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Abstract

Classical attribute-value descriptions induce a multi-
dimensional geometric space. One way for computing
the distance between descriptions in such a space con-
sists in evaluating an Euclidean distance between tuples
of coordinates. This is the ground on which a large
part of the Machine Learning literature has built its
methods and techniques. However, the complexity of
some domains require the use of First-Order Logic as
a representation language. Unfortunately, when First-
Order Logic is considered, descriptions can have differ-
ent length and multiple instance of predicates, and the
problem of indeterminacy arises. This makes compu-
tation of the distance between descriptions much less
straightfoward, and hence prevents the use of tradi-
tional distance-based techniques. This paper proposes
the exploitation of a novel framework for computing the
similarity between relational descriptions in a classi-
cal instance-based learning technique, k-Nearest Neigh-
bor classification. Experimental results on real-world
datasets show good performance, comparable to that of
state-of-the-art conceptual learning systems, which sup-
ports the viability of the proposal.

1 Introduction

Classical attribute-value descriptions of objects
gained wide acceptance and success in the Machine
Learning community because the attributes can be
seen as dimensions in a multi-dimensional geometri-
cal space, and the related values as the corresponding
coordinates. Hence, every possible object can be uni-
vocally mapped onto, and identified by, a single point
of the space, being made up of a pre-defined number
of features for each of which a specific value is pro-
vided. This representation allowed the development

of grouping and discrimination techniques that imple-
ment learning as an application based on mathematical
and geometrical concepts and properties. The core fa-
cility of associating objects to points in a geometrical
space relies in the possibility of straightforwardly as-
sessing how much two given objects are similar to, or
different from, each other as a simple application of the
Euclidean distance between the corresponding coordi-
nate vectors (symbolic features can be easily mapped
onto discrete numerical coordinates, as well). This
allowed the learning techniques to reach high perfor-
mance, but finds its limit in the rigidity of the descrip-
tions that must identify a fixed number of features in
which capturing all possible situations, and that must
include all (and, if possible, only) those that are signif-
icant for accomplishing the given task.

However, the complexity of some domains cannot
be captured by simple attribute-value descriptions, and
requires the possibility of including in the descriptions
a variable number of objects and features and the abil-
ity to express relations between objects. To deal with
such domains, First-Order Logic (FOL for short) repre-
sents a suitable formalism that can overcome the typ-
ical limitations shown by propositional or attribute-
value representations. As a consequence and tradeoff
for its expressive power, however, there is no more a
fixed way for comparing two descriptions, but various
portions of one description can be possibly mapped
in (often many) different ways onto another descrip-
tion. This problem, known as indeterminacy, not only
causes a significant computational effort when two de-
scriptions have to be compared to each other, but also
excludes a straightforward computation of the distance
between them, since FOL does not induce a Euclidean
space in which reusing consolidated mathematical and
geometrical notions. This explains why much less work
has been done in the Machine Learning literature on
distance-based methods and techniques for FOL de-
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scriptions than for propositional ones.
This paper aims at contributing in this critical

area, proposing the adoption of a novel framework,
that supports the comparison between FOL clauses,
to perform similarity-based Machine Learning in rela-
tional domains. This allows many applications, cov-
ering both supervised and unsupervised learning, and
ranging from (conceptual) Clustering to Instance-based
techniques. In particular, it focuses on the k-Nearest
Neighbor (k-NN for short) technique, that strongly re-
lies on the availability and quality of similarity mea-
sures for classifying unseen observations according to
the closest known prototypes. In addition to yielding
a similarity evaluation of entire descriptions, the pro-
posed framework allows to compare also description
components, suggesting those that are more similar
and hence more likely to correspond to each other and
this way tackling indeterminacy. Since this concerns
the semantic aspects of the domain, and hence there
is no precise (i.e., algorithmic) way for recognizing the
correct (sub-)formulæ to be associated, the problem is
attacked based on the syntactic structure alone.

In the following sections, after presenting prelimi-
nary notions about the formalism and a brief recall
of related work, the similarity framework will be intro-
duced, from the parameters and corresponding formula
on which the framework is based, through similarity
criteria for descriptions sub-components, up to the as-
sessment of similarity between whole clauses. Then, a
report of the experiments on k-Nearest Neighbor clas-
sification in two real-world domains will be provided,
before concluding the paper and outlining future work
directions.

2 Preliminaries

Logic Programming [13] is the fragment of FOL that
is based on formulæ in the form of clauses. It is an im-
portant paradigm in Artificial Intelligence, and many
first-order Machine Learning systems infer theories in
the form of logic programs. Logic programs (or theo-
ries) are made up of Horn clauses, i.e. logical formulæ
of the form l0 ∨¬l1 ∨ · · · ∨ ¬ln which is equivalent
to l1 ∧ · · · ∧ ln ⇒ l0 usually represented in Pro-
log style as l0 :- l1, . . . , ln to be interpreted as “l0
(called head of the clause) is true, provided that l1 and
... and ln (called body of the clause) are all true”. The
li’s are atoms (i.e., predicates applied to a number of
terms equal to their arity); a literal is an atom (called
positive literal) or its negation (called negative literal).
Two literals are linked if and only if they share at least
one of their arguments; a clause is linked if and only if
any two of its literals can be connected by a chain of

pairwise linked literals in the clause. A clause is range
restricted if and only if all terms appearing in the head
also appear in the body. Datalog is a restriction of Pro-
log where only variables and constants are allowed as
terms (i.e., it is syntactically the function-free version
of Prolog) [4].

We will deal with the case of linked Datalog clauses,
without loss of generality: indeed, linked sub-parts of
non-linked clauses can be dealt with separately (be-
cause, having no connection between each other, do not
contribute any information that is relevant to describe
the head), while the flattening/unflattening procedures
[14] can translate generic first-order clauses (allowing
also functions as terms) into Datalog ones and vice-
versa. Moreover, we will assume that examples are
represented, according to direct relevance, as ground
(variable-free) clauses where the argument(s) of the
head represent the (n-tuple of) object(s) to be classi-
fied, the head predicate their class, and the body repre-
sents the set of all and only those known literals in the
knowledge base that are significant for describing the
head, where a literal is relevant if it is (directly or in-
directly) linked to the head. Again this is not limiting,
since given a general knowledge base it is possible to
collect all and only those facts that fulfill such require-
ment. Observations to be classified will be described
in the same way, but with a dummy predicate in the
head.

Given two Datalog (sub-)formulæ C ′ and C ′′, a term
association on them is a set of couples of terms, usually
written t′/t′′, where t′ ∈ terms(C ′) and t′′ ∈ terms(C ′′)
(terms(·) denotes the set of terms appearing in ·). In
the following, we will call compatible two FOL (sub-
)formulæ that can be mapped onto each other without
yielding inconsistent term associations (i.e., a term in
one formula cannot be mapped onto different terms in
the other formula).

3 Related Work

Previous work on k-NN in FOL includes RIBL [6], a
k-NN classifier based on a modified version of the sim-
ilarity function proposed in [3] for the system KGB.
The basic idea of the measure used in RIBL is that
objects are described by values (e.g., size and position)
and by their relations to other objects. The similarity
between two objects is computed by considering the im-
mediate neighborhood of the objects. For instance, the
similarity between two identifiers is determined by the
similarity between the sets of facts where these iden-
tifiers occur. Also, the similarity between two facts is
determined by the similarity between their arguments.
If some of these arguments are in turn identifiers them-
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selves, one can get a loop: therefore, a depth param-
eter is introduced and similarity is only computed up
to this depth. Thus, the similarity among objects de-
pends on the similarity of their attributes’ values (e.g.,
the similarity of their size) and the similarity of the
objects related to them. The similarity of the related
objects in turn depends on the attribute values of these
objects and their relation to other objects and so on.
Such a propagation poses the problem of indetermi-
nacy in associations, that our technique avoids thanks
to the different structural approach. Although the in-
determinacy problem could be handled by using some
CSP technique (e.g., [16]), our proposal is exploiting
the information provided by the peculiar structure of
clauses.

RISE [5] is another system that combines a rule clas-
sifier with a k-NN technique: when the instance to be
classified is not covered by any rule, the distance of
the instance to the different rules is evaluated and the
instance is classified according to the majority vote of
its “neighbour” rules. However, it works in a proposi-
tional setting and thus is not directly comparable to a
full FOL approach.

More recently, k-RNN, a k-Nearest Neighbour algo-
rithm that works in a FOL setting, has been presented
in [11]: in this case the similarity measure between two
examples is computed as the ratio of the number of
common saturated clauses that can be generated by a
Mode-Directed Inverse Entailment (MDIE) approach
from the examples, over the number of such clauses
that can be generated by the new example alone. This
formulation makes the measure non-symmetric, due to
the denominator involving the training example only,
but this odd feature and its consequences are not com-
mented in that work. A particular care is put in param-
eter setting and fine-tuning to optimize the system ef-
ficiency: our technique is not optimized at all, but this
will be an issue to be faced in future work. Moreover,
our technique does not require additional background
information, such as mode declarations in MDIE.

Some work has also been carried out on coupling k-
NN with queries on relational databases (e.g., [1]) and
on the association of these k-NN with clustering, but it
is beyond the scope of this paper, that specifically fo-
cuses on the Inductive Logic Programming perspective
on relational learning and on pure k-NN.

4 The Similarity Framework

The similarity framework for Horn Clauses on which
the work in this paper is based includes the definition
of a new similarity function, but its main novelty relies
in providing a set of criteria that focus on particular

clause components to tackle the problem of indeter-
minacy while still preserving a considerable amount
of information about the description structures. It
is syntax-based, and hence totally general, since it
does not assume the availability of deep domain-related
knowledge for assessing the similarity degree between
two descriptions. Here, we briefly recall it from [10].

Like in classical and state-of-the-art distance mea-
sures in the current literature, mostly developed in
the propositional setting (e.g., those by Tverski, Dice
or Jaccard), the evaluation of similarity between two
items i′ and i′′ is based both on the number of common
and different features between them [12]:
n, number of features owned by i′ but not by i′′;
l, number of features owned both by i′ and by i′′;
m, number of features owned by i′′ but not by i′.
However, the new formula does not show the undesir-
able behaviour of those measures in cases in which n, l
or m are 0; expressed in terms of the items to be com-
pared or, equivalently, in terms of the corresponding
parameters, it is the following:

sf(i′, i′′) = sf(n, l,m) =
l + 1

2
(

1
l + n+ 2

+
1

l +m+ 2
)

(1)
It takes values ranging in the classical spectrum
]0, 1[, which can be interpreted as the level of likeli-
hood/confidence that the two items under comparison
are actually similar. A complete overlapping of the two
(n = m = 0) tends to the limit of 1 as long as the num-
ber of common features grows, whereas in case of no
overlapping (l = 0) the function will tend to 0 as long
as the number of non-shared features grows. The left-
hand-side ratio in parentheses refers to item i′, while
the right-hand-side ratio refers to item i′′, which allows
to weight them differently if needed (e.g., when com-
paring a model to an observation). Using equal weight
(1/2), as in (1), the function is symmetric with respect
to the two items to be compared.

The framework proposed in this work for Instance-
based learning exploits repeatedly and pervasively the
above formula in various combinations that assign a
similarity degree to progressively complex clause com-
ponents, from terms to atoms to sequences of atoms
to whole clauses. The similarity of each component
type is based on the similarity of simpler components
(only), so that no recursion nor indeterminacy can be
present. Empirically, one can note that no single com-
ponent type is by itself neatly discriminant, but their
cooperation succeeds in assigning sensible and useful
similarity values to the various kinds of components,
and in distributing on each kind of component a suit-
able portion of the overall similarity, so that the differ-
ence becomes ever clearer as long as they are composed
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one ontop the previous ones. This makes the proposed
approach robust to lacks of information due to some of
the components.

In FOL formulæ, terms represent specific objects,
that are related to each other by means of predicates.
Hence, two main levels of similarity can be defined for
pairs of first-order descriptions: the object level, con-
cerning similarities between the objects referred to in
the descriptions (and represented by terms), and the
structure one, referring to how the nets of relation-
ships in the descriptions overlap (expressed by n-ary
predicates applied to terms).

4.1 Object-level Similarity

Consider two clauses C ′ and C ′′. Call A′ =
{a′1, . . . , a′n} the set of terms in C ′, and A′′ =
{a′′1 , . . . , a′′m} the set of terms in C ′′. When comparing a
pair of objects (a′, a′′) ∈ A′×A′′, a first kind of features
to be compared is the set of properties they own (char-
acteristic features), usually expressed by unary predi-
cates. For instance, characteristic features for a term
representing a person could be young(X) or male(X).
A corresponding similarity value, called characteristic
similarity, is obtained by applying (1) to the sets P ′ of
characteristic features related to a′ and P ′′ of charac-
teristic features related to a′′:

sfc(a′, a′′) = sf(|P ′ \ P ′′|, |P ′ ∩ P ′′|, |P ′′ \ P ′|)

Also the ways in which terms relate to each other,
generally expressed by the position the term holds
among the n-ary predicate arguments, determine ad-
ditional features useful for comparison (relational fea-
tures): indeed, different positions actually refer to dif-
ferent roles played by the objects. For instance, rela-
tional features in the predicate parent(X,Y) are rep-
resented by the roles of the parent (first argument po-
sition) and of the child (second argument position).
Thus, another similarity value, called relational sim-
ilarity, is based on how many times the two objects
play the same or different roles in the n-ary predicates,
by applying (1) to the multisets R′ of roles played by
a′ and R′′ of roles played by a′′ (they are multisets
because a term can play the same role in different in-
stances of the same predicate, e.g. a parent of many
children):

sfr(a′, a′′) = sf(|R′ \R′′|, |R′ ∩R′′|, |R′′ \R′|)

These values can be combined, so that the overall
object similarity between a′ and a′′ is defined as

sfo(a′, a′′) = sfc(a′, a′′) + sfr(a′, a′′) (2)

4.2 Structure-level Similarity

While comparison among terms still belongs (can be
reduced) to the propositional (attribute-value) setting,
checking the structural similarity of two formulæ in-
volves the way in which terms are related by means
of atoms built on n-ary predicates. Hence, it is pecu-
liar to the first-order logic setting, and introduces the
problem of indeterminacy in mapping (parts of) a for-
mula into (parts of) another one. This is equivalent
to the computation of (sub-)graph homomorphisms, a
problem known to be NP -hard due to the possibility of
mapping a (sub-)graph onto another in many different
ways. The proposed framework focuses on linkedness
(i.e., the fact that two atoms share at least one of their
arguments) as a feature on which basing the structural
similarity assessment.

The simplest relational components in a first-order
logic formula are atoms. Thus, a first problem is com-
puting the degree of similarity between two atoms l′

and l′′. In this case, linkedness can be exploited ‘in-
breadth’, considering the concept of star of an n-ary
atom (the multiset of n-ary predicates corresponding to
the atoms linked to it by some common term – indeed,
a predicate can appear in multiple instances among
these atoms). The star similarity between two com-
patible n-ary atoms l′ and l′′ having stars S′ and S′′,
respectively, can be computed by applying (1) to the
number of common and different elements in each of
the two stars. However, also the similarity of the ob-
jects involved in the two atoms l′ and l′′ must be taken
into account, and hence the star similarity also consid-
ers the object similarity for all pairs of terms included
in the association θ that maps l′ onto l′′:

sfs(l′, l′′) = sf(|S′ \ S′′|, |S′ ∩ S′′|, |S′′ \ S′|) +
+avg({sfo(t′, t′′)}t′/t′′∈θ) (3)

Being able to compare two atoms, the next step is
comparing sequences of atoms. In this case linkedness
can be exploited ‘in-depth’, considering chains of atoms
where each atom is linked to both the previous and the
next ones in the chain, but the previous and the next
one do not share any argument at all. Such chains,
for a clause C, can be determined as all possible paths
starting from the root and reaching leaf nodes (those
with no outcoming edges) in the graph GC = (V,E)
built as follows:

• V = {l0}∪{li|i ∈ {1, . . . , n}, li built on k-ary pred-
icate, k > 1} and

• E ⊆ {(a1, a2) ∈ V × V | terms(a1) ∩ terms(a2) 6=
∅} where the edges are chosen in such a way to
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obtain a stratified graph in which the head is the
only node at level 0, and each subsequent level i is
made up by nodes not belonging to previous levels
j < i and having at least one term in common
with nodes in the previous level i− 1.

When comparing two clauses, their heads (roots of the
graphs) are unique (being the only head atom in the
clause).

Given two clauses C ′ and C ′′ with associated graphs
GC′ and GC′′ respectively, and two paths p′ =<
l′0, l
′
1, . . . , l

′
n′ > in GC′ and p′′ =< l′′0 , l

′′
1 , . . . , l

′′
n′′ >

in GC′′ , the intersection between p′ and p′′ is defined
as the pair of longest compatible initial subsequences
(< l′1, . . . , l

′
k >,< l′′1 , . . . , l

′′
k >) of p′ and p′′, exclud-

ing the head. Their differences are then defined as the
incompatible trailing parts:
p′ \ p′′ =< l′k+1, . . . , l

′
n′ > |p′ \ p′′| = n′ − k

p′′ \ p′ =< l′′k+1, . . . , l
′′
n′′ > |p′′ \ p′| = n′′ − k

Hence, the path similarity between p′ and p′′ is com-
puted by applying (1) to the number of atoms in the
maximal compatible subsequences and in the trailing
parts:

sfp(p′, p′′) = sf(n′ − k, k, n′′ − k) +
+avg({sfs(l′i, l′′i )}i=1,...,k) (4)

4.3 Clause Similarity

As a final step, consider the case of two clauses C ′

and C ′′, whose heads are built on predicates having
the same arity. Their bodies can be interpreted as the
observations describing the tuple of terms in the head
by means of all known facts related to them. Thus,
assessing the similarity among those tuples consists in
assessing the similarity between the respective bodies.
According to the technique presented so far, we need
a way to count the number of common and different
atoms in the two bodies. The set of common atoms
can be considered as their least general generalization,
i.e. the most specific model for the given pair of descrip-
tions C = {l1, . . . , lk} for which there exist two substi-
tutions θ′ and θ′′ such that ∀i = 1, . . . , k : liθ′ = l′i ∈ C ′
and liθ

′′ = l′′i ∈ C ′′, respectively.
Using the classical θ-subsumption generalization

model such a generalization is unique and can be com-
puted according to Plotkin’s algorithm, but gives some
undesirable side-effects concerning the need of com-
puting its reduced equivalent (and also shows some
counter-intuitive aspects). For this reason, most ILP
learners require the generalization to be a subset of
the clauses to be generalized, in which case the θOI
subsumption generalization model [8], based on the
Object Identity assumption, represents a supporting

framework with solid theoretical foundations to be ex-
ploited. The work in [9] shows that the similarity tech-
niques shown so far are also able to guide the gener-
alization procedure in obtaining quickly an accurate
approximation of the least general generalization. Un-
der θOI subsumption, the least general generalization is
not unique, but each minimal generalization is already
reduced, and hence all of the atoms that make it up are
mapped onto different atoms in the generalized clauses,
which reduces computation of the common atoms to
counting the length of the generalization, and compu-
tation of the different ones to subtracting the length
of the generalization from that of either clause. The
overall clause similarity is computed according to the
amount of overlapping and different atoms and terms,
taking into account also the star similarity values for
all pairs of atoms associated by the least general gen-
eralization (which includes both structural and object
similarity):

fs(C ′, C ′′) = sf(|C ′| − |C|, |C|, |C ′′| − |C|) ·
· sf(no, lo,mo) +
+avg({sfs(l′i, l′′i )}i=1,...,k) (5)

where
no = |terms(C ′)| − |terms(C)|;
lo = |terms(C)|;
mo = |terms(C ′′)| − |terms(C)|.

The first two components are multiplied in order to
have a limited influence on the overall similarity, that
must be predominantly determined by the similarity of
the single atoms.

As to the computational complexity, if n is the num-
ber of literals in the longest clause and m is the num-
ber of nodes at each level of the clause graph, in the
worst case of the atoms being absolutely equally dis-
tributed both in and among levels we have m =

√
n

and hence an order of
√
n
√
n. However, in more real-

istic cases, in which atoms are irregularly distributed
in breadth and/or depth, and adjacent levels are not
completely connected, the complexity moves towards
the two extremes m = 1 ⇒ mn/m = 1n = 1 and
m = n⇒ mn/m = n1 = n.

4.4 example

Let us show the main concepts concerning the sim-
ilarity framework in the following toy clause (a real-
world one would be too complex):
C : h(a) :- p(a, b), p(a, c), p(d, a),

r(b, f), o(b, c), q(d, e), t(f, g),
π(a), φ(a), σ(a), τ(a), σ(b), τ(b), φ(b),
τ(d), ρ(d), π(f), φ(f), σ(f).
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The set of properties of a is {π, φ, σ, τ}, for b it is
{σ, τ} and for c it is {φ}. The multiset of roles of a
is {p/2.1, p/2.1, p/2.2}, for b it is {p/2.2, r/2.1, o/2.1}
and for c it is {p/2.2, o/2.2}.

The star of p(a, b) is the multiset
{p/2, p/2, r/2, o/2}, while that of p(a, c) is
{p/2, p/2, o/2}.

As to the graph GC , the head represents the 0-level
of the stratification. Then level 1 of the stratification
is obtained by introducing directed edges from h(X) to
p(X,Y ), p(X,Z) and p(W,X). Now the next level can
be built, adding directed edges from atoms in level 1 to
the atoms not yet considered that share a variable with
them: r(Y,U) – end of an edge starting from p(X,Y )
–, o(Y, Z) – end of edges starting from p(X,Y ) and
p(X,Z) – and q(W,W ) – end of an edge starting from
p(W,X). The third level of the graph includes the only
remaining atom, s(U, V ) – having an incoming edge
from r(Y,U).

The paths in C (ignoring the head) are:
{< p(a, b), r(b, f), t(f, g) >,< p(a, b), o(b, c) >,

< p(a, c), o(b, c) >,< p(d, a), q(d, e) >}.

5 Experiments

Some experiments were designed to check whether
the proposed framework is actually able to give signif-
icant similarity hints when comparing two structures,
and hence can represent a good way for supporting k-
Nearest Neighbor classification on FOL descriptions.
All of them were run under WindowsXP Professional
on a PC endowed with a 2.13 GHz Intel Dual Core Duo
processor and 2GB RAM. The k-NN procedure was
implemented in SICStus Prolog v. 3.12. 10-fold cross-
validation was used to test the learning effectiveness.
The 10 folds were created so that the distribution of
examples from the various classes was uniform in each
fold, and consequently each of the resulting 10 training
and test sets contained approximately 90% and 10%,
respectively, of examples from each class.

A real-world domain that requires first-order logic
descriptions for capturing the complexity of the ob-
servations was choosen for performing the experiments
aimed at assessing the applicability and performance
of the proposed approach. Specifically, it concerns the
descriptions (automatically generated from electronic
versions of the documents) of scientific papers layout,
according to which identifying the papers’ type and sig-
nificant components1. It is made up of 353 descriptions
of scientific papers first page layout, belonging to 4 dif-
ferent classes: Elsevier journals, Springer-Verlag Lec-

1Available at http://lacam.di.uniba.it:8000

/systems/inthelex/index.htm#datasets

ture Notes series (SVLN), Journal of Machine Learn-
ing Research (JMLR) and Machine Learning Journal
(MLJ). The complexity of such a dataset is consider-
able, and concerns several aspects of the dataset: the
journals layout styles are quite similar, so that it is not
easy to grasp the difference between them; moreover,
the 353 documents are described with a total of 67920
atoms, for an average of more than 192 atoms per de-
scription (some descriptions are made up of more than
400 atoms); lastly, the description is heavily based on
a part of relation that increases indeterminacy.

The k-NN approach performance was compared to
that of a concept learning algorithm embedded in the
learning system INTHELEX [7]. Specifically, two ver-
sions of such a system were exploited: the classical
one (I) and a new one (SF) whose generalization op-
erator was modified to take advantage from the pro-
posed similarity framework for identifying the best sub-
descriptions to be put in correspondence [10]. The
performance was evaluated according to both Predic-
tive Accuracy percentage and F-measure (with param-
eter 1 in order to equally weight Precision and Recall),
to ensure that the performance was balanced between
positive and negative examples (since each positive ex-
ample for a class is a negative example for the other
classes, the negative examples are three times the pos-
itive ones). Classification figures for the concept learn-
ing algorithm, averaged on the 10 folds, are reported in
Table 1: Cl is the number of clauses in the learned the-
ories; Gen the number of generalizations carried out;
Spec+, Spec− and Exc− the number of specializations
(by means of positive atoms, negated atoms and ex-
ceptions, respectively). The similarity-driven version
outperformed the classical one in all considered pa-
rameters (time, learning behaviour, accuracy and F-
measure); overall, in the 40 runs it saved 1.15 hours,
resulting in a 98% average accuracy (+1% with respect
to the old version) and 96% average F-measure (+2%
with respect to the old version).

For the k-NN approach, k was set, as usually rec-
ommended by the literature, to the square root of the
number of learning instances, i.e. 17. Notice that the
classification was a multi-class one, so (although k is
odd) the nearest neighbours are not bound to a bi-
nary classification and ties are possible (indeed, 0.5 er-
rors for SVLN in fold 8 means that two classes were
the nearest ones, of which one correct). The results of
the k-NN classification performance are summarized in
Table 2, detailed for each fold. Some interesting con-
siderations can be drawn upon these figures. First of
all, the overall accuracy is 94.37%, which means that
few documents were associated to the wrong class, and
hence the distance technique is very good in identi-
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Table 1. Classification results
Time (sec.) Cl Gen Spec+ Spec− Exc− Accuracy F1-measure

JMLR
SF 588.97 1.9 8.8 1.1 0 0.6 0.98 0.97
I 1961.66 1.9 9.1 1.3 0.1 1.3 0.98 0.97

Elsevier
SF 52.92 1 6.3 0 0 0 1 1
I 303.85 2.1 10.1 2.2 0.2 0 0.99 0.97

MLJ
SF 3213,48 4.7 15.7 3.7 2.5 0.8 0.96 0.94
I 2974.87 5.2 14.5 4.4 3 2.1 0.93 0.91

SVLN
SF 399 2.6 8.1 0.7 0.4 1 0.98 0.94
I 662.89 3.3 9.4 2.8 0.9 0.6 0.97 0.93

fying the proper similarity features within the given
descriptions. Actually, very often in the correct cases
not just the majority, but almost all of the nearest
neighbors to the description to be classified were from
the same class. Then, note that classes Elsevier and
MLJ always have 100% accuracy, which means that
the corresponding examples are quite significant and
sharply distinguishable. Errors were concentrated in
the SVLN and JMLR classes, where, however, high ac-
curacy rates were reached. In detail, of the 13 JMLR
wrongly classified observations, 8 were confused with
Elsevier ones, and 5 as SVLN ones. Of the SVLN er-
rors, 6 concerned Elsevier, 1 JMLR and 1 was a tie
between the correct class and JMLR. This reveals that
MLJ is quite distinct from the other classes, while El-
sevier, although well-recognizable in itself, is somehow
in between JMLR and SVLN, which are also close to
each other. Interestingly, mismatchings concerning El-
sevier are unidirectional: JMLR and SVLN are some-
times confused with Elsevier, but the opposite never
happened; on the other hand, in the case of JMLR and
SVLN it is bidirectional, suggesting a higher resem-
blance between the two.

As to the overall comparison to the concept-learning
algorithm, it is very interesting to note that, while high
performance on Elsevier and low performance on SVLN
are confirmed from the conceptual learning case, for
MLJ and JMLR the behaviour of the two approaches is
opposite, suggesting somehow complementary advan-
tages of each. Elsevier confirmed full accuracy with re-
spect to the similarity-guided version (the non-guided
version had a slightly worse performance), while MLJ
improved the performance up to full accuracy in the k-
NN approach, gaining 4% over the guided version and
7% over the non-guided one. Conversely, accuracy on
the remaining classes neatly decreased of about -8%.
This can be explained with the fact that printed jour-
nals impose a stricter fulfillment of layout style and
standards, and hence their instance are more similar
to each other. Thus, the concept learning algorithm
is more suitable to learn definitions that generalize on

peculiar features of such classes.

Runtime refers almost completely to the computa-
tion of the similarity between all couples of observa-
tions: it takes an average of about 2sec computing each
single similarity, which is a very reasonable time con-
sidering the descriptions complexity and the fact that
the prototype has not been optimized in this prelimi-
nary version.

In order to check whether the novel similarity func-
tion was actually useful, or just the procedure for as-
sessing the components similarity determined the per-
formance, a comparison to other measures in the liter-
ature was made according to average precision, recall
and accuracy for each dataset size, plus some infor-
mation about runtime and number of description com-
parisons to be carried out. Results revealed an im-
provement with respect to both Jaccard’s, Tverski’s
and Dice’s measures up to +5,48% for precision, up to
+ 8,05% for recall and up to + 2,83% for accuracy,
confirming that also the basic function improved the
state-of-the-art.

We wanted also to compare the performance of our
methodology to that of other systems in the litera-
ture exploiting k-NN. RISE could not be compared to
our methodology, since it works in an attribute-value
(propositional) setting, and hence cannot handle de-
scriptions having variable length, different number of
occurrences of the same predicates and networked links
among description components. As regards the other
systems, the comparison was carried out on mutagen-
esis, a classical ILP dataset [15] in which 188 molecule
descriptions must be distinguished into ‘active’ and
‘non-active’ ones with respect to mutagenicity. These
molecules have been selected by domain experts since
classical regression-based techniques are not able to
learn useful theories for mutagenicity on them. The
dataset consists of 188 molecules, described with a total
of 25917 atoms, for an average of nearly 138 atoms per
description. In particular, we exploited a version of the
dataset where the numeric descriptors were previously
discretized into symbolic ones, corresponding to inter-
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Table 2. Results of the proposed approach
Fold 1 2 3 4 5 6 7 8 9 10

JMLR 100 85.71 85.71 84.62 76.92 100 92.31 100 83.33 91.67 Avg: 90.03
errors 0/14 2/14 2/14 2/13 3/13 0/13 1/13 0/13 2/12 1/12 Tot: 13/131

Elsevier 100 100 100 100 100 100 100 100 100 100 Avg: 100
errors 0/5 0/6 0/6 0/5 0/5 0/5 0/5 0/5 0/5 0/5 Tot: 0/52

MLJ 100 100 100 100 100 100 100 100 100 100 Avg: 100
errors 0/11 0/11 0/10 0/9 0/9 0/9 0/9 0/10 0/10 0/12 Tot: 0/100

SVLN 83.33 100 100 100 100 62.5 87.5 92.86 87.5 83.33 Avg: 89.70
errors 1/6 0/5 0/6 0/8 0/8 3/8 1/8 0.5/7 1/8 1/6 Tot: 7.5/70

Overall 97.22 96.43 94.29 94.29 91.43 91.43 94.29 98.57 91.43 94.29 Avg: 94.37
errors 1/36 2/36 2/36 2/35 3/35 3/35 2/35 0.5/35 3/35 2/35 Tot: 20.5/353

vals of the original ranges, by an automatic procedure
[2]. On such a dataset, we ran a 10-fold cross-validation
experiment, using k = 13 (square root of 188), and our
technique reached an average Predictive Accuracy of
87.22%, which is far beyond the typical performance of
classical conceptual ILP learners (around 70-80%).

As regards RIBL, in the original paper [6] the Au-
thors reported an experiment in which RIBL was pro-
vided with progressively larger portions of the dataset,
up to the whole dataset, on which the best predictive
accuracy was reached: just above 70%, both with and
without feature weights (compared to FOIL 6.2, that
reached about 62%). In a more recent paper [17], RIBL
was endowed with different kernels, and compared to
other systems. In the case of RIBL endowed with kNN
the performance was 77%, while the best performance
of k-NN in that comparison was around 84% (reached
by SMD - Sum of Minimum Distances algorithm).

As to the k-RNN system, a direct comparison is not
possible because in [11] an extended dataset made up
of 205 molecules is exploited. In any case, the Au-
thors report a predictive accuracy of 89.31%, but it
is actually only the best accuracy among various ex-
perimental results obtained varying the k parameter
(between 1 and 20) and the length l of the saturated
clause (between 2 and 5). In the 32 (k, l) combinations,
only 3 cases slightly outperform our outcome (89.31%
for l = 4 and k = 3 or 4, and 88.25% for l = 3 and
k = 2). In these cases k is always very low with re-
spect to the classical square-root setting, that should
be around k = 15, where the best performance reached
by k-RNN is 85.72%.

6 Conclusions and Future Work

The presence of relations in First-Order Logic causes
the problem of indeterminacy in mapping portions of
a description onto another one. Hence, the space in-
duced by the descriptions is not Euclidean, and no

straightforward way is available for assessing the sim-
ilarity between two descriptions according to a dis-
tance measure. However, some real-world problems
require the power of relations to be properly repre-
sented, and many approaches in Artificial Intelligence
in general, and in Machine Learning in particular, are
based on the evaluation of similarity/distance between
instances. This paper tackles the case of k-Nearest
Neighbor classification, and proposes a novel similarity
framework for FOL descriptions based only on their
syntactic structure.

Based on the experimental outcomes of such a
framework on the real-world task of document classifi-
cation, it seems a viable solution that does not require
deep knowledge of the domain and of the specific de-
scriptors, still providing high performance on a difficult
domain, comparable to those of a concept learning al-
gorithm. Also with respect to other systems in the
literature based on k-NN classification it shows a bet-
ter or comparable performance according to Predictive
Accuracy.

Future work will concern fine-tuning of the similarity
computation methodology, and its application to other
problems, such as flexible matching. Further experi-
ments for k-Nearest Neighbour classification on other
real-world datasets are currently undergoing, and other
scheduled work includes coupling k-NN with cluster-
ing: clustering with this measure has already shown
very good performance, comparable to that of super-
vised learning [10], and k-NN could be exploited to
classify new instances into one or more of the induced
clusters according to their full set of instances or just
their prototypes. This would be particularly interest-
ing in dynamic environments such as Digital Libraries
management, where documents of unknown class in the
repository must be grouped into significant classes and
then new incoming documents must be associated to
the best groups among those available in the reposi-
tory.
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