Generalization-based Similarity
for Conceptual Clustering

S. Ferilli, T.M.A. Basile, N. Di Mauro, M. Biba, and F. Esposito

Dipartimento di Informatica
Universita di Bari
via E. Orabona, 4 - 70125 Bari - Italia
{ferilli, basile, ndm, biba, esposito}@di.uniba.it

Abstract. Knowledge extraction represents an important issue that
concerns the ability to identify valid, potentially useful and understand-
able patterns from large data collections. Such a task becomes more
difficult if the domain of application cannot be represented by means of
an attribute-value representation. Thus, a more powerful representation
language, such as First-Order Logic, is necessary. Due to the complexity
of handling First-Order Logic formulee, where the presence of relations
causes various portions of one description to be possibly mapped in dif-
ferent ways onto another description, few works presenting techniques
for comparing descriptions are available in the literature for this kind
of representations. Nevertheless, the ability to assess similarity between
first-order descriptions has many applications, ranging from description
selection to flexible matching, from instance-based learning to clustering.
This paper tackles the case of Conceptual Clustering, where a new ap-
proach to similarity evaluation, based on both syntactic and semantic
features, is exploited to support the task of grouping together similar
items according to their relational description. After presenting a frame-
work for Horn Clauses (including criteria, a function and composition
techniques for similarity assessment), classical clustering algorithms are
exploited to carry out the grouping task. Experimental results on real-
world datasets prove the effectiveness of the proposal.

Introduction

The large amount of information available nowadays makes more difficult the
task of extracting useful knowledge, i.e. valid, potentially useful and under-
standable patterns, from data collections. Such a task becomes more difficult
if the collection requires a more powerful representation language than simple
attribute-value vectors. First-order logic (FOL for short) is a powerful formal-
ism, that is able to express relations between objects and hence can overcome the
limitations shown by propositional or attribute-value representations. However,
the presence of relations causes various portions of one description to be possi-
bly mapped in different ways onto another description, which poses problems of
computational effort when two descriptions have to be compared to each other.

13

Specifically, an important subclass of FOL refers to sets of Horn clauses, i.e.
logical formule of the form I1A---Al, = lyp where the [;’s are atoms, usually
represented in Prolog style as Iy :- ly,...,l, to be interpreted as “ly (called
head of the clause) is true, provided that Iy and ... and [,, (called body of the
clause) are all true”. Without loss of generality [16], we will deal with the case
of linked Datalog clauses.

The availability of techniques for the comparison between FOL (sub-)des-
criptions could have many applications: helping a subsumption procedure to
converge quickly, guiding a generalization procedure by focussing on the compo-
nents that are more similar and hence more likely to correspond to each other,
implementing flexible matching, supporting instance-based classification tech-
niques or conceptual clustering. Cluster analysis concerns the organization of
a collection of unlabeled patterns into groups (clusters) of homogeneous ele-
ments based on their similarity. The similarity measure exploited to evaluate
the distance between elements is responsible for the effectiveness of the cluster-
ing algorithms. Hence, the comparison techniques are generally defined in terms
of a metric that must be carefully constructed if the clustering is to be relevant.
In supervised clustering there is an associated output class value for each ele-
ment and the efficacy of the metric exploited for the comparison of elements is
evaluated according to the principle that elements belonging to the same class
are clustered together as much as possible.

In the following sections, a similarity framework for first-order logic clauses
will be presented. Then, Section 5 will deal with related work, and Section 6
will show how the proposed formula and criteria are able to effectively guide a
clustering procedure for FOL descriptions. Lastly, Section 7 will conclude the
paper and outline future work directions.

2 Similarity Formula

Intuitively, the evaluation of similarity between two items i’ and " might be
based both on the presence of common features, which should concur in a positive
way to the similarity evaluation, and on the features of each item that are not
owned by the other, which should concur negatively to the whole similarity value
assigned to them [10]. Thus, plausible similarity parameters are:

n , the number of features owned by i’ but not by " (residual of i’ wrt i");
[, the number of features owned both by i’ and by ¢";
m , the number of features owned by " but not by i’ (residual of i wrt).

A novel similarity function that expresses the degree of similarity between i’ and
7" based on the above parameters, developed to overcome some limitations of
other functions in the literature (e.g., Tverski’s, Dice’s and Jaccard’s), is:
l+1 [+1

+ 0. (1)
l+n+2 l+m+2
It takes values in]0,1[, to be interpreted as the degree of similarity between
the two items. A complete overlapping of the two items tends to the limit of 1

14

sf(i',i") = sf(n,l,m) = 0.5

as long as the number of common features grows. The full-similarity value 1 is
never reached, and is reserved to the exact identification of items, i.e. i/ = 3"
(in the following, we assume i’ # i”’). Conversely, in case of no overlapping the
function will tend to 0 as long as the number of non-shared features grows. This
is consistent with the intuition that there is no limit to the number of different
features owned by the two descriptions, which contribute to make them ever
different. Since each of the two terms refers specifically to one of the two clauses
under comparison, a weight could be introduced to give different importance to
either of the two.

3 Similarity Criteria

The main contribution of this paper is in the exploitation of the formula in
various combinations that can assign a similarity degree to the different clause
constituents. In FOL formulze, terms represent specific objects; unary predicates
represent term properties and n-ary predicates express relationships. Hence, two
levels of similarity between first-order descriptions can be defined: the object
level, concerning similarities between terms in the descriptions, and the structure
one, referring to how the nets of relationships in the descriptions overlap.

Ezxzample 1. Let us consider, as a running example throughout the paper, the
following toy clause (a real-world one would be too complex):
C : h(a) - p(a,b),p(a,c),p(d,a),r(b, f),0(b, c),q(d, e), t(f, g),
(a), ¢(a),0(a),7(a),o(b), 7(b), p(b), 7(d), p(d), w(f), d(f), o (f)-

3.1 Object Similarity

Consider two clauses C' and C”. Call A’ = {a],...,a,} the set of terms in C’,
and A” = {a¥,...,al’.} the set of terms in C”. When comparing a pair of ob-
jects (a’,a”) € A’ x A" two kinds of object features can be distinguished: the
properties they own as expressed by unary predicates (characteristic features),
and the roles they play in n-ary predicates (relational features). More precisely,
a role can be seen as a couple R = (predicate, position) (written compactly as
R = predicate/arity.position), since different positions actually refer to differ-
ent roles played by the objects. For instance, a characteristic feature could be
male(X), while relational features in a parent(X,Y) predicate are the ‘parent’
role (parent/2.1) the ‘child’ role (parent/2.2).

Two corresponding similarity values can be associated to a’ and a”: a char-
acteristic similarity,

sfe(a’,a”) = sf(ne, le,me)

based on the set P’ of properties related to a’ and the set P” of properties related
to a”, for the following parameters:
n. = |P'\ P”| number of properties owned by o’ in ¢’ but not by a” in C”

(characteristic residual of a’ wrt a”);

15

lc =|P' N P"| number of common properties between o’ in C’ and a” in C”;
me = |P” \ P’'| number of properties owned by a” in C” but not by a’ in C’
(characteristic residual of a” wrt a’).

and a relational similarity,
sf.(a’,a") = sf(n,, 1., m,)

based on the multisets R' and R of roles played by a’ and a”, respectively, for
the following parameters:

n, = |R'\ R”| how many times o’ plays in C’ role(s) that a” does not play in
C" (relational residual of a' wrt a’);

I, = |R' N R"| number of times that both o’ in C’ and a” in C” play the same
role(s);

m, = |R"”\ R'| how many times a” plays in C” role(s) that a’ does not play in
C' (relational residual of a” wrt a').

Overall, we can define the object similarity between two terms as
sfo(a’,a”) = sf(a’,a”) +sf.(a',a’")

Ezample 2. Referring to clause C, the set of properties of a is {r, ¢, 0,7}, for b
it is {0, 7} and for c it is {¢}. The multiset of roles of a is {p/2.1,p/2.1,p/2.2},
for b it is {p/2.2,7/2.1,0/2.1} and for c it is {p/2.2,0/2.2}.

3.2 Structural Similarity

When checking for the structural similarity of two formulse, many objects can
be involved, and hence their mutual relationships represent a constraint on how
each of them in the former formula can be mapped onto another in the latter. The
structure of a formula is defined by the way in which n-ary atoms (predicates
applied to a number of terms equal to their arity) are applied to the various
objects to relate them. This is the most difficult part, since relations are specific
to the first-order setting and are the cause of indeterminacy in mapping (parts
of) a formula into (parts of) another one. In the following, we will call compatible
two FOL (sub-)formulee that can be mapped onto each other without yielding
inconsistent term associations (i.e., a term in one formula cannot correspond to
different terms in the other formula).

Given an n-ary literal, we define its star as the multiset of n-ary predicates
corresponding to the literals linked to it by some common term (a predicate can
appear in multiple instantiations among these literals). The star similarity be-
tween two compatible n-ary literals I’ and I having stars S’ and S”, respectively,
can be computed for the following parameters:

ns = |5\ §”| how many more relations I’ has in ¢’ than !” has in C” (star
residual of I' wrt I");

16

ls = |S" N S”| number of relations that both I’ in C’ and I in C” have in com-
mon;

ms = |5\ §’| how many more relations " has in C” than I’ has in C' (star
residual of " wrt I').

by taking into account also the object similarity values for all pairs of terms
included in the association 6 that map I’ onto I” of their arguments in corre-
sponding positions:

sto(I',1") = sf(ns, ls,ms) + C*({sfo(t',t") }i j1rco)

where C* is a composition function (e.g., the average).

Then, Horn clauses can be represented as a graph in which atoms are the
nodes, and edges connect two nodes iff they share some term, as described in
the following. In particular, we will deal with linked clauses only (i.e. clauses
whose associated graph is connected). Given a clause C, we define its associated
graph G¢, where the edges to be represented form a Directed Acyclic Graph
(DAG), stratified in such a way that the head is the only node at level 0 and
each successive level is made up by nodes not yet reached by edges that have at
least one term in common with nodes in the previous level. In particular, each
node in the new level is linked by an incoming edge to each node in the previous
level having among its arguments at least one term in common with it.

Ezxample 3. In the graph G, the head represents the 0-level of the stratification.
Then directed edges may be introduced from h(X) to p(X,Y), p(X,Z) and
p(W, X), which yields level 1 of the stratification. Now the next level can be
built, adding directed edges from atoms in level 1 to the atoms not yet considered
that share a variable with them: (Y, U) — end of an edge starting from p(X,Y)
—, 0o(Y,Z) — end of edges starting from p(X,Y) and p(X,Z) — and ¢(W, W) —
end of an edge starting from p(W, X). The third level of the graph includes the
only remaining atom, s(U, V) — having an incoming edge from (Y, U).

Now, all possible paths starting from the head and reaching leaf nodes are
univoquely determined, which reduces the amount of indeterminacy in the com-
parison. Given two clauses C’ and C”, we define the intersection between two
paths p’ =< l},...,ll, > in Ggr and p” =< 1{,...,1”,, > in G~ as the pair of
longest compatible initial subsequences of p’ and p’:

pNp’ = (p1,p2) = (KU, ..., 0 > <U,....l >)s.t.
Vi=1,...,k:14,...,1; compatible with I{,... I A

(k=n'VEk=n"VI,... l;, incompatible with I{,... [}/,)
and the two residuals as the incompatible trailing parts:
P\ =<liy,.. 0 > PI\p =<y, 0 >)

Hence, the path similarity between p’ and p”, sfs(p’,p”), can be computed
by applying (1) to the following parameters:

np = |p’ \ p”"| =n' — k is the length of the trail incompatible sequence of p’ wrt
p" (path residual of p’ wrt p”);

17

l, = |p1| = |p2] =k is the length of the maximum compatible initial sequence of
p’ and p”;

my = [p" \p'| =n” — k is the length of the trail incompatible sequence of p”
wrt p’ (path residual of p’ wrt p').

by taking into account also the star similarity values for all pairs of literals
associated by the initial compatible sequences:

Sfp(plvpu) = Sf(np7 lp, mp) + Cp<{5f3(l§a l;/)}izl,m,k)
where C? is a composition function (e.g., the average).

Ezample 4. In C, the star of p(a, b) is the multiset {p/2, p/2,r/2,0/2}, while that
of p(a,c)is {p/2,p/2,0/2}. The paths in C (ignoring the head that, being unique,
can be univoquely matched) are {< p(a,b),r(b, f),t(f,9) >, < p(a,b),o(b,c) >
, < pla,c),o0(b,c) >, < p(d,a),q(d,e) >}.

Note that no single criterion is by itself neatly discriminant, but their coop-
eration succeeds in assigning sensible similarity values to the various kinds of
components, and in distributing on each kind of component a proper portion of
the overall similarity, so that the difference becomes ever clearer as long as they
are composed one ontop the previous ones.

4 Clause Similarity

Now, similarity between two (tuples of) terms reported in the head predicates
of two clauses, according to their description reported in the respective bodies,
can be computed based on their generalization. In particular, one would like
to exploit their least general generalization, i.e. the most specific model for the
given pair of descriptions. Unfortunately, such a generalization is not easy to find:
either classical #-subsumption is used as a generalization model, and then one
can compute Plotkin’s least general generalization [13], at the expenses of some
undesirable side-effects concerning the need of computing its reduced equivalent
(and also of some counter-intuitive aspects of the result), or, as most ILP learners
do, one requires the generalization to be a subset of the clauses to be generalized.
In the latter option, that we choose for the rest of the work, the 6o generalization
model [5], based on the Object Identity assumption, represents a supporting
framework with solid theoretical foundations to be exploited.

Given two clauses C' and C”, call C = {l,...,l;} their least general gen-
eralization, and consider the substitutions 6’ and 6” such that V¢ = 1,...,k :
1,0/ =1, € C" and ;0" =1}/ € C”, respectively. Thus, a formula for assessing the
overall similarity between C’ and C”, called formule similitudo and denoted fs,
can be computed according to the amounts of common and different literals:

n =|C’| — |C| how many literals in C’ are not covered by its least general gen-
eralization with respect to C” (clause residual of C" wrt C");

18

I = |C| = k maximal number of literals that can be put in correspondence be-
tween C’ and C” according to their least general generalization;

m = |C"| —|C)| how many literals in C” are not covered by its least general
generalization with respect to C’ (clause residual of C" wrt C").

and of common and different objects:

ne = [terms(C")| — [terms(C')| how many terms in C’ are not associated by its
least general generalization to terms in C* (object residual of C' wrt C");

lo = |terms(C')| maximal number of terms that can be put in correspondence in
C’" and C" as associated by their least general generalization;

me = |terms(C")| — [terms(C))| how many terms in C” are not associated by
its least general generalization to terms in C’ (object residual of C" wrt C”).

by taking into account also the star similarity values for all pairs of literals
associated by the least general generalization:

fs(C', C") = st(n,l,m) - st(no, lo, mo) + C({sts (L, 1) }iza, k)

ERY

where C° is a composition function (e.g., the average). This function evaluates
the similarity of two clauses according to the composite similarity of a maximal
subset of their literals that can be put in correspondence (which includes both
structural and object similarity), smoothed by adding the overall similarity in the
number of overlapping and different literals and objects between the two (whose
weight in the final evaluation should not overwhelm the similarity coming from
the detailed comparisons, hence the multiplication).

In particular, the similarity formula itself can be exploited for computing the
generalization. The path intersections are considered by decreasing similarity,
adding to the partial generalization generated thus far the common literals of
each pair whenever they are compatible [6]. The proposed similarity framework
proves actually able to lead towards the identification of the proper sub-parts to
be put in correspondence in the two descriptions under comparison, as shown in-
directly by the portion of literals in the clauses to be generalized that is preserved
by the generalization. More formally, the compression factor (computed as the
ratio between the length of the generalization and that of the shortest clause
to be generalized) should be as high as possible. Interestingly, on the document
dataset (see section 6 for details) the similarity-driven generalization preserved
on average more than 90% literals of the shortest clause, with a maximum of
99,48% (193 literals out of 194, against an example of 247) and just 0,006 vari-
ance. As a consequence, one woud expect that the produced generalizations are
least general ones or nearly so. Noteworthly, using the similarity function on the
document labelling task leads to runtime savings that range from 1/3 up to 1/2,
in the order of hours.

5 Related Works

Few works faced the definition of similarity or distance measures for first-order
descriptions. [4] proposes a distance measure based on probability theory applied

19

to the formula components. Compared to that, our function does not require the
assumptions and simplifying hypotheses to ease the probability handling, and no
a-priori knowledge of the representation language is required. It does not require
the user to set weights on the predicates’ importance, and is not based on the
presence of ‘mandatory’ relations, like for the G1 subclause in [4]. KGB [1]
uses a similarity function, parameterized by the user, to guide generalization;
our approach is more straightforward, and can be easily extended to handle
negative information in the clauses. In RIBL [3] object similarity depends on
the similarity of their attributes’ values and, recursively, on the similarity of the
objects related to them, which poses the problem of indeterminacy. [17] presents
an approach for the induction of a distance on FOL examples, that exploits the
truth values of whether each clause covers the example or not as features for a
distance on the space {0, 1}* between the examples. [12] organizes terms in an
importance-related hierarchy, and proposes a distance between terms based on
interpretations and a level mapping function that maps every simple expression
on a natural number. [14] presents a distance function between atoms based on
the difference with their 1gg, and uses it to compute distances between clauses.
It consists of a pair where the second component allows to differentiate cases
where the first component cannot.

As pointed out, we focus on the identification and exploitation of similarity
measures for first-order descriptions in the clustering task. Many research efforts
on data representation, elements’ similarity and grouping strategies have pro-
duced several successful clustering methods (see [9] for a survey). The classical
strategies can be divided in bottom-up and top-down. In the former, each ele-
ment of the dataset is considered as a cluster. Successively, the algorithm tries
to group the clusters that are more similar according to the similarity measure.
This step is performed until the number of clusters the user requires as a final
result is reached, or the minimal similarity value among clusters is greater than
a given threshold. In the latter approach, known as hierarchical clustering, at
the beginning all the elements of the dataset form a unique cluster. Successively,
the cluster is partitioned into clusters made up of elements that are more similar
according to the similarity measure. This step is performed until the number of
clusters required by the user as a final result is reached. A further classification
is based on whether an element can be assigned (NotExclusive or Fuzzy Clus-
tering) or not (Exclusive or Hard Clustering) to more than one cluster. Also
the strategy exploited to partition the space is a criterion used to classify the
clustering techniques: in Partitive Clustering a representative point (centroid,
medoid, etc.) of the cluster in the space is chosen; Hierarchical Clustering pro-
duces a nested series of partitions by merging (Hierarchical Agglomerative) or
splitting (Hierarchical Divisive) clusters, Density-based Clustering considers the
density of the elements around a fixed point.

Closely related to data clustering is Conceptual Clustering, a Machine Learn-
ing paradigm for unsupervised classification which aims at generating a concept
description for each generated class. In conceptual clustering both the inherent
structure of the data and the description language, available to the learner, drive

20

cluster formation. Thus, a concept (regularity) in the data could not be learned
by the system if the description language is not powerful enough to describe
that particular concept (regularity). This problem arises when the elements si-
multaneously describe several objects whose relational structures change from
one element to the other. First-Order Logic representations allow to overcome
these problems. However, most of the clustering algorithms and systems work
on attribute-value representation (e.g., CLUSTER/2 [11], CLASSIT [8], COBWEB [7]).
Other systems such as LABYRINTH [18] can deal with structured objects exploit-
ing a representation that is not powerful enough to express the dataset in a lot
of domains. There are few systems that cluster examples represented in FOL
(e.g., AUTOCLASS-1ike [15], KBG [1]), some of which still rely on propositional
distance measures (e.g., TIC [2]).

6 Experiments on Clustering

The proposed similarity framework was tested on the conceptual clustering task,
where a set of items must be grouped into homogeneous classes according to the
similarity between their first-order logic description. In particular, we adopted
the classical K-means clustering technique. However, since first-order logic for-
mulae do not induce an euclidean space, it was not possible to identify /build a
centroid prototype for the various clusters according to which the next distribu-
tion in the loop would be performed. For this reason, we based the distribution
on the concept of medoid prototypes, where a medoid is defined as the obser-
vation that actually belongs to a cluster and that has the minimum average
distance from all the other members of the cluster. As to the stop criterion, it
was set as the moment in which a new iteration outputs a partition already
seen in previous iterations. Note that it is different than performing the same
check on the set of prototypes, since different prototypes could yield the same
partition, while there cannot be several different sets of prototypes for one given
partition. In particular, it can happen that the last partition is the same as the
last-but-one, in which case a fixed point is reached and hence a single solution
has been found and has to be evaluated. Conversely, when the last partition
equals a previous partition, but not the last-but-one one, a loop is identified,
and one cannot focus on a single minimum to be evaluated.

Experiments on Conceptual Clustering were run on a real-world dataset!
containing 353 descriptions of scientific papers first page layout, belonging to 4
different classes: Elsevier journals, Springer-Verlag Lecture Notes series (SVLN),
Journal of Machine Learning Research (JMLR) and Machine Learning Journal
(MLJ). The complexity of such a dataset is considerable, and concerns several
aspects of the dataset: the journals layout styles are quite similar, so that it is
not easy to grasp the difference when trying to group them in distinct classes;
moreover, the 353 documents are described with a total of 67920 literals, for an
average of more than 192 literals per description (some descriptions are made
up of more than 400 literals); last, the description is heavily based on a part_of

! http://lacam.di.uniba.it:8000/systems/inthelex/index.htm#datasets

21

relation that increases indeterminacy. A short example of paper description (with
predicate names slightly changed for the sake of brevity) is:

observation(d) :- num_pages(d,1), page-1(d,pl), page-w(p1,612.0), page-h(p1,792.0), last_page(pl), frame(pl,f4),
t-text(f4), w_medium_large(f4), h_very_very_small(f4), center(f4), middle(f4), frame(p1,f2), t_-text(f2), w-large(f2),
h_small(f2), center(f2), upper(f2), frame(p1,f1), t_text(fl), w_large(f1), h_large(fl), center(f1), lower(f1), frame(p1,f6),
t_text(£6), w_large(f6), h_very_small(f6), center(£6), middle(£6), frame(p1,f12), t_text(f12), w-medium(f12), h_very_very_small (f12),
left (£12), middle(f12), frame(p1,£10), t_text(f10), w_large(f10), h_small(f10), center(f10), upper(f10), frame(p1,£3),
t_text(£3), w_large(£3), h_very_small(£3), center(£3), upper(£3), frame(p1,£9), t_text(f9), w_large(f9), h_medium(f9),
center(f9), middle(f9), on_top(f4,f12), to-right(f4,f12), to-right(f6,f4), on_top(f4,f6), on_top(f10,f4), to_right(f10,f4),
on_top(f2,f4), to_right(f2,f4), to_right(f1,f4), on_top(f4,f1), on_top(f3,f4), to_right(f3,f4), to_right(f9,f4), on_top(f4,f9),
on_top(f2,f12), to_right(f2,f12), on_top(f2,f6), valign_center(f2,f6), on_top(f10,f2), valign_center(f2,f10), on_top(f2,f1),
valign_center(£2,f1), on_top(f3,£2), valign_center(f2,£3), on_top(£2,f9), valign_center(£2,£9), on_top(f12,f1), to_right (f1,f12),
on_top(£6,£1), valign_center(f1,£6), on_top(f10,f1), valign_center(£f1,f10), on_top(£3,f1), valign_center(f1,£3), on_top(f9,f1),
valign_center(£1,£9), on_top(£6,£12), to_right (£6,£12), on_top(£10,£6), valign_center(f6,£10), on_top(£3,£6), valign_center (£6,£3),
on_top(£9,£6), valign_center(£6,£9), on_top(f10,f12), to_right(£10,f12), on_top(f3,f12), to_right(f3,f12), on_top(f9,f12),

to-_right(f9,f12), on_top(f3,f10), valign_center(f10,f3), on_top(f10,f9), valign_center(f10,f9), on_top(f3,f9), valign_center(f3,f9).

Since the class of each document in the dataset is known, we performed a
supervised clustering: after hiding the correct class to the clustering procedure,
we provided it with the ‘anonymous’ dataset, asking for a partition of 4 clusters.
Then, we compared each outcoming cluster with each class, and assigned it to
the best-matching class according to precision and recall. In practice, we found
that for each cluster the precision-recall values were neatly high for one class,
and considerably low for all the others; moreover, each cluster had a different
best-matching class, so that the association and consequent evaluation became
straightforward.

The clustering procedure was run first on 40 documents randomly selected
from the dataset, then on 177 documents and lastly on the whole dataset, in
order to evaluate its performance behaviour when takling increasingly large data.
Results are reported in Table 1: for each dataset size it reports the number of
instances in each cluster and in the corresponding class, the number of matching
instances between the two and the consequent precision (Prec) and recall (Rec)
values, along with the overall number of correctly split documents in the dataset.
Compound statistics, shown below, report the average precision and recall for
each dataset size, along with the overall accuracy, plus some information about
runtime and number of description comparisons to be carried out.

The overall results show that the proposed method is highly effective since it
is able to autonomously recognize the original classes with precision, recall and
purity (Pur) well above 80% and, for larger datasets, always above 90%. This
is very encouraging, especially in the perspective of the representation-related
difficulties (the lower performance on the reduced dataset can probably be ex-
plained with the lack of sufficient information for properly discriminating the
clusters, and suggests further investigation). Runtime refers almost completely
to the computation of the similarity between all couples of observations: comput-
ing each similarity takes on average about 2sec, which can be a reasonable time

22

Table 1. Experimental results

Instances|Cluster Class |Intersection|Prec (%)|Rec (%)|Total Overlapping
8 Elsevier (4) 4 50 100
10 6 | SVLN (6) 5 83,33 | 83,33 .
8 JMLR (8) 8 100 100
18 | MLJ (22) 18 100 | 81,82
30 |Elsevier (22) 22 73,33 100
36 | SVLN (38) 35 97,22 | 92,11
71 48 | JMLR 45)| 45 93,75 | 100 164
63 | MLJ (72) 62 98,41 | 86,11
65 |Elsevier (52) 52 80 100
65 SVLN (75) 64 98,46 85,33
353 105 | JMLR (95) 95 90,48 100 326
118 | MLJ (131) 115 97,46 87,79
Instances| Runtime |Comparisons|Avg Runtime (sec)|Prec (%)|Rec (%)|Pur (%)
40 25’247 780 1,95 83,33 91,33 87,5
177 9h 34’ 45” 15576 2,21 90,68 94,56 | 92,66
353 |39h 12’ 07” 62128 2,27 91,60 93,28 | 92,35

considering the descriptions complexity and the fact that the prototype has no
optimization in this preliminary version. Also the semantic perspective is quite
satisfactory: an insight of the clustering outcomes shows that errors are made on
very ambiguous documents (the four classes have a very similary layout style),
while the induced cluster descriptions highlight interesting and characterizing
layout clues. Preliminary comparisons on the 177 dataset with other classical
measures report an improvement with respect to both Jaccard’s, Tverski’s and
Dice’s measures up to +5,48% for precision, up to + 8,05% for recall and up to
+ 2,83% for purity.

7 Conclusions

Knowledge extraction concerns the ability to identify valid, potentially useful
and understandable patterns from large data collections. Such a task becomes
more difficult if the domain of application requires a First-Order Logic repre-
sentation language, due to the problem of indeterminacy in mapping portions
of descriptions onto each other. Nevertheless, the ability to assess similarity be-
tween first-order descriptions has many applications, ranging from description
selection to flexible matching, from instance-based learning to clustering.

This paper deals with Conceptual Clustering, and proposes a framework for
Horn Clauses similarity assessment. Experimental results on real-world datasets
prove that, endowing classical clustering algorithms with this framework, con-
siderable effectiveness can be reached. Future work will concern fine-tuning of
the similarity computation methodology, and a more extensive experimentation.

23

References

1]

G. Bisson. Conceptual clustering in a first order logic representation. In ECAT
’92: Proceedings of the 10th European conference on Artificial intelligence, pages
458-462. John Wiley & Sons, Inc., 1992.

H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees.
In J. Shavlik, editor, Proceedings of the 15th International Conference on Machine
Learning, pages 55—63. Morgan Kaufmann, 1998.

W. Emde and D. Wettschereck. Relational instance based learning. In L. Saitta,
editor, Proc. of ICML-96, pages 122-130, 1996.

F. Esposito, D. Malerba, and G. Semeraro. Classification in noisy environments
using a distance measure between structural symbolic descriptions. IEEE Trans-
actions on PAMI, 14(3):390-402, 1992.

Floriana Esposito, Nicola Fanizzi, Stefano Ferilli, and Giovanni Semeraro. A
generalization model based on oi-implication for ideal theory refinement. Fundam.
Inform., 47(1-2):15-33, 2001.

S. Ferilli, T.M.A. Basile, N. Di Mauro, M. Biba, and F. Esposito. Similarity-
guided clause generalization. In Proc. of AI*IA-2007, LNAI, page 12. Springer,
2007 (To appear).

D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2(2):139-172, 1987.

J. H. Gennari, P. Langley, and D. Fisher. Models of incremental concept forma-
tion. Artificial Intelligence, 40(1-3):11-61, 1989.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 31(3):264-323, 1999.

Dekang Lin. An information-theoretic definition of similarity. In Proc. 15th In-
ternational Conf. on Machine Learning, pages 296—-304. Morgan Kaufmann, San
Francisco, CA, 1998.

R. S. Michalski and R. E. Stepp. Learning from observation: Conceptual cluster-
ing. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, pages 331-363. Springer: Berlin,
1984.

S. Nienhuys-Cheng. Distances and limits on herbrand interpretations. In D. Page,
editor, Proc. of ILP-98, volume 1446 of LNAI, pages 250-260. Springer, 1998.
G. D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153—
163, 1970.

J. Ramon. Clustering and instance based learning in first order logic. PhD thesis,
Dept. of Computer Science, K.U.Leuven, Belgium, 2002.

J. Ramon and L. Dehaspe. Upgrading bayesian clustering to first order logic.
In Proceedings of the 9th Belgian-Dutch Conference on Machine Learning, pages
77-84. Department of Computer Science, K.U.Leuven, 1999.

C. Rouveirol. Extensions of inversion of resolution applied to theory completion.
In Inductive Logic Programming, pages 64—90. Academic Press, 1992.

M. Sebag. Distance induction in first order logic. In N. Lavra¢ and S. Dzeroski,
editors, Proc. of ILP-97, volume 1297 of LNAI, pages 264-272. Springer, 1997.
K. Thompson and P. Langley. Incremental concept formation with composite
objects. In Proceedings of the sixth international workshop on Machine learning,
pages 371-374. Morgan Kaufmann Publishers Inc., 1989.

24

