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Abstract. Few works are available in the literature to define similarity
criteria between First-Order Logic formulæ, where the presence of rela-
tions causes various portions of one description to be possibly mapped
in different ways onto another description, which poses serious compu-
tational problems. Hence, the need for a set of general criteria that are
able to support the comparison between formulæ. This could have many
applications; this paper tackles the case of two descriptions (e.g., a defi-
nition and an observation) to be generalized, where the similarity criteria
could help in focussing on the subparts of the descriptions that are more
similar and hence more likely to correspond to each other, based only
on their syntactic structure. Experiments on real-world datasets prove
the effectiveness of the proposal, and the efficiency of the corresponding
implementation in a generalization procedure.

1 Introduction

First-order logic (FOL for short) is a powerful formalism, that is able to ex-
press relations between objects and hence can overcome the limitations shown
by propositional or attribute-value representations. However, the presence of
relations causes various portions of one description to be possibly mapped in
different ways onto another description, which poses problems of computational
effort when two descriptions have to be compared to each other. Hence, the
availability of techniques for the comparison between FOL (sub-)descriptions
could have many applications, particularly in the Artificial Intelligence commu-
nity: helping a subsumption procedure to converge quickly, assessing a degree
of similarity between two formulæ, implementing a flexible matching procedure,
supporting instance-based classification techniques or conceptual clustering.

As to supervised learning, many systems generalize definitions against obser-
vations, and a similarity function could help the procedure in focussing on the
components that are more similar and hence more likely to correspond to each
other. Clearly, this concerns the semantic aspects of the domain, and hence there
is no precise (i.e., algorithmic) way for recognizing the correct (sub-)formulæ.
Thus, the problem must be attacked heuristically, by developing some method
that can hypothesize which part of a description refers to which part of the
other, based only on their syntactic structure. To these aims, partial similarities
among description components must be searched for.



Specifically, many first-order Machine Learning systems infer theories in the
form of Logic Programs, a restriction of FOL to sets of Horn clauses, i.e. logical
formulæ of the form l1 ∧ · · · ∧ ln ⇒ l0 where the li’s are atoms, usually
represented in Prolog style as l0 :- l1, . . . , ln to be interpreted as “l0 (called
head of the clause) is true, provided that l1 and ... and ln (called body of the
clause) are all true”. Without loss of generality [9], we will deal with the case of
linked Datalog clauses.

In the following sections, some criteria and a formula on which basing sim-
ilarity considerations between first-order logic clauses will be presented, that
are intended to represent a good tradeoff between significance, effectiveness and
expressiveness on one side, and computational efficiency on the other. Then, Sec-
tion 5 will show how the proposed formula and criteria, are able to effectively
guide a clause generalization procedure. Lastly, Section 4 will deal with related
work, while 6 will conclude the paper and outline future work directions.

2 Similarity Formula

Intuitively, the evaluation of similarity between two items i′ and i′′ might be
based both on the presence of common features, which should concur in a positive
way to the similarity evaluation, and on the features of each item that are not
owned by the other (defined as the residual of the former with respect to the
latter), which should concur negatively to the whole similarity value assigned to
them [6]. Thus, plausible similarity parameters are:

n , the number of features owned by i′ but not by i′′ (residual of i′ wrt i′′);
l , the number of features owned both by i′ and by i′′;
m , the number of features owned by i′′ but not by i′ (residual of i′′ wrt i′).

We developed a novel similarity function that expresses the degree of similarity
between i′ and i′′ based on the above parameters:

sf (i′, i′′) = sf(n, l, m) = 0.5
l + 1

l + n + 2
+ 0.5

l + 1
l + m + 2

(1)

It takes values in ]0, 1[, which resembles the theory of probability and hence
can help human interpretation of resulting value. A complete overlapping of the
model onto the observation tends to the limit of 1 as long as the number of
common features grows. The full-similarity value 1 is never reached, which is
consistent with the intuition that the only case in which this should happen
is the exact identification of items, i.e. i′ = i′′ (in the following, we assume
i′ 6= i′′). Conversely, in case of no overlapping the function will tend to 0 as
long as the number of non-shared features grows. This is consistent with the
intuition that there is no limit to the number of different features owned by
the two descriptions, which contribute to make them ever different. Moreover,
in case of no features at all in two descriptions (n = l = m = 0, e.g., two
objects with no characteristics associated) the function evaluates to 1/2, which
can be considered intuitively correct for a case of maximum uncertainty. For



instance, one such case is when a model includes an object for which there are
no properties to be fulfilled: when comparing it to an observed object without
properties as well, one cannot know if the overlapping is actually total because
in fact both descriptions have no property at all to be fulfilled, or it just happens
that previous generalizations have dropped from the model all the features that
it previously owned. Note that each of the two terms refers specifically to one
of the two clauses under comparison, and hence a weight could be introduced to
give different importance to either of the two.

This formula was developed to overcome some limitations of other formulæ
in the literature (e.g., Tverski’s, Dice’s and Jaccard’s); however, the main contri-
bution of this paper is in the exploitation of the formula in various combinations
that can assign a similarity degree to the different clause constituents.

3 Similarity Criteria

In FOL formulæ, terms represent specific objects; unary predicates generally
represent term properties and n-ary predicates express relationships. Hence, two
levels of similarity can be defined for pairs of first-order descriptions: the object
level, concerning similarities between terms in the descriptions, and the structure
one, referring to how the nets of relationships in the descriptions overlap.

Example 1. Let us consider, as a running example throughout the paper, the
following two clauses (in this case, a rule C and a classified observation E):

C : h(X) :- p(X, Y ), p(X,Z), p(W,X), r(Y,U), o(Y,Z), q(W,W ), s(U, V ),
π(X), φ(X), ρ(X), π(Y ), σ(Y ), τ(Y ), φ(Z), σ(W ), τ(W ), π(U), φ(U).

E : h(a) :- p(a, b), p(a, c), p(d, a), r(b, f), o(b, c), q(d, e), t(f, g),
π(a), φ(a), σ(a), τ(a), σ(b), τ(b), φ(b), τ(d), ρ(d), π(f), φ(f), σ(f).

3.1 Object Similarity

Consider two clauses C ′ and C ′′. Call A′ = {a′1, . . . , a′n} the set of terms in
C ′, and A′′ = {a′′1 , . . . , a′′m} the set of terms in C ′′. When comparing a pair
(a′, a′′) ∈ A′ × A′′, i.e. an object taken from C ′ and one taken from C ′′, re-
spectively, two kinds of object features can be distinguished: the properties they
own as expressed by unary predicates (characteristic features), and the ways
in which they relate to other objects according to n-ary predicates (relational
features). More precisely, relational features are defined by the position the ob-
ject holds among the n-ary predicate arguments, since different positions ac-
tually refer to different roles played by the objects. In the following, we will
refer to a role as a couple R = (predicate, position) (written compactly as R =
predicate/arity.position). For instance, characteristic features could be male(X)
or tall(X), while relational features could be expressed by predicates such as
parent(X,Y), where specifically the first argument position identifies the ‘par-
ent’ role (parent/2.1), and the second one represents the ‘child’ role (parent/2.2).

Two corresponding similarity values can be associated to a′ and a′′: a char-
acteristic similarity, where (1) is applied to values related to the characteristic



features, and a relational similarity, based on how many times the two objects
play the same or different roles in the n-ary predicates.

The characteristic similarity between a′ and a′′, sfc(a′, a′′), can be computed,
by considering the set P ′ of properties related to a′ and the set P ′′ of properties
related to a′′, as sf(nc, lc,mc) for the following parameters:

nc = |P ′ \ P ′′| is the number of properties owned by the object represented by
term a′ in C ′ but not by the object represented by term a′′ in C ′′ (charac-
teristic residual of a′ wrt a′′);

lc = |P ′ ∩ P ′′| is the number of common properties between the object repre-
sented by term a′ in C ′ and the object represented by term a′′ in C ′′;

mc = |P ′′ \ P ′| is the number of properties owned by the object represented by
term a′′ in C ′′ but not by the object represented by term a′ in C ′ (charac-
teristic residual of a′′ wrt a′).

A similar technique can be applied to compute the relational similarity be-
tween a′ and a′′. In this case, due to the possibility that one object plays multiple
times the same role in different relations (e.g., a parent of many children), we
have to consider the multisets R′ and R′′ of roles played by a′ and a′′, respec-
tively. Hence, the relational similarity between a′ and a′′, sfr(a′, a′′), can be
computed as sf(nr, lr,mr) for the following parameters:

nr = |R′ \R′′| expresses how many times a′ plays in C ′ role(s) that a′′ does not
play in C ′′ (relational residual of a′ wrt a′′);

lr = |R′ ∩R′′| is the number of times that both a′ in C ′ and a′′ in C ′′ play the
same role(s);

mr = |R′′ \R′| expresses how many times a′′ plays in C ′′ role(s) that a′ does
not play in C ′ (relational residual of a′′ wrt a′).

Overall, we can define the object similarity between two terms as sfo(a′, a′′) =
sfc(a′, a′′) + sfr(a′, a′′).

Example 2. The properties and roles for some terms in C and E, and the com-
parison for some of the possible pairs, are reported in Table 1.

3.2 Structural Similarity

When checking for the structural similarity of two formulæ, many objects can
be involved, and hence their mutual relationships represent a constraint on how
each of them in the former formula can be mapped onto another in the latter.
Differently from the case of objects, what defines the structure of a formula is
the set of n-ary predicates, and specifically the way in which they are applied
to the various objects to relate them (a predicate, applied to a number of terms
equal to its arity, is called an atom). This is the most difficult part, since rela-
tions are specific to the first-order setting and are the cause of indeterminacy
in mapping (parts of) a formula into (parts of) another one. In the following,
we will call compatible two FOL (sub-)formulæ that can be mapped onto each



Table 1. Object Similarity

C E

t′ P ′ R′ t′′ P ′′ R′′

X {π, φ, ρ} {p/2.1, p/2.1, p/2.2} a {π, φ, σ, τ} {p/2.1, p/2.1, p/2.2}
Y {π, σ, τ} {p/2.2, r/2.1, o/2.1} b {σ, τ} {p/2.2, r/2.1, o/2.1}
Z {φ} {p/2.2, o/2.2} c {φ} {p/2.2, o/2.2}
W {σ, τ} {p/2.1, p/2.1, p/2.2} d {τ, ρ} {p/2.1, p/2.1}
U {π, φ} {r/2.2, s/2.1} f {π, φ, σ} {r/2.2, t/2.1}

t′/t′′ (P ′ \ P ′′), (P ′ ∩ P ′′), (P ′′ \ P ′) (R′ \R′′), (R′ ∩R′′), (R′′ \R′) sfo(t
′, t′′)

X/a {ρ}, {π, φ}, {σ, τ} (1, 2, 2) ∅, {p/2.1, p/2.1, p/2.2}, ∅ (0, 3, 0) 1.35
Y/b {π}, {σ, τ}, ∅ (1, 2, 0) ∅, {p/2.2, r/2.1, o/2.1}, ∅ (0, 4, 0) 1.46
Y/c {π, σ, τ}, ∅, {φ} (3, 0, 1) {r/2.1, o/2.1}, {p/2.2}, {o/2.2} (2, 1, 1) 0.72
Z/b {φ}, ∅, {σ, τ} (1, 0, 2) {o/2.2}, {p/2.2}, {r/2.1, o/2.1} (1, 1, 2) 0.74
Z/c ∅, {φ}, ∅ (0, 1, 0) ∅, {p/2.2, o/2.2}, ∅ (0, 2, 0) 1.42
W/d {σ}, {τ}, {ρ} (1, 1, 1) {p/2.2}, {p/2.1, p/2.1}, ∅ (1, 2, 0) 1.18
U/f ∅, {π, φ}, {σ} (0, 2, 1) {s/2.1}, {r/2.2}, {t/2.1} (1, 1, 1) 1.18

other without yielding inconsistent term associations (i.e., a term in one formula
cannot correspond to different terms in the other formula).

Given an n-ary literal, we define its star as the multiset of n-ary predicates
corresponding to the literals linked to it by some common term (a predicate
can appear in multiple instantiations among these literals). Intuitively, it de-
picts ‘in breadth’ how it relates to the rest of the formula. The star similarity
sfs(l′, l′′) between two compatible n-ary literals l′ and l′′ having stars S′ and S′′,
respectively, can be computed as sf(ns, ls,ms) for the following parameters:

ns = |S′ \ S′′| expresses how many more relations l′ has in C ′ than l′′ has in C ′′

(star residual of l′ wrt l′′);
ls = |S′ ∩ S′′| is the number of relations that both l′ in C ′ and l′′ in C ′′ have in

common;
ms = |S′′ \ S′| expresses how many more relations l′′ has in C ′′ than l′ has in

C ′ (star residual of l′′ wrt l′).

Overall, a more adequate evaluation of similarity between l′ and l′′ can be ob-
tained by adding to the above result the characteristic and relational similarity
values for all pair of their arguments in corresponding positions:

sfs(l′, l′′) = sf(ns, ls, ms) + Σt′/t′′∈θsfo(t′, t′′)

where θ is the set of term associations that map l′ onto l′′.
Then, any first-order logic formula can be represented as a graph in which

atoms are the nodes, and edges connect two nodes iff they are related in some
way. It follows that a comparison between two formulæ to assess their structural
similarity corresponds to the computation of (sub-)graph homomorphisms, a
problem known to be NP -hard in general, due to the possibility of mapping a
(sub-)graph onto another in many different ways. As a consequence, we are in-
terested in heuristics that can give significant hints on the structure overlapping



Algorithm 1 Construction of the graph associated to C
Require: C = l0 : −l1, . . . , ln: Clause

i← 0; Level0 ← {l0}; E ← ∅; Atoms← {l1, . . . , ln}
while Atoms 6= ∅ do

i← i + 1
Leveli ← {l ∈ Atoms | ∃l′ ∈ Leveli−1s.t.terms(l) ∩ terms(l′) 6= ∅}
E ← E ∪ {(l′, l′′) | l′ ∈ Leveli−1, l

′′ ∈ Leveli, terms(l′) ∩ terms(l′′) 6= ∅}
Atoms← Atoms \ Leveli

end while
return G = (

S
i Leveli, E): graph associated to C

between two formulæ with little computational effort. Indeed, leveraging on the
fact that clauses are made up by just a single atom in the head and a conjunction
of atoms in the body, we can exploit a graph representation that is easier than
that for general formulæ, as described in the following. In particular, we will
deal with linked clauses only (i.e. clauses whose associated graph is connected),
and will build the graph based on a simple (as to the details it expresses about
the fomula), yet powerful (as regards the information it conveys) feature, that is
term sharing between couples of atoms. Given a clause C, we define its associated
graph as GC = (V,E) with

– V = {l0} ∪ {li|i ∈ {1, . . . , n}, li built on k-ary predicate, k > 1} and
– E ⊆ {(a1, a2) ∈ V × V | terms(a1) ∩ terms(a2) 6= ∅}

where terms(a) denotes the set of terms that appear as arguments of atom a. The
strategy for choosing the edges to be represented, summarized in Algorithm 1,
leverages on the presence of a single atom in the head to have both a starting
point and precise directions for traversing the graph in order to choose a unique
and well-defined perspective on the clause structure among the many possible.
More precisely, we build a Directed Acyclic Graph (DAG), stratified (i.e., with
the set of nodes partitioned) in such a way that the head is the only node at
level 0 (first element of the partition) and each successive level (element of the
partition) is made up by new nodes (not yet reached by edges) that have at least
one term in common with nodes in the previous level. In particular, each node
in the new level is linked by an incoming edge to each node in the previous level
having among its arguments at least one term in common with it.

Example 3. Let us build the graph GC . The head represents the 0-level of the
stratification. Then directed edges may be introduced from h(X) to p(X, Y ),
p(X,Z) and p(W,X), that are the only atoms having X as an argument, which
yields level 1 of the term stratification. Now the next level can be built, adding
directed edges from atoms in level 1 to the atoms not yet considered that share
a variable with them: r(Y, U) – end of an edge starting from p(X, Y ) –, o(Y, Z)
– end of edges starting from p(X, Y ) and p(X,Z) – and q(W,W ) – end of an
edge starting from p(W,X). The third and last level of the graph includes the
only remaining atom, s(U, V ) – having an incoming edge from r(Y, U).



Table 2. Star Similarity

C E

l′ S′ l′′ S′′

p(X, Y ) {p/2, p/2, r/2, o/2} p(a, b) {p/2, p/2, r/2, o/2}
p(X, Z) {p/2, p/2, o/2} p(a, c) {p/2, p/2, o/2}
r(Y, U) {p/2, o/2, s/2} r(b, f) {p/2, o/2, t/2}

l′ l′′ (S′ \ S′′), (S′ ∩ S′′), (S′′ \ S′) sfs(l
′, l′′)

p(X, Y ) p(a, b) ∅, {p/2, p/2, r/2, o/2}, ∅ (0, 4, 0) 3.52
p(X, Y ) p(a, c) {r/2}, {p/2, p/2, o/2}, ∅ (1, 3, 0) 2.80
p(X, Z) p(a, c) ∅, {p/2, p/2, o/2}, ∅ (0, 3, 0) 3.57
p(X, Z) p(a, b) ∅, {p/2, p/2, o/2}, {r/2} (0, 3, 1) 2.82
r(Y, U) r(b, f) {s/2}, {p/2, o/2}, {t/2} (1, 2, 1) 3.24

Now, all possible paths starting from the head and reaching leaf nodes (those
with no outcoming edges) can be interpreted as the basic components of the
overall structure of the clause. Being such paths univoquely determined reduces
the amount of indeterminacy in the comparison. Intuitively, a path depicts ‘in
depth’ a portion of the relations described in the clause. Given two clauses C ′

and C ′′, we define the intersection between two paths p′ =< l′1, . . . , l
′
n′ > in

GC′ and p′′ =< l′′1 , . . . , l′′n′′ > in GC′′ as the pair of longest compatible initial
subsequences of p′ and p′′:

p′ ∩ p′′ = (p1, p2) = (< l′1, . . . , l
′
k >,< l′′1 , . . . , l′′k >) s.t.

∀i = 1, . . . , k : l′1, . . . , l
′
i compatible with l′′1 , . . . , l′′i ∧

(k = n′ ∨ k = n′′ ∨ l′1, . . . , l
′
k+1 incompatible with l′′1 , . . . , l′′k+1)

and the two residuals as the incompatible trailing parts:
p′ \ p′′ =< l′k+1, . . . , l

′
n′ >, p′′ \ p′ =< l′′k+1, . . . , l

′′
n′′ >)

Hence, the path similarity between p′ and p′′, sfs(p′, p′′), can be computed
by applying (1) to the following parameters:

np = |p′ \ p′′| = n′ − k is the length of the trail incompatible sequence of p′ wrt
p′′ (path residual of p′ wrt p′′);

lp = |p1| = |p2| = k is the length of the maximum compatible initial sequence of
p′ and p′′;

mp = |p′′ \ p′| = n′′ − k is the length of the trail incompatible sequence of p′′

wrt p′ (path residual of p′′ wrt p′).

plus the star similarity of all couples of literals in the initial sequences:

sfp(p′, p′′) = sf(np, lp,mp) + Σi=1,...,ksfs(l′i, l
′′
i )

Example 4. Since the head is unique (and hence can be uniquely matched), in
the following we will deal only with the body literals for structural criteria. Table
2 reports the star comparisons for a sample of literals in C and E, while Table
3 shows some path comparisons.



Table 3. Path Similarity

Path No. C E

1. < p(X, Y ), r(Y, U), s(U, V ) > < p(a, b), r(b, f), t(f, g) >
2. < p(X, Y ), o(Y, Z) > < p(a, b), o(b, c) >
3. < p(X, Z), o(Y, Z) > < p(a, c), o(b, c) >
4. < p(W, X), q(W, W ) > < p(d, a), q(d, e) >

p′ p′ ∩ p′′ p′ \ p′′ θp′∩p′′ (n, l, m)p

p′′ p′′ \ p′ sfp(p′, p′′)

C.1 < p(X, Y ), r(Y, U) > < s(U, V ) > {X/a, Y/b, U/f} (1, 2, 1)
E.1 < p(a, b), r(b, f) > < t(f, g) > 7.36

C.1 < p(X, Y ) > < r(Y, U), s(U, V ) > {X/a, Y/b} (2, 1, 1)
E.2 < p(a, b) > < o(b, c) > 3.97

C.2 < p(X, Y ) > < o(Y, Z) > {X/a, Y/b} (1, 1, 2)
E.1 < p(a, b) > < r(b, f), t(f, g) > 3.97

C.2 < p(X, Y ), o(Y, Z) > <> {X/a, Y/b, Z/c} (0, 2, 0)
E.2 < p(a, b), o(b, c) > <> 7.95

Note that no single criterion is by itself neatly discriminant, but their cooper-
ation succeeds in distributing the similarity values and in making the difference
ever clearer as long as they are composed one ontop the previous ones.

Now, a generalization can be computed considering the path intersections
by decreasing similarity, adding to the partial generalization generated thus far
the common literals of each pair whenever they are compatible (see Algorithm
2). Further generalizations can then be obtained through backtracking. This
optionally allows to cut the generalization when some length threshold is reached,
ensuring that only the less significant similarities are dropped.

Example 5. The path intersection with highest similarity value is C.3/E.3, and
hence the first partial generalization becomes {p(X, Z), o(Y,Z)}, with associa-
tions {X/a, Y/b, Z/c}. Then C.2/E.2 is considered, whose associations are com-
patible with the current ones, so it contributes with {p(X,Y )} to the generaliza-
tion (there are no new associations). Then comes C.1/E.1, that being compatible
extends the generalization by adding {r(Y, U)} and the association with {U/f}.
It is the turn of C.1/E.2 and then of C.2/E.1, that are compatible but redun-
dand, and hence do not add anything to the current generalization (nor to the
associations). Then C.4/E.4 is considered, that is compatible and extends with
{p(W,X)} and {W/d} the current generalization and associations, respectively.
Lastly C.3/E.2, C.2/E.3, C.3/E.1 and C.1/E.3 are considered, but discarded
because of their associations being incompatible.

4 Related Works

Despite of many distance measures developed for attribute-value representations
[5], few works faced the definition of similarity or distance measures for first-
order descriptions. [4] proposes a distance measure based on probability theory



Algorithm 2 Similarity-based generalization
Require: C: Rule; E: Example

PC ← paths(C); PE ← paths(E);
P ← {(pC , pE) ∈ PC × PE |pC ∩ pE 6= (<>, <>)};
G← ∅; θ ← ∅
while P 6= ∅ do

(pC , pE)← argmax(pC ,pE)∈P (sf(pC , pE))
P ← P \ {(pC , pE)}
(qC , qE)← pC ∩ pE

θq ← substitution s.t. qC = qE

if θq compatible with θ then
G← G ∪ qC ; θ ← θ ∪ θq

end if
end while
return G: generalization between C and E

applied to the formula components. Compared to that, our function does not
require the assumptions and simplifying hypotheses (statistical independence,
mutual exclusion) to ease the probability handling, and no a-priori knowledge
of the representation language is required (such as the type domains). It does
not require the user to set weights on the predicates’ importance, and is not
based on the presence of ‘mandatory’ relations, like for the G1 subclause in [4].

Many supervised learning systems prove the importance of a distance mea-
sure. For instance, KGB [1] uses a similarity function, parameterized by the
user, to guide generalization; our ideas of characteristic and relational similarity
are very close to those, but the similarity computation is more straightforward.
While KGB cannot handle negative information in the clauses, our approach
can be easily extended to do that. The k-Nearest Neighbor classifier RIBL [2]
is based on a modified version of the function proposed in [1]. The basic idea is
that object similarity depends on the similarity of their attributes’ values and,
recursively, on the similarity of the objects related to them. Such a propagation
poses the problem of indeterminacy in associations, that our technique avoids
thanks to the different structural approach.

[10] presents an approach for the induction of a distance on FOL examples,
that depends on the pattern discriminating the target concepts. k clauses are
choosen and the truth values of whether each clause covers the example or not
are used as k features for a distance on the space {0, 1}k between the examples.
[7] organizes terms in an importance-related hierarchy, and proposes a distance
between terms based on interpretations and a level mapping function that maps
every simple expression on a natural number. [8] presents a distance function
between atoms based on the difference with their lgg, and uses it to compute
distances between clauses. It consists of a pair: the first component extends the
distance in [7] and is based on the differences between the functors on both
terms, while the second component is based on the differences in occurrences of
variables and allows to differentiate cases where the first component cannot.



Table 4. Experimental results

Ratio Time (sec.) Cl Gen Exc+ Spec+ Spec− Exc− Acc

Classification
SF 90.52 579 8 47(+0) 0 2 0 0 0.94
I 70.22 137 7 33(+100) 0 1 1 1 0.97

S80 73.63 206 7 33(+13) 0 0 1 1 0.97

Labelling
SF 91.09 22220 36 180(+0) 0 8 3 3 0.89
I 68.85 33060 39 137(+5808) 0 15 11 12 0.93

S80 71.75 15941 54 172(+220) 0 14 8 2 0.93

5 Experiments

The similarity-driven generalization procedure was compared to a previous non-
guided procedure, embedded in the learning system INTHELEX [3]. The system
was set so that, whenever the first generalization returned by the guided proce-
dure was not consistent with all past negative examples, the system could search
for more specific ones on backtracking1. 10-fold cross-validation was exploited
to assess predictive accuracy.

A first comparison on the classical ILP Mutagenesis dataset revealed a slightly
better predictive accuracy (87%) than the non-guided version (86%) exploiting
only 30% runtime (4035 seconds instead of 13720). Noteworthy, the first gener-
alization found was always correct, and thus no backtracking was ever required
to search for other alternatives, whereas the non-guided version computed 5815
additional generalizations to takle cases in which the first generalization found
was inconsistent with past examples. This confirmed that the similarity criteria,
strategy and formula are able to lead the correct identification of corresponding
sub-parts of the compounds descriptions, and convinced us to investigate more
deeply on the system behaviour. Other experiments were run on a dataset2 con-
taining 122 descriptions of scientific papers first page layout, belonging to 4 dif-
ferent classes and corresponding to 488 positive/negative examples for learning
document classification rules plus 1488 examples for learning rules to identify
12 kinds of significant logical roles document components (e.g., title, author,
abstract). Results are reported in Table 4.

The first question concerns whether the proposed similarity function is ac-
tually able to lead towards the identification of the proper sub-parts to be put
in correspondence in the two descriptions under comparison. Since the ‘correct’
association is not known, this can be evaluated only indirectly. A way for doing
this is evaluating the ‘compression’ factor of the guided generalization, i.e., the
portion of literals in the clauses to be generalized that is preserved by the gen-
eralization. Indeed, since each generalization in INTHELEX must be a subset

1 In order to avoid the system to waste too much time on difficult generalizations,
it was set so to try to generalize another clause (if any) whenever 500 redundant
(sub-)generalizations were found on backtracking, or 50 new iconsistent ones were
computed, which happened first.

2 http://lacam.di.uniba.it:8000/systems/inthelex/index.htm#datasets



of either clause to be generalized (because of the Object Identity assumption),
the more literals the generalization preserves from these clause, the less gen-
eral it is. More formally, we evaluate the compression as the ratio between the
length of the generalization and that of the shortest clause to be generalized: the
higher such a value, the more confident one can be that the correct associations
were provided by the similarity criteria and formula. Of course, the more the
difference in length between the two clauses to be generalized, the more inde-
terminacy is present, and hence the more difficult it is to identify the proper
corresponding parts between them. Interestingly, on the document dataset the
similarity-driven generalization (SF) preserved on average more than 90% liter-
als of the shortest clause, with a maximum of 99,48% (193 literals out of 194,
against an example of 247) and just 0,006 variance. As a consequence, one woud
expect that the produced generalizations are least general ones or nearly so. To
check this, instead of computing the actual least general generalization for each
performed generalization and compare it to that returned by the guided proce-
dure, that would have been computationally heavy and would require modifying
the system behaviour, we counted how many backtrackings the system had to
perform in order to reach a more specific one. The outcome was that no more
specific generalization was ever found within the given limit, which suggests that
the first generalization found is likely to be very near to (and indeed it often is
just) the least general one. Note that application of Tverski’s similarity formula
[11] (a state-of-the-art one in the current literature) to the same setting always
returned shortest generalizations than those obtained by using our formula.

However, being such generalizations very specific, they show lower predic-
tive accuracy than the non-guided INTHELEX algorithm (I), probably due to
the need of more examples for converging to more predictive definitions or to
overfitting. For this reason, the similarity-driven generalization was bound to
discard at least 20% literals of the shortest original clause (S80): this led to the
same predictive accuracy as I, and dramatically reduced runtime with respect
to the unbound version (and also to I on the labelling task). The number of
generalizations also decreases, although at the cost of more specialization effort
(also by means of negative literals, that are handled as suggested in the previous
section), that is in any case more effective than in I (particularly as regards
negative exceptions). In the classification task the number of clauses slightly de-
creases, while in the labelling task it increases of 15, but balanced by 10 negative
exceptions less. Noteworthy, the generalizations found are still very tight to the
examples, since in the classification experiment only 13 more specific general-
izations (of which only 1 correct) were found (and tested for correctness) by
backtracking, whereas I found 100, of which 6 correct. In the labelling task, S80
found 220 additional candidate generalizations (of which 6 correct) against 5808
(of which 39 correct) of I. This means that one could even avoid backtracking
with small loss in S80, but not in I.

Another important parameter for comparison is runtime. Table 4 reveals
that, on the labelling task, using the similarity function leads to savings that
range from 1/3 up to 1/2 of the time, in the order of hours, also on this dataset.



The performance on the classification task is in any case comparable (difference
in the order of tens of seconds), and can probably be explained with the fact
that such a task is easier, so there is little space for improvement and the time
needed for computing the formula nullifies the savings.

6 Conclusions

Relations in First-Order Logic lead to indeterminacy in mapping portions of
a description onto another one. In this paper we identify a set of criteria and
a formula for clause comparison, and exploit it to guide a generalization pro-
cedure by indicating the subparts of the descriptions that are more likely to
correspond to each other, based only on their syntactic structure. According to
the experimental outcomes, the similarity-based generalization is able to cap-
ture the correct associations, and can get the same predictive accuracy as the
non-guided version, but yielding ‘cleaner’ theories and dramatically reducing the
amount of time required to converge (interestingly, time savings increase as long
as the problem complexity grows). Future work will concern fine-tuning of the
similarity computation methodology, and its application to other problems, such
as flexible matching, conceptual clustering and instance-based learning.
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