are least general ones or nearRpplication of Tverski’'s similarity formula
to the same setting always returned shorter generalizatian those obtained by using our formula.

The similarity-drivengeneralization procedurewas compared to a previous non-guided procedure,
embedded in the learning system INTHELEX [10]. Wheneverfitst generalization was not consis-
tent with all past negative examples, the system was allaowvegarch for other ones on backtracking.
On the Mutagenesis dataset, the proposed generalizatibniggie reached a slightly better predictive
accuracy (87%) than the non-guided version (86%) expitinly 30% runtime. No backtracking was
ever needed, against the 5815 of the non-guided versianwiis a good hint that the similarity criteria,
strategy and formula are actually able to lead the corresttification of corresponding sub-parts of the
compounds descriptions. On the document dataset also Bunee@vith parameter 1 in order to equally
weight Precision and Recall) was evaluated, to ensuretibgté¢rformance was balanced between posi-
tive and negative examples. Classification outcomes shawitth similarity-driven version outperformed
the classical one in all considered parameters: 70% rurgamimgs, higher quality theory (less clauses
per definition, less exceptions), better learning behavilmss generalizations/specializations needed),
+1% average accuracy (98%) and +2% average F-measure (Fa@%)he understanding task, overall
averages are 95% for accuracy (-1%), and 89% for F-meast@ (obtained in 32.14% (1 day 3 hours
cumulative) time savings. It must be pointed out that thepottedurdailed on fold 4 of label Keywords
in class MLJ, running out of memory after various hours, sodherages are actually computed on the
remaining 159 folds only.

Theclustering task aims at grouping a set of items into homogeneous classesding to the sim-
ilarity between their descriptions; if an intensional (gfgst-order logic) description of each cluster is
provided, it is definedconceptualclustering. We embedded the proposed similarity assedsteem
nique into a classical K-means algorithm, exploitimgdoid prototypes? instead of centroids, since

Note that this is an odd assumption in general, but not in IELEX because of its enforcing the Object Identity assunmptio
12The medoid of a cluster is defined as the observation in tretathat has the minimum average distance from all the other
members of the cluster.
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first-order logic formulee do not induce an euclidean spadee Stop criterion was set as the moment
in which a new iteration outputs a partition already seenravipus iterations. Since the class of each
observation in the datasets is known, we provided the cingt@rocedure with the number of clusters
to be obtained (4 in the case of documents and 2 for Mutagenesid then compared the results with
the correct classes to assess their quaditypérvised clusterig Each cluster was compared to its best-
matching class, and their overlapping evaluated accorttingecision, recall and purity. In fact, for
each cluster the precision-recall values were neatly higtofie class and considerably low for all the
others; moreover, and each cluster had a different besthingt class, so that the association and conse-
guent evaluation became straightforward. Results for thoeichent dataset revealed a 91.60% precision,
93.28% recall and 92.35% purity, indicating that the pregbosiethod is highly effective since it is able
to autonomously recognize the original classes. This ig gacouraging, especially in the perspective
of the representation-related difficulties. A comparisorother measures in the literature reports an
improvement with respect to both Jaccard’s, Tverski's afk® measures up to +5,48% for precision,
up to + 8,05% for recall and up to + 2,83% for purity. Also on Matagenesis dataset the precision,
recall and purity figures are very high (81.56%, 81.30% an8B82, respectively), considering that the
state-of-the-art performance on accuracy (comparablrisbering purity) of supervised systems on this
dataset is between 83% and 87%.

As to the exploitation of the proposed similarity techniqaghek-Nearest Neighbourtechnique,
k was set to the square root of the number of learning instaneed 7. Note that the classification was
a multi-class one, so (altoughis odd) the nearest neighbours are not bound to a binaryifcdasisn
and ties are possible. The results of the classificatioropegnce show an overall accuracy of 94.37%,
which means that few documents were associated to the wiasg @and hence the distance technique is
very good in identifying the proper similarity features it the given descriptions. Actually, very often
in the correct cases not just the majority, but almost alhefriearest neighbors to the description to be
classified were from the same class. Specifically, classavielr and MLJ always have 100% accuracy,
which means that the corresponding examples are quitefisemti and sharply distinguishable. Errors
were concentrated in the SVLN and JMLR classes (where, henvbigh accuracy rates were reached:
89.70% and 90.03%, respectively), and reveal that MLJ iteqiistinct from the other classes, while
Elsevier, although well-recognizable in itself, is som&ho between JMLR and SVLN, which are also
close to each other. Interestingly, mismatchings conangriisevier are unidirectional: some JMLR and
SVLN are classified as Elsevier, but thiee-versanever happened; on the other hand, in the case of
JMLR and SVLN it is bidirectional, suggesting a higher rebance between the two.

5. Conclusions

The problem of indeterminacy in mapping a First-Order Ldgicnula onto another, due to the pres-
ence of relations, causes serious computational problelesce, many Artificial Intelligence tasks that
are based on FOL would take advantage from techniques faratmgarison and similarity assessment
among (parts of) descriptions. This paper proposed a nawvdbsity framework for Horn clauses, on
which the Logic Programming paradigm is founded, and comparstrategies for their progressively
complex components (terms, atoms, sets of atoms). Expetsnoa real-world datasets prove the effec-
tiveness of the proposal, and the efficiency of the corredipgnmplementation in many tasks: it helps
inductive generalization to preserve common featuresefitrscriptions to be generalized, leads super-
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vised learning systems towards cleaner and more accuredeidh dramatically reducing the runtime
needed for building them, effectively groups unknown dipsions in consistent and homogeneous clus-
ters, improves classification performance of instancedbéschniques. The proposed similarity formula
also outperforms state-of-the-art alternatives.
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