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Abstract. First-Order Logic formulæ are a powerful representation formalism characterized by the
use of relations, that cause serious computational problems due to the phenomenon of indeterminacy
(various portions of one description are possibly mapped indifferent ways onto another description).
Being able to identify the correct corresponding parts of two descriptions would help to tackle the
problem: hence, the need for a framework for the comparison and similarity assessment. This could
have many applications in Artificial Intelligence: guidingsubsumption procedures and theory re-
vision systems, implementing flexible matching, supporting instance-based learning and conceptual
clustering. Unfortunately, few works on this subject are available in the literature. This paper focuses
on Horn clauses, which are the basis for the Logic Programming paradigm, and proposes a novel
similarity formula and evaluation criteria for identifying the descriptions components that are more
similar and hence more likely to correspond to each other, based only on their syntactic structure.
Experiments on real-world datasets prove the effectiveness of the proposal, and the efficiency of the
corresponding implementation in the above tasks.
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1. Introduction

First-order logic (FOL for short) is a powerful formalism, that is able to express relations between objects
and hence can overcome the typical limitations shown by propositional or attribute-value representations.
As a consequence and tradeoff for their expressive power, the presence of relations causes various por-
tions of one description to be possibly mapped in (often many) different ways onto another description,
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a problem known asindeterminacy, which poses serious problems of computational effort whentwo
descriptions have to be compared to each other. Hence, the need for a set of general criteria that are
able to support the comparison between formulæ. Specifically, our objective is developing a similarity
framework for FOL descriptions, based on a measure and a number of criteria that must be simple (in or-
der to ensure efficient computation), sensible (they have toreflect as much as possible the intuitive way
in which humans compare two descriptions), effective (mustcapture as much information as possible
about the items to be compared), flexible (allow to weight differently the two items) and general (arenot
devisedad-hocfor some problem).

This could have many applications, particularly in the Artificial Intelligence and Machine Learn-
ing community. For instance, the similarity criteria couldbe exploited by a subsumption procedure to
converge quickly towards the correct associations. More generally, even when two formulæ do not cor-
respond exactly, one could nevertheless be interested in assessing a degree of similarity between them,
which is typically obtained by means of functions that couldtake advantage from the same criteria. This
would help to overcome the strict distinction operated by FOL between true and false assertions, that
sometimes is too rigid to deal with real-world cases (e.g., when a definition does not completely account
for an observation, even if this is due to just a few characteristics), so that aflexible matchingprocedure
would be more appropriate than an exact one. Instance-basedtechniques (e.g. Case-Based Reasoning and
k-Nearest Neighbor) strongly rely on similarity measures for classifying unseen observations according
to the closest known prototypes. From the opposite perspective, a similarity measure can be interpreted
as a means for estimating the distance between the formulæ, to be exploited by unsupervised learning
techniques for grouping observations into homogeneous concepts (calledconceptual clusteringin FOL).

As regards supervised learning techniques, it often happens that a concept is expressed by many
alternative definitions each of which, at least in principle, is intended to represent a particular form
of the concept, according to the intuition that the concept itself is polymorfous, and hence cannot be
captured by a single definition. As a consequence, such definitions are expected to show a high degree
of orthogonality, referring to distinct portions (ideally, defining a partition of the whole set) of concept
instances. In practice, when the definitions are learned empirically and do not undergo a systematization
process, this is not always the case, and the scope of definitions often overlap. Hence, the need for
some tool that could help Machine Learning systems in choosing the best definition to be refined when
the current theory proves unable to account for a new given observation. More operationally, there
is a need for a function that, given an observation and various definitions for the concept it belongs
to, assigns to each of the latter a value expressing its degree of syntactic similarity with the former.
Additionally, when two descriptions (e.g., a definition andan observation) must be generalized, the
similarity criteria could help the procedure in focussing on the components that are more similar and
hence more likely to correspond to each other. Clearly, thisconcerns the semantic aspects of the domain,
and hence there is no precise (i.e., algorithmic) way for recognizing the correct (sub-)formulæ. Thus, the
problem must be attacked heuristically, by developing somemethod that can hypothesize which (part of
a) description refers to which (part of the) other, based only on their syntactic structure. To these aims,
partial similarities among subparts of the descriptions must be searched for.

A particular kind of FOL formulæ areHorn clauses, i.e. expressions of the form l1 ∧ · · · ∧ ln ⇒ l0
(usually represented in Prolog style asl0 :- l1, . . . , ln) to be interpreted as “l0 (called headof the
clause) is true, provided thatl1 and ... andln (calledbodyof the clause) are all true”. Theli’s areatoms,
where an atom is a predicate applied to a proper number of terms (called itsarity). A predicatep of arity
k is usually denoted asp/k. Given a clauseC, head(C) denotes the head atom ofC andbody(C) the
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set of atoms in the body ofC. An interesting perspective on FOL is that, by restricting to sets of Horn
clauses (called Logic programs), it defines Logic Programming [19], an important paradigm in Artificial
Intelligence (many first-order Machine Learning systems infer theories in the form of logic programs).
terms(E) denotes the set of terms that appear in a FOL expressionE. Informally, a clauseC is linked if
any two of its atoms can be connected by a chain of atoms inC such that adjacent atoms in the chain have
some term in common (see [19] for a formal definition): linkedsub-parts of non-linked clauses, having
no connection between each other, can be dealt with separately. Datalog [6] is (at least, syntactically) a
restriction of Logic Programming that allows only variables and constants as terms (and hence avoids the
use of function symbols): theflattening/unflatteningprocedures [26] can translate generic Horn clauses
into Datalog ones and vice-versa. Thus, we can focus on the case of linked Datalog clauses without loss
of generality.

In the next sections, the criteria and a corresponding formula and on which basing similarity consid-
erations between descriptions will be presented, followedby a pool of techniques to assess the similarity
between clause components, that are intended to represent agood tradeoff between significance, effec-
tiveness and expressiveness on one side, and computationalefficiency on the other. Then, Section 4 will
discuss computational complexity issue, present related work and summarize experimental results on
different tasks. Lastly, Section 5 will conclude the paper and outline future work directions.

2. Similarity Parameters and Formula

Intuitively, the evaluation of similarity between two expressionsi′ and i′′ might be based both on the
presence of common features1, which should concur in a positive way to the similarity evaluation, and
on the features of each expression that are not owned by the other (let us define this as theresidualof the
former with respect to the latter), which should concur negatively to the whole similarity value assigned
to them [18]. More precisely, two distinct residuals exist,each expressing the features of one of the two
expressions that the other does not own2. Thus, plausible parameters on which basing similarity between
i′ andi′′ are:

n , the number of features owned byi′ but not byi′′ (residualof i′ wrt i′′);

l , the number of features owned both byi′ and byi′′;

m , the number of features owned byi′′ but not byi′ (residualof i′′ wrt i′).

Indeed, other classical and state-of-the-art distance measures in the current literature, mostly developed
in the propositional setting, are based on the same parameters: e.g., the one developed by Tverski [30],

1The exact definition offeaturedepends on the kind of expressions to be compared, and will begiven in the following for terms,
atoms and sequences of atoms.
2The situation is immediately visualized through a Venn diagram, in which each of the two sets represents the features of
an expression, so that their intersection represents the common features, while the two symmetrical differences represent the
residuals.
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by Dice (S = 2l/(n+2l+m)) or Jaccard’s index (J(A,B) = l/(n+ l+m)) and distance (Jδ(A,B) =
1 − J(A,B) = (n + m)/(n + l + m)). However, all of them show a behaviour that is not desirablein
specific cases. For instance, Dice’s measure and Jaccard index evaluate to 0 when the two expressions
have no feature in common, independently of how many different features they have, and hence cannot
distinguish between expressions that have no features in common but a different amount of extra features
each. Such considerations led us to the definition of a similarity function that could overcome these
limitations.

We developed a novel similarity function,sf (α, i′, i′′), that intuitively expresses the degree of sim-
ilarity between two expressionsi′ and i′′ based on the above parameters, also including an additional
parameterα, 0 ≤ α ≤ 1, that weights the importance of either expression. Thus,sf(α, i′, i′′) can be
written assf(α, n, l,m), wheren, l andm are the similarity parameters referred toi′ and i′′. In the
following we will use both forms indifferently, as needed.

sf(α, i′, i′′) = sf(α, n, l,m) = α
l + 1

l + n + 2
+ (1− α)

l + 1

l + m + 2
(1)

First of all, note that the left-hand-side ratio refers to expressioni′, while the right-hand-side ratio refers
to expressioni′′. However, forα = 0.5, the function is symmetric with respect to the two expressions
to be compared. It takes values ranging in the classical spectrum ]0, 1[, to be interpreted as the degree
of similarity between the two expressions. This can represent an aid for human interpretation, since
we are used to it from the theory of probability. Thus, one canconsider the returned value as the level
of likelihood/confidence that the two expressions under comparison are actually similar. A complete
overlapping of the two (n = m = 0) tends to the limit of1 as long as the number of common features
grows. The full-similarity value1 is never reached, consistently with the intuition that the only case
in which this should happen isi′ = i′′ (i.e. the two expressions are exactly the same formula, which
can be immediately checked before applyingsf). Indeed, in the following, we assume thati′ 6= i′′,
thus excluding such an obvious case (that rarely occurs in the real world). Conversely, in case of no
overlapping (l = 0) the function will tend to0 as long as the number of non-shared features grows.
This is consistent with the intuition that there is no limit to the number of different features owned
by the two descriptions, which contribute to make them ever different. One last case is worth being
considered: when there are no features at all associated to two descriptions under comparison (i.e.,
n = l = m = 0) the function evaluates to1/2, which can be considered intuitively correct for a case
of maximum uncertainty. Although it might seem a meaningless case, it could happen, for instance,
when comparing a model against an observation, both of whichdescriptions might include an object
with no features: when comparing such objects, one cannot know whether the overlapping is actually
total because in fact both of them have indeed no relevant feature at all, or the observed object actually
has no relevant features but it just happened that previous generalizations have dropped from the model
all the features that it previously owned.

2.1. Weight Definition

Some considerations are worth concerning weight assignment. Parameterα was introduced to give dif-
ferent importance to either of the two structures being compared (this might be typically needed when the
comparison concerns a model against an observation); beingassociated to the left-hand-side ratio, it ac-
tually weights the relative importance of expressioni′ with respect to expressioni′′ (α = 0.5 would yield
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the basic function). Althoughα can, of course, be manually set in order to reflect the intended relative im-
portance of the model and the observation, it would be usefulto automatically set it, both for freeing the
experimenters from further parameters estimation (which is a typically heuristic and experience-based
task), and for making the function itself more flexible in adapting to the specific model-observation pair
at hand.

Intuitively, the importance of any of the two expressions should increase as long as the number of
overlapping features grows, and as long as the number of non-overlapping features decreases, which
leads (as a first approximation) toα′ = l/n for i′ andα′′ = l/m for i′′. This suffers of problems of
infiniteness or indefiniteness as soon as any of the three parameters evaluates to zero, hence a better
setting isα′ = (l + 1)/(n + 1);α′′ = (l + 1)/(m + 1). Now, their sum:

α′ + α′′ =
l + 1

n + 1
+

l + 1

m + 1
=

(l + 1)(m + 1 + n + 1)

(n + 1)(m + 1)

must be normalized to1, so thatα can be obtained by switching to the portions thatα′ andα′′ represent
of this sum:

α =
l+1
n+1

(l+1)(m+n+2)
(n+1)(m+1)

=
m + 1

n + m + 2

(1− α) =
l+1
m+1

(l+1)(m+n+2)
(n+1)(m+1)

=
n + 1

n + m + 2

Notice that, ifi is the model,n is expected to be generally less thanm, since the model has probably
lost some properties due to previous generalizations. Thus, the above weights actually give more credit
to the model than to the observation, as desired. Moreover, interestingly, the weights do not depend on
the overlapping.

Being an evaluation of the automatic weighting technique outside the scope of this paper, in the
following α = 0.5 will always be assumed, in which case we will writesf(i′, i′′) = sf(n, l,m) =
sf(0.5, n, l,m).

3. Similarity Criteria for Horn Clause Components

Although the new similarity function definition is determinant in improving performance over the previ-
ous ones, as we will see in the experiments, the main contribution of this paper lays in the repeated and
pervasive exploitation of the formula in various combinations that can assign a similarity degree to the
different clause constituents, up to the whole clauses. In FOL formulæ, terms represent specific objects,
that are related to each other by means of predicates. Accordingly, two levels of similarity can be defined
for pairs of first-order descriptions: theobject level, concerning similarities between the terms referred
to in the descriptions, and thestructureone, referring to how the nets of relationships in the descriptions
overlap.

In the case of clauses, since the head is unique (and hence canbe uniquely matched), we can use it
as a starting point for the comparison. Specifically, we willconsider as comparable only clauses having
atoms of the same arityn in the head, and the comparison outcome will be interpreted as the degree
of similarity between the twon-tuples of terms in the heads. In case the predicates in the heads of
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the two clauses to be compared are different, for the sake of uniformity, we will assume that they are
replaced by a new (not already present in the clauses) dummy predicate during the comparison. Thus,
comparison of two clausesp′(t′1, . . . , t

′
n) :- l′1, . . . , l

′
n′ andp′′(t′′1 , . . . , t

′′
n) :- l′′1 , . . . , l′′n′′ will provide a

degree of similarity between then-tuples< t′1, . . . , t
′
n > and < t′′1, . . . , t

′′
n >, and will be actually

carried out on two corresponding clausesdummy(t′1, . . . , t
′
n) :- l′1, . . . , l

′
n′ anddummy(t′′1, . . . , t

′′
n) :-

l′′1 , . . . , l′′n′′ .

Example 3.1. Comparison of two clausesfather(carl,mary) :- l′1, . . . , l
′
n′ andmother(ann, john) :-

l′′1 , . . . , l′′n′′ will provide a degree of similarity between the couples< carl,mary > and< ann, john >,
which will be actually evaluated on clausesdummy(carl,mary) :- l′1, . . . , l

′
n′ anddummy(ann, john)

:- l′′1 , . . . , l′′n′′ .
Let us consider, as a running example throughout the paper, the following two clauses (in this case, a

ruleC and a classified observationE, although all considerations will apply to the general caseas well):
C : h(X) :- p(X,Y ), p(X,Z), p(W,X), r(Y,U), o(Y,Z), q(W, W ), s(U, V ),

π(X), φ(X), ρ(X), π(Y ), σ(Y ), τ(Y ), φ(Z), σ(W ), τ(W ), π(U), φ(U).

E : h(a) :- p(a, b), p(a, c), p(d, a), r(b, f), o(b, c), q(d, e), t(f, g),
π(a), φ(a), σ(a), τ(a), σ(b), τ(b), φ(b), τ(d), ρ(d), π(f), φ(f), σ(f).

3.1. Term Similarity

Consider in the following two clausesC ′ andC ′′. Call T ′ = terms(C ′) = {t′1, . . . , t′n}, andT ′′ =
terms(C ′′) = {t′′1, . . . , t′′m}. Intuitively, for evaluating the similarity between a pairof terms(t′, t′′) ∈
T ′×T ′′, two kinds of term features can be distinguished: the properties they own and the roles they play
in relation to other terms.

Definition 3.1. (Term features)
Consider a clauseC, and an atom inC built on predicatep and having a termt among its arguments. If
p is a unary predicate, then it is acharacteristic feature(or property) of t in C; otherwise, letn be the
arity of p, andi the position oft among its arguments, thenp/n.i is a relational feature(or role) of t in
C.

Two corresponding similarity values can be associated tot′ andt′′: acharacteristic similarity, where
(1) is applied to values related to the properties, and arelational similarity, based on how many times
the two terms play the same or different roles in then-ary predicates.

Definition 3.2. (Characteristic Similarity)
Let P ′ be the set of characteristic features oft′ in C ′ andP ′′ be the set of characteristic features oft′′ in
C ′′. Thecharacteristic similaritybetweent′ andt′′ is computed as

sfc(t
′, t′′) = sf(nc, lc,mc)

wherenc = |P ′ \ P ′′| (characteristic residualof t′ wrt t′′), lc = |P ′ ∩ P ′′| and mc = |P ′′ \ P ′|
(characteristic residualof t′′ wrt t′)3.

3Intuitively, P ′ \ P ′′ are the properties oft′ in C′ but not oft′′ in C′′; P ′ ∩ P ′′ are the common properties betweent′ in C′

andt′′ in C′′; P ′′ \ P ′ are the properties oft′′ in C′′ but not oft′ in C′.
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Relational features represent roles played by terms, sincedifferent argument positions in a pred-
icate actually refer to different roles played by its arguments. For instance, in the binary predicate
on top/2, the first argument position (on top/2.1) identifies the role of the upper object, and the second
one (on top/2.2) represents the role of the lower one. Due to the possibility that the same term plays
multiple times the same role in different relations (e.g., an object laying on many others), we have to take
into account the number of occurrences, and hence considermultisets instead of sets.

Definition 3.3. (Relational Similarity)
Let R′ be the multiset of relational features oft′ in C ′ andR′′ be the multiset of relational features oft′′

in C ′′. Then, therelational similaritybetweent′ andt′′ can be computed as

sfr(t
′, t′′) = sf(nr, lr,mr)

wherenr = |R′ \ R′′| (relational residualof t′ wrt t′′), lr = |R′ ∩ R′′| andmr = |R′′ \ R′| (relational
residualof t′′ wrt t′)4.

Overall similarity between two terms, calledobject similarity, is defined as

sfo(t
′, t′′) = sfc(t

′, t′′) + sfr(t
′, t′′) (2)

that ranges in]0, 2[ (but can obviously be normalized to]0, 1[ if needed).

Example 3.2. The sets of properties and roles for each term inC andE, and the comparison for some
of the possible pairs, are reported in Table 1.

3.2. Structural Similarity

When checking for the structural similarity of two formulæ,many terms can be involved, and hence their
mutual relationships represent a constraint on how each of them in the former formula can be mapped
onto another in the latter. The structure of a formula is defined by the set ofn-ary predicates, and
specifically the way in which they are applied to the various terms to relate them (i.e.,atoms, according
to the terminology introduced above), for which reason in the following we will deal only with predicates
and atoms with arity greater than1 in the rest of this section. This is the most difficult part, since relations
are specific to the first-order setting and are the cause of indeterminacy in mapping (parts of) a formula
into (parts of) another one.

Definition 3.4. Given two clausesC ′ andC ′′, aterm associationθ is a subset ofterms(C ′)×terms(C ′′).
A pair (t′, t′′) ∈ θ is writtent′/t′′ and called abinding. A term association is said to beconsistentif it is
a bijection, otherwise it is said to beinconsistent.

Note that the union of term associations is a term association itself.

Definition 3.5. (Matching association)
Thematching associationbetween two atomsl′ = p′(t′1, . . . , t

′
n) andl′′ = p′′(t′′1, . . . , t

′′
n) is defined as

θl′/l′′ = {t′1/t′′1 , . . . , t′n/t′′n}; it is undefined for atoms built on predicates having different arity. The

4Intuitively, R′ \R′′ are the occurrences of roles thatt′ plays inC′ but t′′ does not play inC′′; R′ ∩R′′ are the occurrences of
roles that botht′ in C′ andt′′ in C′′ play; R′′ \ R′ are the occurrences of roles thatt′′ plays inC′′ but t′ does not play inC′.
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Table 1. Object Similarity

C E

t′ P ′ R′ t′′ P ′′ R′′

X {π, φ, ρ} {p/2.1, p/2.1, p/2.2} a {π, φ, σ, τ} {p/2.1, p/2.1, p/2.2}
Y {π, σ, τ} {p/2.2, r/2.1, o/2.1} b {σ, τ} {p/2.2, r/2.1, o/2.1}
Z {φ} {p/2.2, o/2.2} c {φ} {p/2.2, o/2.2}
W {σ, τ} {p/2.1, p/2.1, p/2.2} d {τ, ρ} {p/2.1, p/2.1}
U {π, φ} {r/2.2, s/2.1} f {π, φ, σ} {r/2.2, t/2.1}

Some comparisons:
t′/t′′ (P ′ \ P ′′), (P ′ ∩ P ′′), (P ′′ \ P ′) (R′ \R′′), (R′ ∩R′′), (R′′ \R′)

X/a {ρ}, {π, φ}, {σ, τ} ∅, {p/2.1, p/2.1, p/2.2}, ∅
Y/b {π}, {σ, τ}, ∅ ∅, {p/2.2, r/2.1, o/2.1}, ∅
Y/c {π, σ, τ}, ∅, {φ} {r/2.1, o/2.1}, {p/2.2}, {o/2.2}
Z/b {φ}, ∅, {σ, τ} {o/2.2}, {p/2.2}, {r/2.1, o/2.1}
Z/c ∅, {φ}, ∅ ∅, {p/2.2, o/2.2}, ∅
W/d {σ}, {τ}, {ρ} {p/2.2}, {p/2.1, p/2.1}, ∅
U/f ∅, {π, φ}, {σ} {s/2.1}, {r/2.2}, {t/2.1}

Corresponding similarity evaluation:
t′/t′′ (nc, lc, mc) sfc(t

′, t′′) (nr, lr, mr) sfr(t
′, t′′) sfo(t

′, t′′)

X/a (1, 2, 2) 0.55 (0, 3, 0) 0.80 1.35

Y/b (1, 2, 0) 0.68 (0, 4, 0) 0.83 1.51

Y/c (3, 0, 1) 0.27 (2, 1, 1) 0.45 0.72

Z/b (1, 0, 2) 0.29 (1, 1, 2) 0.45 0.74

Z/c (0, 1, 0) 0.67 (0, 2, 0) 0.75 1.42

W/d (1, 1, 1) 0.50 (1, 2, 0) 0.68 1.18

U/f (0, 2, 1) 0.68 (1, 1, 1) 0.50 1.18

matching associationbetween two sequences of atoms< l′1, . . . , l
′
k > and< l′′1 , . . . , l′′k > is defined as

θ<l′
1
,...,l′k>/<l′′

1
,...,l′′k> =

⋃
i=1,...,k θl′i/l′′i

iff ∀i = 1, . . . , k : l′i andl′′i are built on the same predicate and
θl′i/l′′i

is defined; it is undefined otherwise.

Two expressions arecompatibleif they can be mapped onto each other without yielding inconsistent
term associations (i.e., a term in one of them cannot be associated to different terms in the other).

Definition 3.6. (Compatibility)
Two term associationsθ′ andθ′′ are compatible iffθ′ ∪ θ′′ is consistent. Two atoms, or two sequences of
atoms, arecompatibleiff their matching association is defined and consistent. Two clauses arecompati-
ble iff their heads are compatible.

3.2.1. Star Similarity

Intuitively, the star of an atom depicts ‘in breadth’ how it relates to the rest of the formula.
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Definition 3.7. (Star)
Thestar of an atomli in the body of a clauseC = l0 :- l1, . . . , ln is the multiset

{p/k | ∃i, 1 ≤ i ≤ n, i 6= i : li = p(t1, . . . , tk), k > 1, terms(li) ∩ terms(li) 6= ∅}

It includes the predicates on which are built other atoms in the body of the clause that have some term
in common with the given atom. Multisets are needed since a predicate can have multiple instantiations
among the considered atoms.

Definition 3.8. (Star similarity)
Thestar similaritysfs(l

′, l′′) between two compatible atomsl′ andl′′ having starsS′ andS′′, respectively,
is computed as

sfs(l
′, l′′) = sf(ns, ls,ms) + Cs({sfo(t

′, t′′)}t′/t′′∈θl′/l′′
) (3)

wherens = |S′ \ S′′| (star residualof l′ wrt l′′), ls = |S′ ∩ S′′|, ms = |S′′ \ S′| (star residualof l′′ wrt
l′) andCs is a composition function (e.g., the average).

It is computed based on the number of common and different elements in each of the two stars5.
Since this value refers only to atom-related information, and does not take into account the similarity of
the involved terms, an overall more adequate evaluation of similarity betweenl′ andl′′ can be obtained
by taking into account also the object similarity values forall pairs of terms included in the matching
associationθl′/l′′ . In casesfo ranges in]0, 2[ it ranges in]0, 3[, but can obviously be normalized to]0, 1[
if needed.

Example 3.3. Table 2 reports the stars for a sample of atoms inC andE and some comparisons between
them.

3.2.2. Clauses as Stratified Graphs

Then, we can note that any first-order logic formula can be represented as a graph in which atoms are
the nodes, and edges connect two nodesiff they are related in some way6. From such an equivalence
between formulæ structures and graphs, it follows that a comparison between two formulæ to assess their
structural similarity corresponds to the computation of (sub-)graph homomorphisms, a problem known
to beNP -hard due to the possibility of mapping a (sub-)graph onto another in many different ways. As
a consequence, we are interested in heuristics that can givesignificant hints on the structure overlapping
between two formulæ with little computational effort. Indeed, leveraging on the fact that clauses are
made up by just a single atom in the head and a conjunction of atoms in the body, we can exploit a graph
representation that is easier than that for general formulæ, as described in the following. In particular,
we will deal with linked clauses only (i.e. clauses whose associated graph is connected), and will build
the graph based on a simple (as to the details it expresses about the fomula), yet powerful (as regards the
information it conveys) feature, that is term sharing between couples of atoms.

5Intuitively, S′ \ S′′ are the occurrences of relationsl′ is involved inC′ but l′′ is not inC′′; S′ ∩ S′′ are the relations in which
bothl′ in C′ andl′′ in C′′ are involved;S′′ \ S′ are the occurrences of relationsl′′ is involved inC′′ but l′ is not inC′.
6The actual definition of the graph can be made more or less complex, adding or deleting edges or introducing labels for them,
in order to represent different details according to its intended use, up to a complete translation of all information conveyed by
the formula.
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Table 2. Star Similarity

C E

l′ S′ l′′ S′′

p(X, Y ) {p/2, p/2, r/2, o/2} p(a, b) {p/2, p/2, r/2, o/2}
p(X, Z) {p/2, p/2, o/2} p(a, c) {p/2, p/2, o/2}
p(W, X) {p/2, p/2, q/2} p(d, a) {p/2, p/2, q/2}
r(Y, U) {p/2, o/2, s/2} r(b, f) {p/2, o/2, t/2}
o(Y, Z) {p/2, p/2, r/2} o(b, c) {p/2, p/2, r/2}
q(W, W ) {p/2} q(d, e) {p/2}
s(U, V ) {r/2} t(f, g) {r/2}

Some comparisons:
l′ l′′ (S′ \ S′′), (S′ ∩ S′′), (S′′ \ S′) (ns, ls, ms) sf(ns, ls, ms)

p(X, Y ) p(a, b) ∅, {p/2, p/2, r/2, o/2}, ∅ (0, 4, 0) 0.83

p(X, Y ) p(a, c) {r/2}, {p/2, p/2, o/2}, ∅ (1, 3, 0) 0.73

p(X, Z) p(a, c) ∅, {p/2, p/2, o/2}, ∅ (0, 3, 0) 0.80

p(X, Z) p(a, b) ∅, {p/2, p/2, o/2}, {r/2} (0, 3, 1) 0.73

p(W, X) p(d, a) ∅, {p/2, p/2, q/2}, ∅ (0, 3, 0) 0.80

r(Y, U) r(b, f) {s/2}, {p/2, o/2}, {t/2} (1, 2, 1) 0.60

o(Y, Z) o(b, c) ∅, {p/2, p/2, r/2}, ∅ (0, 3, 0) 0.80

Corresponding similarity evaluation (Cs = avg):
l′ l′′ sfo sfs(l

′, l′′)

p(X, Y ) p(a, b) sfo(X, a) = 1.35 sfo(Y, b) = 1.51 2.26

p(X, Y ) p(a, c) sfo(X, a) = 1.35 sfo(Y, c) = 0.72 1.77

p(X, Z) p(a, c) sfo(X, a) = 1.35 sfo(Z, c) = 1.42 2.19

p(X, Z) p(a, b) sfo(X, a) = 1.35 sfo(Z, b) = 0.74 1.78

p(W, X) p(d, a) sfo(W, d) = 1.18 sfo(X, a) = 1.35 2.07

r(Y, U) r(b, f) sfo(Y, b) = 1.51 sfo(U, f) = 1.18 1.95

o(Y, Z) o(b, c) sfo(Y, b) = 1.51 sfo(Z, c) = 1.42 2.27

Definition 3.9. Given a clauseC, its associated graphGC = (V,E) is defined as

• V = {l0} ∪ {li|i ∈ {1, . . . , n}, li built onk-ary predicate,k > 1} and

• E ⊆ {(a1, a2) ∈ V × V | terms(a1) ∩ terms(a2) 6= ∅}

where the edges to be included inE are chosen according to Algorithm 1.

Algorithm 1 builds a Directed Acyclic Graph (DAG),stratified(i.e., with the set of nodes partitioned)
in such a way that, for any fixed stratum (element of the partition, also calledlevel), all the incoming
edges come from nodes in a single (different) stratum, and all the outcoming edges reach nodes in a
single stratum (different from both the previous ones), as follows. The head is the only node at level 0
(first element of the partition). Then, each successive level (element of the partition) includes new nodes
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Algorithm 1 Construction of the graph associated to C
Require: C = l0 :- l1, . . . , ln: Clause

i← 0; Level0 ← {l0}; E ← ∅; Atoms← {l1, . . . , ln}
while Atoms 6= ∅ do

i← i + 1
Leveli ← {l ∈ Atoms | ∃l′ ∈ Leveli−1 : terms(l) ∩ terms(l′) 6= ∅}
E ← E ∪ {(l′, l′′) | l′ ∈ Leveli−1, l

′′ ∈ Leveli, terms(l′) ∩ terms(l′′) 6= ∅}
Atoms← Atoms \ Leveli

end while
returnG = (

⋃
i Leveli, E): graph associated toC

(not present in previous levels) that have at least one term in common with nodes in the previous level. In
particular, each node (atom) in the new level has an incomingedge from each node (atom) in the previous
level having some argument (term) in common with it.

Example 3.4. Figure 1 shows the graphs associated to clausesC andD. Let us build the graphGC =
(V,E). We have

V = {h(X)} ∪ {p(X,Y ), p(X,Z), p(W,X), r(Y,U), o(Y,Z), q(W, W ), s(U, V )}
E = Level0 ∪ Level1 ∪ Level2 ∪ Level3, where:

• The head represents the 0-level of the stratification:
Level0 = {h(X)}.

• Then directed edges may be introduced fromh(X) to p(X,Y ), p(X,Z) andp(W,X), that are the
only atoms havingX as an argument, which yields level 1 of the term stratification:
Level1 = {p(X,Y ), p(X,Z), p(W,X)}.

• Now the next level can be built, adding directed edges from atoms in level 1 to the atoms not yet
considered that share a variable with them:

– r(Y,U) : end of an edge starting fromp(X,Y );

– o(Y,Z) : end of edges starting fromp(X,Y ) andp(X,Z); and

– q(W,W ) : end of an edge starting fromp(W,X).

Level2 = {r(Y,U), o(Y,Z), q(W,W )}.

• The third and last level of the graph includes the only remaining atom,s(U, V ), having an incoming
edge fromr(Y,U):
Level3 = {s(U, V )}.

Similarly for the graphGD.

Theorem 3.1. Given a clauseC and its associated graphG, any term appearing inC appears in at most
two adjacent levels ofG.
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h(X)

p(X,Y) p(X,Z) p(W,X)

r(Y,U) o(Y,Z) q(W,W)

s(U,V)

h(a)

p(a,b) p(a,c) p(d,a)

r(b,f) o(b,c) q(d,e)

t(f,g)

Figure 1. Graphs associated to clausesC (on the left) andD (on the right)

Proof:
Any pair of adjacent levels inG obviously share terms, being by construction (according toAlgorithm 1)
term sharing the condition for adding a directed edge between two nodes (atoms) in order to build a
new level. Now, suppose (ad absurdum) that there are two atomsl′ andl′′ sharing a termt, such thatl′

appears inG at leveli andl′′ appears inG at leveli + j with j > 1. Then, by construction,l′′ should
have been included in leveli + 1 according to Algorithm 1, and thus it should not be considered when
building next levels, which contradicts the hypothesis. ut

Each level can be divided into two subsets: the nodes introducing new terms with respect to the previ-
ous levels and those having as arguments only terms already introduced (in this latter case, Theorem 3.1
ensures that all such terms appear only in the previous level). Note that, as a further consequence, the
stratification of the atoms straightforwardly induces a corresponding stratification of the terms (i.e., ob-
jects) that appear in the clause, based on their minimum distance from the head (intended as the number
of atoms one has to traverse before encountering that term asan argument). Let us call thisstratification
signatureof the clause: it allows to limit the possible binding between termss in two formulæ, since only
terms in the same level can be mapped onto each other.

Example 3.5. The stratification signatures ofC andE are, respectively:

< {X}, {Y,Z,W}, {U}, {V } > and < {a}, {b, c, d}, {e, f}, {g} >.

This means that:X mustbe associated toa; Y,Z,W can be associated only tob, c, d; U can be
associated only to eithere or f ; V should be associated tog, but since the predicates they appear in are
different in the two clauses (s in C, t in D) such a binding is not valid and hence they can be ignored in
the comparison.
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3.2.3. Path Similarity

The presence of a single atom in the clause head is the leverage to have a unique starting point for
building the associated graph, which also gives a unique access point for traversing it according to precise
directions represented the directed edges. As a consequence, when comparing two compatible clauses,
since their heads must necessarily match to each other (being the only head atom in the clause and
being compatible by hypothesis), having such a well-definedperspective among the many possible on
their structure allows to significantly reduce indeterminacy. Specifically, all possible paths starting from
the head and reachingleaf nodes (those with no outcoming edges) are univoquely determined. Thus,
they can be interpreted as the basic components of the overall structure of the clause, and be exploited
instead of single atoms when checking similarity between clauses. This gives a leverage for significantly
reducing the amount of indeterminacy in the comparison. Intuitively, a path in a clause depicts ‘in depth’
a given portion of the relations it describes.

Definition 3.10. (Path similarity)
Given two compatible clausesC ′ andC ′′ with associated graphsGC′ andGC′′ respectively, and two
pathsp′ =< l′0, l

′
1, . . . , l

′
n′ > in GC′ andp′′ =< l′′0 , l′′1 , . . . , l′′n′′ > in GC′′ . The intersectionbetweenp′

andp′′ is defined as
p′ ∩ p′′ = (p1, p2) = (< l′1, . . . , l

′
k >,< l′′1 , . . . , l′′k >) s.t.

0 ≤ k ≤ min(n′, n′′) ∧ θ<l′
0
,...,l′k>/<l′′

0
,...,l′′k> is defined and consistent∧

(k = n′ ∨ k = n′′ ∨ θ<l′
0
,...,l′k+1

>/<l′′
0
,...,l′′k+1

> is undefined or inconsistent)
and theirdifferencesare defined as the trailing parts:

p′ \ p′′ =< l′k+1, . . . , l
′
n′ > p′′ \ p′ =< l′′k+1, . . . , l

′′
n′′ >

Then, thepath similaritybetweenp′ andp′′ is computed as

sfp(p
′, p′′) = sf(np, lp,mp) + Cp({sfs(l′i, l′′i )}i=1,...,k) (4)

wherenp = |p′ \ p′′| = n′ − k, lp = |p1| = |p2| = k, mp = |p′′ \ p′| = n′′ − k andCp is a composition
function (e.g., the average)7.

It is based on the pair of longest compatible initial subsequences of the two paths (excluding the heads),
and takes into account also the star similarity values for all pairs of atoms associated by those subse-
quences. Note that the intersection could be empty (in caseθ<l′

0
,l′
1
>/<l′′

0
,l′′
1
> is undefined or inconsistent),

and that either difference could be empty as well. In casesfs ranges in]0, 3[ it ranges in]0, 4[, but can
obviously be normalized to]0, 1[ if needed.

Example 3.6. Let us now find all paths inC andE:

Path No. C E

1. < p(X,Y ), r(Y,U), s(U, V ) > < p(a, b), r(b, f), t(f, g) >

2. < p(X,Y ), o(Y,Z) > < p(a, b), o(b, c) >

3. < p(X,Z), o(Y,Z) > < p(a, c), o(b, c) >

4. < p(W,X), q(W,W ) > < p(d, a), q(d, e) >

7Intuitively, np is the length of the trail incompatible sequence ofp′ wrt p′′ (path residualof p′ wrt p′′); lp is the length of
the maximum compatible initial sequence ofp′ andp′′; mp] is the length of the trail incompatible sequence ofp′′ wrt p′ (path
residualof p′′ wrt p′).
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Table 3. Path Similarity (Cp = avg)

p′ p′ ∩ p′′ p′ \ p′′ θp′∩p′′ (np, lp, mp)

p′′ p′′ \ p′ sfp(p
′, p′′)

C.1 < p(X, Y ), r(Y, U) > < s(U, V ) > {X/a, Y/b, U/f} (1, 2, 1)

E.1 < p(a, b), r(b, f) > < t(f, g) > 2.71

C.1 < p(X, Y ) > < r(Y, U), s(U, V ) > {X/a, Y/b} (2, 1, 1)

E.2 < p(a, b) > < o(b, c) > 2.71

C.1 < p(X, Y ) > < r(Y, U), s(U, V ) > {X/a, Y/c} (2, 1, 1)

E.3 < p(a, c) > < o(b, c) > 2.22

C.2 < p(X, Y ) > < o(Y, Z) > {X/a, Y/b} (1, 1, 2)

E.1 < p(a, b) > < r(b, f), t(f, g) > 2.71

C.2 < p(X, Y ), o(Y, Z) > <> {X/a, Y/b, Z/c} (0, 2, 0)

E.2 < p(a, b), o(b, c) > <> 3.02

C.2 < p(X, Y ) > < o(Y, Z) > {X/a, Y/c} (1, 1, 1)

E.3 < p(a, c) > < o(b, c) > 2.27

C.3 < p(X, Z) > < o(Y, Z) > {X/a, Z/b} (1, 1, 2)

E.1 < p(a, b) > < r(b, f), t(f, g) > 2.23

C.3 < p(X, Z) > < o(Y, Z) > {X/a, Z/b} (1, 1, 1)

E.2 < p(a, b) > < o(b, c) > 2.28

C.3 < p(X, Z), o(Y, Z) > <> {X/a, Z/c, Y/b} (0, 2, 0)

E.3 < p(a, c), o(b, c) > <> 2.98

C.4 < p(W, X) > < q(W, W ) > {W/d, X/a} (1, 1, 1)

E.4 < p(d, a) > < q(d, e) > 2.57
All other intersections are empty, and hence ignored.

As a sample comparison, considerC.1 andE.1: the longest compatible initial subsequence compatible
both for predicates and as to overall term associations is made up by their first two atoms; then, being
the third atoms different by predicate, the rests of the sequences (actually, in this case just the third atom
itself) belong to the residuals. The list of path similarities is reported in Table 3 (note that similarities
C.1-E.4 and C.2-E.4 are empty since the head forces variableX to be bound to constanta).

3.3. Clause Similarity

The overall similarity between two (tuples of) terms reported in the head atoms of two compatible
clauses, according to their description reported in the respective bodies, can be computed based on their
generalization, that informally represents what the two clauses have in common, where the notion of gen-
erality depends on the generalization model adopted. In particular, one would like to exploit theirleast
general generalization, in order to preserve in the generalization as much information as possible of the
original clauses. Unfortunately, such a generalization isnot easy to find: either classicalθ-subsumption
is used as a generalization model, and then one can compute Plotkin’s least general generalization [23],
at the expenses of some undesirable side-effects concerning the need of computing its reduced equivalent
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(and also of some counter-intuitive aspects of the result),or, as most ILP learners do, one requires the
generalization to be a subset of the clauses to be generalized. In the latter option, that we choose for the
rest of the work, theθOI generalization model [9], based on the Object Identity assumption, represents a
supporting framework with solid theoretical foundations to be exploited.

Definition 3.11. (formulæ similitudo)
Given two clausesC ′ andC ′′ with headsl′0 and l′′0 respectively, callC = l0 :- l1, . . . , lk their least
general generalization, and consider the substitutionsθ′ and θ′′ such thatl0θ′ = l′0, l0θ

′′ = l′′0 and
∀i = 1, . . . , k : liθ

′ = l′i ∈ body(C ′) andliθ
′′ = l′′i ∈ body(C ′′), respectively. The formula for assessing

the overall similarity betweenC ′ andC ′′, calledformulæ similitudoand denotedfs, is the following:

fs(C ′, C ′′) = sf(n, l,m) · sf(no, lo,mo) + Cc({sfs(l
′
i, l

′′
i )}i=1,...,k)

wheren = |body(C ′)| − |body(C)|, l = |body(C)| = k, m = |body(C ′′)| − |body(C)|; no =
|terms(C ′)| − |terms(C)|, lo = |terms(C)|, mo = |terms(C ′′)| − |terms(C))|; andCc is a compo-
sition function (e.g., the average).

It is based on the amounts of common and different atoms8 and terms9, and takes into account also
the star similarity values for all pairs of atoms associatedby the least general generalization. In case
sfs ranges in]0, 2[ it ranges in]0, 3[, but can obviously be normalized to]0, 1[ if needed. This function
evaluates the similarity of two clauses according to the composite similarity of a maximal subset of their
atoms that can be put in correspondence (which includes bothstructural and object similarity), smoothed
by adding the overall similarity in the number of overlapping and different atoms and terms between the
two (whose weight in the final evaluation should not overwhelm the similarity coming from the detailed
comparisons, hence the multiplication).

Example 3.7. The least general generalization betweenC andD is

H(X) : −p(X,Y ), p(X,Z), p(W,X), o(Y,Z), r(Y,U)

with associations{X/a, Y/b, Z/c,W/d,U/f}. The corresponding similarity, forCc = avg is

fs(C,D) = sf(2, 5, 2) · sf(1, 5, 2) + avg({2.26, 2.19, 2.07, 2.27, 1.95}) = 0.67 · 0.71 + 10.74/5 = 2.62

or, normalized to]0, 1[, 0.87.

8Intuitively, n represents how many atoms inC′ are not covered by its least general generalization with respect toC′′ (clause
residualof C′ wrt C′′); l is the maximal number of atoms that can be put in correspondence betweenC′ andC′′ according to
their least general generalization;m represents how many atoms inC′′ are not covered by its least general generalization with
respect toC′ (clause residualof C′′ wrt C′).
9Intuitively, no represents how many terms inC′ are not associated by its least general generalization to terms inC′′ (object
residualof C′ wrt C′′); lo is the maximal number of terms that can be put in correspondence inC′ andC′′ as associated by
their least general generalization;mo represents how many terms inC′′ are not associated by its least general generalization to
terms inC′ (object residualof C′′ wrt C′).
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Algorithm 2 Similarity-based generalization

Require: C ′ = l′0 :- l′1, . . . , l
′
n′ , C ′′ = l′′0 :- l′′1 , . . . , l′′n′′ : Clauses

PC′ ← paths(C ′); PC′′ ← paths(C ′′);
P ← {(pC′ , pC′′) ∈ PC′ × PC′′ | pC′ ∩ pC′′ 6= (<>,<>)};
G← ∅; θ ← θl′

0
/l′′

0

while P 6= ∅ do
(pC′ , pC′′)← argmax(pC′ ,pC′′)∈P (sfp(pC′ , pC′′))
P ← P \ {(pC′ , pC′′)}
(qC′ , qC′′)← pC′ ∩ pC′′

if θqC′/qC′′
compatible withθ then

G← G ∪ qC′ ; θ ← θ ∪ θqC′/qC′′

end if
end while
returnl0 :- G: generalization betweenC ′ andC ′′; θ: matching association

3.4. Exploitation in Clause Generalization

Given a Horn clause, instead of working on its single atoms, the paths univoquely determined according
to the technique proposed in Section 2 can be safely (i.e., without loss of generality) considered as its
basic components. Indeed, considering paths instead of single atoms allows the generalizer to have more
information about the pieces to be composed for building up the generalization [12], and hence gives
it the opportunity of taking better choices, that will hopefully lead more quickly towards the proper
sub-formulæ associations.

Once the set of paths for the two clausesC ′ andC ′′ to be generalized are obtained, each pair of
paths, in which the former is taken fromC ′ and the latter fromC ′′, can be compared for assessing their
similarity. Of course, pairs that show a higher similarity are more likely to correspond to each other, and
hence their common part (i.e., theirintersection) should be taken as part of the generalization. Thus,
a generalization can be computed according to Algorithm 2. Starting from the empty generalization,
the path couples are considered in turn by decreasing similarity, starting from the top and going down
the ranking, and their intersection is added to the partial generalization generated thus far whenever it
is compatible with it (intersections that are not compatible with the current partial generalization are
just skipped). Further generalizations can then be obtained through backtracking. Since this procedure
takes into account the most similar sub-parts of the clausesfirst, it can optionally be stopped when some
threshold is reached, even before complete analysis of the path list, in order to cut the generalization and
prevent it from becoming too specific, still ensuring that only the less significant similarities are dropped.

Example 3.8. The path intersection with highest similarity value is C.2/E.2, and hence the first partial
generalization becomes{p(X,Y ), o(Y,Z)}, with associations{X/a, Y/b, Z/c}. Then C.3/E.3 is con-
sidered, whose associations are compatible with the current ones, so it contributes with{p(X,Z)} to the
generalization (there are no new associations). Then comesC.1/E.1, that being compatible extends the
generalization by adding{r(Y,U)} and the association with{U/f}. It is the turn of C.1/E.2 and then of
C.2/E.1, that are compatible but redundand, and hence do notadd anything to the current generalization
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(nor to the associations)10. Then C.4/E.4 is considered, that is compatible and extendswith {p(W,X)}
and{W/d} the current generalization and associations, respectively. Lastly C.3/E.2, C.2/E.3, C.3/E.1
and C.1/E.3 are considered, but discarded because of their associations being incompatible. The final
generalization isH(X) : −p(X,Y ), p(X,Z), p(W,X), o(Y,Z), r(Y,U), which is also the least general
one (as previously stated), with overall associations{X/a, Y/b, Z/c,W/d,U/f}.

4. Discussion

The similarity framework for Horn Clauses presented in thispaper is made up of a set of similarity
parameters and a similarity function based on them, plus a set of criteria that focus on particular clause
components to tackle the problem of indeterminacy while still preserving a considerable amount of infor-
mation about the description structures. It is important tostress the point that the similarity framework is
syntax-based, and hence totally general, since it does not assume domain-related knowledge for assessing
the similarity degree between two descriptions.

As to the similarity parameters, they are standard and widely accepted in the past literature of the
field. As to the similarity function, a novel one was developed to avoid cases in which other standard
functions proposed and accepted in the literature are not able to distinguish between different cases (e.g.,
whenl = 0 for differentn andm values), or might have definition problems (e.g., whenn = l = m = 0
a division by zero would be raised) or could assign the full similarity value 1 just because the syntactic
structure of two expressions is the same (whereas we believethat equality should be reserved to exact
identification between the two).

As to the criteria, they refer to increasingly complex description components, from terms to atoms
to groups of atoms to whole clauses. More precisely, the similarity of each component type is based on
the similarity of simpler components (only), so that no recursion nor indeterminacy can be present. It
should be noted that no single criterion is by itself neatly discriminant, but their cooperation succeeds in
assigning sensible similarity values to the various kinds of components, and in distributing on each kind
of component a proper portion of the overall similarity, so that the difference becomes ever clearer as long
as they are composed one ontop the previous ones. This makes the proposed approach robust to lacks of
information due to some of the criteria. For instance, in cases in which the clause head does not provide
helpful information on the structure (e.g., when it includes all, or almost all the terms as arguments, since
the whole description in the body must be evaluated without focussing on any particular object), only the
last step is missing contribution, and the similarity can still benefit from the information coming from all
the other parameters in order to identify good matching sub-formula candidates.

4.1. Computational Complexity Issues

As to the computational complexity, the cost for computing the formula is clearly constant. Then, note
that each term (respectively atom, path) in one clause must be compared with each term (respectively
atom, path) in the other by means of the formula; assuming that the maximum number of terms (respec-
tively atoms, paths) in either of the two clauses isn, we have less thann2 applications of the formula,
and hence a quadratic complexity in the number of terms (respectively atoms, paths) to be compared.

10Actually, C.1/E.1, C.1/E.2 and C.2/E.1 have the same value,but being all compatible among each other the actual ordering,
which depends on the sort algorithm used, is not significant to the final outcome.
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Now, since the number of terms and atoms is fixed in the clauses, the only thing still to evaluate is the
number of paths. Note that the DAG resulting from the linkedness-based stratification of the atoms in
a clause is not necessarily a hierarchy (a tree), but more generally a heterarchy (i.e., each node may
have many parents, although loops are not allowed in the structure), where each edge can connect nodes
only at adjacent strata (see discussion above). In the worstcase, every node at each level is connected
to every node at the levels just above and below, in which casethe overall number of paths is equal to
the product of the number of nodes at each level. For such a product to be largest, the nodes should be
equally distributed among levels (each atom appears just once in the DAG). Let us callm the number
of nodes at each level: hence, since each path is made up of onenode from each level, its maximum
length is the DAG depth, equal ton/m, and the associated number of paths ismn/m (number of nodes at
each level, multiplied by itself so many times as the number of levels), i.e. it is exponential in the DAG
depth. Indeed, in the worst case of the atoms being absolutely equally distributed bothin andamong

levelsm =
√

n ⇒ mn/m =
√

n
n/

√
n

=
√

n
√

n. However, in more realistic cases, in which atoms are
irregularly distributed in breadth and/or depth, and adjacent levels are not completely connected, the com-
plexity moves towards the two extremesm = 1⇒ mn/m = 1n = 1 andm = n⇒ mn/m = n1 = n.

4.2. Related Works

Despite of a large number of possible distance measures developed for attribute-value representations
[17], few works are present in the literature that face the problem of defining similarity or distance
measures for first-order descriptions. A work in this direction was carried out in [11], where a distance
measure between structural symbolic descriptions is proposed, based on probability theory applied to the
formula components. Compared to that proposal, our function preserves the probabilistic]0, 1[ range.
However, rather than resorting to probabilistic models that might be hard to understand and justify, it is
based on heuristic and intuitive premises, which yields a number of advantages: the underlying principles
are easier to understand, it is far easier to compute and doesnot require the assumptions and simplifying
hypotheses (statistical independence, mutual exclusion)made in [11] to ease the probability handling,
no a-priori knowledge of the representation language is required (suchas the type domains that in [11]
allow the distance computation between references). It does not require the user to set weights on the
single predicates’ importance, which is a difficult task even for trained people, but limits the human
intervention to a setting of the relative importance of the two descriptions involved, that can be easily
understood. It is not based on the presence of ‘mandatory’ relations, like for theG1 subclause in [11].
Last but not least, its application range is not limited to a Model-Observation matching comparison, but
can be properly weighted so that both descriptions have the same dignity in the similarity evaluation.

Many systems, in the field of supervised learning, prove the importance of a distance measure. For
instance,KGB [3] uses a similarity function specifically designed for FOLlanguages and parameterized
by the user, in order to guide generalization; our ideas of characteristic and relational similarity are very
close to those in [3], but then the actual similarity computation is much more straightforward. WhileKGB
cannot handle negative information possibly present in theclauses, our approach can be easily extended
to deal with them, by applying Algorithm 1 only to positive atoms and just ignoring in Algorithm 2 the
path pairs whose corresponding associations are inconsistent with the negative atoms.

The k-Nearest Neighbor classifierRIBL [8] is based on a FOL similarity function that is a modified
version of that proposed in [3]. The basic idea of the measureused inRIBL is that objects are described
by values (e.g., size and position) and their relation to other objects. Their similarity depends on the
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similarity of their attributes’ values (the similarity of their size) and the similarity of the objects related
to them. The similarity of the related objects in turn depends on the attribute values of these objects
and their relation to other objects and so on. Such a propagation poses the problem of indeterminacy in
associations, that our technique avoids thanks to the different structural approach. Although the indeter-
minacy problem could be handled by using some CSP technique (e.g., [32]), there is no reason for not
exploiting the information provided by the clause heads, since (as already pointed out) they are purposely
exploited for highlighting the focus-of-attention, and hencemustmatch. The basic idea is to compute the
similarity between two objects by considering the immediate neighborhood of the objects. For instance,
the similarity between two identifiers is determined by the similarity between the set of facts where these
identifiers occur. Also, the similarity between two facts isdetermined by the similarity between their
arguments. If some of these arguments are identifiers again,one can get a cycle. Therefore, a depth para-
meter is introduced and similarity is only computed up to this depth.RISE[7] combines a rule classifier
with a k-NN: when the instance to classify is not covered by any rule, the distance of the instance to the
different rules is evaluated and the instance is classified according to the majority vote of its “neighbor”
rules .

While the distances underlyingKBG andRIBL or RISEare basically syntax-driven, [27] presents a
discrimination-based approach for the induction of a distance on FOL examples, that mainly depends on
the pattern discriminating the target concepts.k clauses are choosen and the truth value of the clause on
the examples (whether the clause covers the example or not) are used ask features. In a second step, one
uses a distance on the space{0, 1}k of these features as a distance between the examples.

In [22] a distance between terms is proposed that treats terms as a hierarchy where the top of high-
level structure (the main functor) is most important and thedeeper nested subterms are less important.
Then a distance is proposed between interpretations based on a level mapping, a function that maps every
simple expression on a natural number. [24] presents a distance function between two atomsA andB
based on the difference with their lgg. Such a distance consists of a pair whose first component is based
on the differences between the functors on both terms. It is an extension of the notion of distance used in
[22]: it is also defined for non-ground atoms and it introduces weights. The second component is based
on the differences in occurrences of variables, it allows todifferentiate distances in cases where the first
component cannot. Then, this distance between atoms is usedto compute distances between clauses.

More related to the generalization task, the approach proposed by Kodratoff [16] is based on just
an evaluation of similarity between objects, whose overallmost likely associations are then set so to
maximize the global fitness; our proposal in some way extendsthose ideas by exploiting the structural
features to progressively exclude impossible or less suitable terms associations.

Cluster analysis concerns the organization of a collectionof unlabeled patterns into groups (clusters)
of homogeneous elements based on their similarity. The similarity measure exploited to evaluate the dis-
tance between elements is responsible for the effectiveness of the clustering algorithms. Many research
efforts on data representation, elements’ similarity and grouping strategies have produced several suc-
cessful clustering methods (see [15] for a survey). The classical strategies can be divided in bottom-up
and top-down. In the former, each element of the dataset is considered as a cluster. Successively, the
algorithm tries to group the clusters that are more similar according to the similarity measure. This step
is performed until the number of clusters the user requires as a final result is reached, or the minimal
similarity value among clusters is greater than a given threshold. In the latter approach, known as hierar-
chical clustering, at the beginning all the elements of the dataset form a unique cluster. Successively, the
cluster is partitioned into clusters made up of elements that are more similar according to the similarity
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measure. This step is performed until the number of clustersrequired by the user as a final result is
reached.

A further classification is based on whether an element can beassigned (NotExclusive or Fuzzy
Clustering) or not (Exclusive or Hard Clustering) to more than one cluster. Also the strategy exploited
to partition the space is a criterion used to classify the clustering techniques: in Partitive Clustering a
representative point (centroid, medoid, etc..) of the cluster in the space is chosen; Hierarchical Clustering
produces a nested series of partitions by merging (Hierarchical Agglomerative) or splitting (Hierarchical
Divisive) clusters, Density-based Clustering considers the density of the elements around a fixed point.

Closely related to data clustering is Conceptual Clustering, a Machine Learning paradigm for un-
supervised classification which aims at generating a concept description for each generated class. In
conceptual clustering both the inherent structure of the data and the description language, available to
the learner, drive cluster formation. Thus, a concept (regularity) in the data could not be learned by the
system if the description language is not powerful enough todescribe that particular concept (regularity).
This problem arises when the elements simultaneously describe several objects whose relational struc-
tures change from one element to the other. First-Order Logic representations allow to overcome these
problems. However, most of the clustering algorithms and systems work on attribute-value representation
(e.g.,CLUSTER/2 [20], CLASSIT [14], COBWEB [13]). Other systems such asLABYRINTH [29] can deal
with structured objects exploiting a representation that is not powerful enough to express the dataset in a
lot of domains. There are few systems that cluster examples represented in FOL (e.g.,AUTOCLASS-like
[25], KBG [2]), some of which still rely on propositional distance measures (e.g.,TIC [4]).

4.3. Experimental evaluation

Some experiments were designed to check whether the proposed framework is actually able to give
significant similarity hints when comparing two structures. All of them were run under WindowsXP
Professional on a PC endowed with a 2.13 GHz Intel processor and 2GB RAM. For supervised learning
tasks, 10-fold cross-validation was exploited to assess predictive accuracy. The 10 folds were created so
that the distribution of examples from the 4 classes was uniform in each fold (each training and test set
contained approximately 90% and 10%, respectively, of examples from each class).

Two real-world datasets, requiring first-order logic descriptions for capturing the complexity of the
domain and concerning very different domains from each other, were identified for performing the ex-
periments and ensure general applicability and performance of the proposed approach. Mutagenesis is a
classical ILP dataset [28] representing 188 chemical compounds that are to be distinguished, according
to their behavior, between those that are Active and those that are NonActive with respect to mutagenic-
ity, for which regression-based techniques are not able to learn useful theories. The dataset is described
with a total of 25917 atoms, for an average of nearly 138 atomsper description. In particular, we ex-
ploited an automatic discretization procedure [1] for turning numeric descriptors into symbolic ones,
each corresponding to an interval of the original ranges. The other dataset concerns automatically gen-
erated layout descriptions of first pages of scientific papers, according to which identifying the papers’
series and significant components. It contains 353 descriptions, belonging to 4 different classes: Elsevier
journals, Springer-Verlag Lecture Notes series (SVLN), Journal of Machine Learning Research (JMLR)
and Machine Learning Journal (MLJ). For each class, some layout components of interest are selected:
Title, Abstract and Author for all classes, plus Keywords for JMLR and MLJ, and Logo and Keywords
for Elsevier. The complexity of such a dataset is considerable, due to several aspects: the journals layout
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styles are quite similar, so that it is not easy to grasp the difference when trying to group them in dis-
tinct classes; moreover, the 353 documents are described with a total of 67920 atoms, for an average of
more than 192 atoms per description (some descriptions are made up of more than 400 atoms); last, the
description is heavily based on a membership relation (frame) that increases indeterminacy.

The first question concerns whether the proposed similarityfunction is actually able to lead towards
the identification of the proper sub-parts to be put in correspondence in the two descriptions under com-
parison. Since the ‘correct’ association is not known, thiscan be evaluated only indirectly. A way for
doing this is evaluating thecompression factorof the guided generalization, i.e. the portion of atoms
in the clauses to be generalized that is preserved by the generalization, defined as the ratio between the
length of the generalization over that of the shortest clause to be generalized: the higher such a value,
the more confident one can be that the correct associations were provided by the similarity criteria and
formula. Indeed, since it is usual in ILP systems that a generalization must be a subset of either clause
to be generalized11, the more atoms the generalization preserves from these clause, the less general it
is. Of course, the more the difference in length between the two clauses to be generalized, the more
indeterminacy is present, and hence the more difficult it is to identify the proper corresponding parts
between them. Interestingly, on the document dataset the similarity-driven generalization preserved on
average more than 90% atoms of the shortest clause, with a maximum of 99,48% (193 atoms out of
194, against an example of 247) and just 0,006 variance. As a consequence, one woud expect that the
produced generalizations are least general ones or nearly so. Application of Tverski’s similarity formula
to the same setting always returned shorter generalizations than those obtained by using our formula.

The similarity-drivengeneralization procedurewas compared to a previous non-guided procedure,
embedded in the learning system INTHELEX [10]. Whenever thefirst generalization was not consis-
tent with all past negative examples, the system was allowedto search for other ones on backtracking.
On the Mutagenesis dataset, the proposed generalization technique reached a slightly better predictive
accuracy (87%) than the non-guided version (86%) exploiting only 30% runtime. No backtracking was
ever needed, against the 5815 of the non-guided version: this was a good hint that the similarity criteria,
strategy and formula are actually able to lead the correct identification of corresponding sub-parts of the
compounds descriptions. On the document dataset also F-measure (with parameter 1 in order to equally
weight Precision and Recall) was evaluated, to ensure that the performance was balanced between posi-
tive and negative examples. Classification outcomes show that the similarity-driven version outperformed
the classical one in all considered parameters: 70% runtimesavings, higher quality theory (less clauses
per definition, less exceptions), better learning behaviour (less generalizations/specializations needed),
+1% average accuracy (98%) and +2% average F-measure (96%).For the understanding task, overall
averages are 95% for accuracy (-1%), and 89% for F-measure (-2%), obtained in 32.14% (1 day 3 hours
cumulative) time savings. It must be pointed out that the oldprocedurefailedon fold 4 of label Keywords
in class MLJ, running out of memory after various hours, so the averages are actually computed on the
remaining 159 folds only.

Theclustering task aims at grouping a set of items into homogeneous classesaccording to the sim-
ilarity between their descriptions; if an intensional (e.g., first-order logic) description of each cluster is
provided, it is definedconceptualclustering. We embedded the proposed similarity assessment tech-
nique into a classical K-means algorithm, exploitingmedoidprototypes12 instead of centroids, since

11Note that this is an odd assumption in general, but not in INTHELEX because of its enforcing the Object Identity assumption.
12The medoid of a cluster is defined as the observation in the cluster that has the minimum average distance from all the other
members of the cluster.



22 S. Ferilli et al. / A General Similarity Framework for Horn Clause Logic

first-order logic formulæ do not induce an euclidean space. The stop criterion was set as the moment
in which a new iteration outputs a partition already seen in previous iterations. Since the class of each
observation in the datasets is known, we provided the clustering procedure with the number of clusters
to be obtained (4 in the case of documents and 2 for Mutagenesis), and then compared the results with
the correct classes to assess their quality (supervised clustering). Each cluster was compared to its best-
matching class, and their overlapping evaluated accordingto precision, recall and purity. In fact, for
each cluster the precision-recall values were neatly high for one class and considerably low for all the
others; moreover, and each cluster had a different best-matching class, so that the association and conse-
quent evaluation became straightforward. Results for the document dataset revealed a 91.60% precision,
93.28% recall and 92.35% purity, indicating that the proposed method is highly effective since it is able
to autonomously recognize the original classes. This is very encouraging, especially in the perspective
of the representation-related difficulties. A comparison to other measures in the literature reports an
improvement with respect to both Jaccard’s, Tverski’s and Dice’s measures up to +5,48% for precision,
up to + 8,05% for recall and up to + 2,83% for purity. Also on theMutagenesis dataset the precision,
recall and purity figures are very high (81.56%, 81.30% and 83.51%, respectively), considering that the
state-of-the-art performance on accuracy (comparable to clustering purity) of supervised systems on this
dataset is between 83% and 87%.

As to the exploitation of the proposed similarity techniqueto thek-Nearest Neighbourtechnique,
k was set to the square root of the number of learning instances, i.e. 17. Note that the classification was
a multi-class one, so (altoughk is odd) the nearest neighbours are not bound to a binary classification
and ties are possible. The results of the classification performance show an overall accuracy of 94.37%,
which means that few documents were associated to the wrong class, and hence the distance technique is
very good in identifying the proper similarity features within the given descriptions. Actually, very often
in the correct cases not just the majority, but almost all of the nearest neighbors to the description to be
classified were from the same class. Specifically, classes Elsevier and MLJ always have 100% accuracy,
which means that the corresponding examples are quite significant and sharply distinguishable. Errors
were concentrated in the SVLN and JMLR classes (where, however, high accuracy rates were reached:
89.70% and 90.03%, respectively), and reveal that MLJ is quite distinct from the other classes, while
Elsevier, although well-recognizable in itself, is somehow in between JMLR and SVLN, which are also
close to each other. Interestingly, mismatchings concerning Elsevier are unidirectional: some JMLR and
SVLN are classified as Elsevier, but thevice-versanever happened; on the other hand, in the case of
JMLR and SVLN it is bidirectional, suggesting a higher resemblance between the two.

5. Conclusions

The problem of indeterminacy in mapping a First-Order Logicformula onto another, due to the pres-
ence of relations, causes serious computational problems.Hence, many Artificial Intelligence tasks that
are based on FOL would take advantage from techniques for thecomparison and similarity assessment
among (parts of) descriptions. This paper proposed a novel similarity framework for Horn clauses, on
which the Logic Programming paradigm is founded, and comparison strategies for their progressively
complex components (terms, atoms, sets of atoms). Experiments on real-world datasets prove the effec-
tiveness of the proposal, and the efficiency of the corresponding implementation in many tasks: it helps
inductive generalization to preserve common features of the descriptions to be generalized, leads super-
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vised learning systems towards cleaner and more accurate theories dramatically reducing the runtime
needed for building them, effectively groups unknown descriptions in consistent and homogeneous clus-
ters, improves classification performance of instance-based techniques. The proposed similarity formula
also outperforms state-of-the-art alternatives.
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