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Abstract. This paper presents the ILP incremental learning sys-
tem INTHELEX, focusing on its abductive capability. It is based on
an abductive proof procedure that aims at attacking the problem of
incomplete information by hypothesizing likely facts that are not ex-
plicitly stated in the observations. The system implements a frame-
work in which inductive and abductive inference been brought to co-
operation, and its performance in experiments on both artificial and
real-world dataset is encouraging.

1 INTRODUCTION

Most traditional Machine Learning approaches focus on inductive
mechanisms in order to achieve the learning goal. In order to broaden
the investigation and the applicability of machine learning schemes,
it is necessary to move on to more expressive representations which
require more complex inference mechanisms and strategies to work
together, taking advantage of the benefits that each approach can
bring. In particular, one of the problems of the traditional approach to
predicate-learning is the partial relevance of the available evidence,
that could be takled by abduction. The problem of integrating an ab-
ductive strategy in an inductive learner is made harder in the incre-
mental setting, where hypothesize information is more difficult since
the knowledge is not completely available at the beginning.

INTHELEX (INcremental THEory Learner from EXamples) [6] is
an incremental learning system for the induction of hierarchical first-
order logic theories from positive and negative examples, that works
under the Object Identity (OI) assumption [15]. It learns simultane-
ously multiple concepts, possibly related to each other, and guaran-
tees validity of the theories on all the processed examples. It uses
feedback on performance to activate the theory revision phase on a
previously generated version of the theory, but learning can also start
from scratch. In the learning process, it exploits a previous version of
the theory (if any), a graph describing the dependence relationships
among concepts, and an historical memory of all the past examples
that led to the current theory. Another peculiarity of the system is the
integration of multistrategy operators that may help solve the theory
revision problem. The purpose ofinductionis to infer regularities and
laws (from a certain number of significant observations) that may be
valid for the whole population. INTHELEX incorporates two induc-
tive refinement operators, one for generalizing hypotheses that reject
positive examples, and the other for specializing hypotheses that ex-
plain negative examples.

Deductionis exploited to fill observations with information that is
not explicitly stated, but is implicit in their description. Indeed, since
the system is able to handle a hierarchy of concepts, some combina-
tions of predicates might identify higher level concepts that are worth
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adding to the descriptions in order to raise their semantic level. For
this reason, the system exploits deduction to recognize such concepts
and explicitly add them to the example description. The role ofab-
duction in INTHELEX is helping to manage situations where not
only the set of all observations is partially known, but each observa-
tion could also be incomplete. Indeed, it can be exploited both during
theory generation and during theory checking to hypothesize facts
that are not explicitly present in the observations. This prevents the
refinement operators from being applied, as long as possible, leaving
the theory unchanged. Lastly,abstractionremoves superfluous de-
tails from the description of both the examples and the theory. The
exploitation of abstraction in the system concerns the shift from the
language in which the theory is described to a higher level one ac-
cording to the framework proposed in [8].

Figure 1 graphically represents the architecture of the system, em-
bodying the cooperation between the different multistrategy opera-
tors. In the typical information flow, every incoming example pre-
liminarily undergoes a pre-processing step of abstraction, that elim-
inates uninteresting details according to the available operators pro-
vided in the abstraction theory. Then, the example is checked for cor-
rect explanation according to the current theory and the background
knowledge, and it is stored in the examples repository. During the
coverage (i.e., checking whether the observation is explained by the
current theory) and saturation (i.e., identifying higher level concepts
and explicitly adding them to the example description) steps, if ab-
duction is enabled, an abductive derivation is used. Otherwise the
normal deductive derivation is started to reach the same goal with-
out hypothesizing unseen information. In case the derivation fails, a
theory refinement is necessary, and thus the example is (abductively
or deductively) saturated and the inductive engine is started in order

Figure 1. Architecture of the learning system



to generalize/specialize the proper definitions, possibly using the ab-
ductive or deductive derivation whenever needed. Specifically, when
a positive example is not covered, a revised theory is obtained in one
of the following ways (listed by decreasing priority) such that com-
pleteness is restored: 1) replacing a clause in the theory with one of
its generalizations; 2) adding a new clause to the theory; 3) adding a
positive exception. When, on the other hand, a negative example is
covered, a revised theory that restores consistency is reached by per-
forming one of the following actions: 1) adding positive literals to
clauses; 2) adding a negative literal to a clause; 3) adding a negative
exception.

2 A FRAMEWORK FOR INTEGRATING
INDUCTION AND ABDUCTION

Abduction, just like induction, has been recognized as a powerful
mechanism for performing hypothetical reasoning in the presence of
incomplete knowledge. Indeed, abduction is able to capturedefault
reasoningas a form of reasoning which deals with incomplete infor-
mation [9]. Moreover, abduction can model alsonegation as failure
rule (NAF) [3], with simple transformations of logic programs into
abductive theories. Thus, abduction gives a uniform way to deal with
negation, incompleteness and integrity constraints [12]. The problem
of Abduction, defined asinference to the best explanationaccording
to a given domain theory, can be formalized as follows[4]:Given
a theoryT , some observationsO and some constraintsI; Find an
explanationH such that:T ∪ H is consistent,T ∪ H satisfiesI,
T ∪ H |= O. Candidate abductive explanationsH should be de-
scribed in terms of domain-specific predicates, referred to asab-
ducibles, that are not (completely) defined inT , but contribute to the
definition of other predicates. The integrity constraintsI should pro-
vide indirect information about such incompleteness [9]. They can
also be exploited to encode preference criteria for selecting the best
explanation that may hold in this problem setting.

An abductive proof procedure can find explanations that make hy-
potheses (abductive assumptions) on the state of the world, possibly
involving new abducible concepts. Indeed, when partial relevance is
assumed, it could be the case that not only the set of all observations
is partially known, but also any single observation may turn out to be
incomplete. The procedure is generally goal-driven by the observa-
tions that it tries to explain. Preliminary, the top-level goal undergoes
a transformation process that converts it into sub-goals. The theory
and goals must be transformed into theirpositive version, by convert-
ing each literal¬p into its positive versionnot p (default literals).
Moreover, to embed NAF in such a mechanism, it is necessary to
add, for each predicatep, an integrity constraint stating that bothp
and its negation cannot hold at the same time. This provides a simple
and unique modality for dealing with non-monotonic reasoning.

The classic algorithm for an abductive proof procedure [10] is
analogous to standard SLD derivations, except that whenever a fact
is not known or derivable to be true, before failing an attempt is made
to check whether it can be abductively assumed to be true according
to the given integrity constraints. Such a check is carried out by a
consistency-check subroutine, ensuring that at least one condition of
each constraint involving the hypothesized fact is (deductively or ab-
ductively) false. Each abductive assumption is considered as known
in subsequent processing.

Abductive and Inductive operators address different forms of in-
completeness in the theories. Specifically, abductionextracts from
the theorya hypothesis which is considered to bear incompleteness
with respect to some (abducible) predicates but is complete with re-

Revise (T : theory; E: example;M = M+ ∪M−: historical
memory);
AbsE ← Abstract(E,AbsT )
if Derive(AbsE, T ,D) succeedsthen
M ←M ∪ {AbsE ∪D}

else
M ←M∪AbsE; SatE ←AbsE ∪ Saturate(AbsE,T∪BK)
if AbsE is a positive examplethen

Generalize(T,BK, SatE,M−)
else

Specialize(T,BK,SatE,M+)
end if

end if

Derive (G: goal; T : theory; D: abduced literals);
if Abduction is ON at the current stage of processingthen
D ← G
if success← Abduct(G,T ∪BK,AbdT ,D) succeedsthen

Add toD the abduced literals
end if

else
D ← ∅; success← Deduct(G, T ∪BK)

end if
return success

Figure 2. Multistrategy Theory Revision in INTHELEX

spect to others. Moreover, the explanations constructed by abduction
are specific to the situation of that observation. Hence abduction can
be seen as a way to reason with incomplete information, rather than
to complete knowledge [4].

Figure 2 summarizes the extension of the general schema of the in-
ductive incremental learning system INTHELEX with an abductive
proof procedure, derived from the classical one but properly mod-
ified to embed the Object Identity assumption.M = M+ ∪ M−
represents the set of all positive and negative processed examples,
E is the example currently examined,T represents the theory gen-
erated so far according toM . For simplicity,BK (the background
knowledge),AbsT (the abstraction theory) andAbdT (the abduction
theory), that must be provided by the user, are assumed to be fixed
parameters (and hence are not present in the procedure headings).
AbsE andSatE represent the exampleE after the abstraction and
saturation phases, respectively;D is the set of literals (facts) returned
by the abductive derivation when successfully applied to a goalG in
theoryT . ProcedureDerive exploits abduction (through procedure
Abduct) or deduction (through procedureDeduct), according to the
specific settings for each step of the revision process, to prove a goal.
It returnstrueor false, according to the success or failure of the proof
procedure.Saturateis the procedure that returns all implicit informa-
tion in the given example.GeneralizeandSpecializeare the inductive
operators used by the system to refine an incorrect theory. The result-
ing refinement is then implemented in the new version of the theory,
and the procedure ends.

The system has been provided with an abductive proof procedure
to help it in managing situations in which not only the set of all obser-
vations is partially known, but each observation could be incomplete
too [6]. Specifically, abduction has been exploited to complete the
observations in such a way that the corresponding examples are ei-
ther covered (if positive) or ruled out (if negative) by the already gen-
erated theory, thus avoiding, whenever possible, the use of the gen-
eralization/specialization operators above mentioned to modify the



theory. The set of abduced literals for each observation is minimal,
which ensures that the inductive operators use abducibles only when
really needed. Since specific facts are not allowed in the learned the-
ory, the abduced information is attached directly to the observation
that generated it, so that the ‘completed’ examples obtained this way
will be available for subsequent refinements of the theory. Such infor-
mation will also be available to subsequent abductions, in order for
them to preserve consistency among the whole set of abduced facts.
To sum up, when a new observation is available, the abductive proof
procedure is started, parameterized on the current theory, the exam-
ple and the current set of past abductive assumptions. If the proce-
dure succeeds, the resulting set of assumptions, that were necessary
to correctly classify the observation, is added to the example descrip-
tion before storing it (of course, being it minimal by definition, if no
assumption is needed for the correct classification, the example de-
scription is not affected). Otherwise the usual refinement procedure
(generalization or specialization) is performed.

3 EXPERIMENTS

INTHELEX’s abduction capability was tested on various domains,
both toy and real-world ones. In the following we show the exper-
iments aimed at assessing the quality of the results obtained by
the exploitation of the abductive version of the system in handling
incomplete data. INTHELEX has been provided with the abductive
proof procedure [6] in order to complete the observations in such a
way that the corresponding examples are correctly classified by the
already generated theory, thus avoiding, whenever possible, the use
of the operators to modify the theory.

Multiplexer. The “multiplexer” problem [14] aims at learning the
definition of a 6-bits multiplexer. The dataset contains descriptions
of all possible configurations of 6 bits, in which the first 2 bits rep-
resent the address of one of the subsequent 4 bits, that must be set
at 1. Thus, if the bit addressed is actually 1 the example is positive,
otherwise it is considered as negative for the target concept. Since a
6-bits multiplexer can assume26 = 64 possible configurations, the
complete training set is made up of64 examples, 32 positive and
32 negative. The representation language of the observations is the
same as in [14]. Starting from scratch with the complete training set
containing all the 64 possible configurations, the correct theory was
learned in 1.38 secs, performing 12 theory revisions.

Successively, an incomplete dataset was obtained by corrupting
12 examples out of 64 so that only 3 bits out of 6 of the original
configuration were specified. Both the examples to be corrupted and
their bits to be neglected were randomly selected for 10 times. As de-
scribed in [14], such an incomplete dataset was exploited for learn-
ing theories in two different ways: first using induction only, and
then using induction supported by abduction. The theories obtained
in the two cases were tested (without using abduction) on the un-
corrupted dataset. Table 1 shows the system performance in the two
cases, averaged on the 10 corrupted datasets, as regards the number
of definitions in the learned theories, the performed theory revisions,
the number of exceptions, runtime and predictive accuracy. The Ab-
duction Theory provided to the system included all the predicates as
abducibles, and integrity constraints meaning that “if the bit in posi-
tion N is set to 0 it can’t be set to 1, andvice versa.
INTHELEX was able to capture the correct definitions but applying
less theory revisions, adding less exceptions and in less time
with respect to induction alone, while not affecting the predictive
accuracy.

Table 1. System performance on the Multiplexer dataset

Def Rev Exceptions Time (sec.) Acc
W/o Abd 4.1 6.05 2.05 4.55 99.38
With Abd 4.1 5.55 0.4 4.36 99.22

Congressional Voting Records.The problem, as reported in [11],
consists in classifying a Congressman as a democrat or a republi-
can according to his votes on 16 issues. A certain amount of noise is
present in the descriptions, in the form ofunknown votes. Defini-
tions for the classdemocratwere learned, exploiting first pure induc-
tion and then induction plus abduction, starting from the empty the-
ory. The corresponding predictive accuracy was tested according to
a 10-fold cross validation methodology, ensuring that each fold con-
tained the same proportion of positive and negative examples. Table 2
shows the system performance on this dataset. It is possible to note
that the use of abduction improves all evaluation parameters, except
Runtime. This can be explained by taking into account the additional
time needed to search for consistent abductive explanations due to
the large number of integrity constraints in the abductive theory.

Table 2. System performance on the Congressional Voting Records dataset

Def Rev Exceptions Time (sec.) Acc
W/o Abd 12.40 26.90 1.7 30.30 93.33
With Abd 10.10 19.20 0.80 41.36 96.8

Family Relationships. The experiment here described aims at
investigating the abductive proof procedure behavior with respect to
different degrees of incompleteness. In this case, we followed the
same approach adopted by [11] on the same dataset [1]. Only exam-
ples aboutfather were taken into account: the training set included
36 positive examples and 200 negative ones that were randomly
generated. The examples description includes also all the known
facts concerning the concepts other thanfather (i.e. son, daugther,
mother, etc.), for a total of 742 literals. Progressive corruption of
such a complete description was obtained by randomly eliminating
facts from it: 100% (no incompleteness, 742 literals), 90% (668
literals), 80%, 70%, 60%, 50% and 40%. For each percentage,
the dataset was corrupted in 5 different ways, thus obtaining 5
corresponding learning problems whose performance was averaged
according to a 5-fold cross validation methodology, ensuring that
each fold contained the same proportion of positive and negative
examples. Comparing the performance with and without abduction

Table 3. System Performance on the Family dataset

Rev/Def Runtime Accuracy
100% noabd 1.6 52.25 99.58

abd 1.2 47.13 100
90% noabd 2.2 146.19 96.28

abd 1.2 69.04 99.17
80% noabd 2.3 190.12 96.27

abd 1.2 70.35 100
70% noabd 1.8 218.03 93.78

abd 1.2 59.70 100
60% noabd 1.7 287.57 92.13

abd 0.5 448.82 100
50% noabd 1.3 256.91 92.15

abd 0.5 43.08 100
40% noabd 1.2 871.51 90.9

abd 0.5 24.32 98.75



on the corrupted datasets, the benefit becomes very evident with
respect to all the parameters taken into account in Table 3. Abduc-
tion is able to preserve the theories from being refined (indeed, the
number of revisions per clause dramatically decreases). Moreover,
lower runtimes (except in one case) prove that the abductive
procedure is also efficient. Finally, note that, in spite of the number
of clauses being less when using abduction in all corrupted cases,
predictive accuracy is always higher than the case without abduction.

Scientific Paper Domain.In the experiment concerning the induc-
tion of classification rules for a dataset of scientific paper docu-
ments belonging to one of 4 classes [5], the corruption consisted
in eliminating 8% of the descriptors for each observation (made up
of 112 facts on average (76 min-170 max)) contained in the tuning
set. INTHELEX was applied first without exploiting its abductive
procedure. Successively, the learning process was repeated, allow-
ing the system to exploit its abductive capability and binary con-
straints made up of unary and binary predicates, i.e. of the form
(ic([a(X), b(X)], ic([c(X,Y ), d(X,Y )]).

Table 4 reports the system performance as to performed theory re-
visions, added definitions, predictive accuracy and runtime (secs.).
Predictive accuracy and number of theory revisions improve when
the abductive procedure is exploited. This means that the system was
able to correctly complete the corrupted observations without apply-
ing the refinement procedure. As regards runtime, it increases be-
cause of the abductive procedure.

Table 4. System performance on the Scientific Papers Domain

Rev Clauses Accuracy (%) Runtime (sec.)
Without abd 7.72 4.09 96.24 5.16

With abd 5.58 3.18 99.32 40.05

Comparison. The proposed approach does not aim at completing
the training data before the learning process starts. Thus, a compari-
son with systems that propose to overcome the problem of handling
missing values by pre-processing the training data before the learn-
ing process starts (FOIL [13], LINUS [13], ASSISTANT [2]) would
be unfair. Nevertheless, we compare our system to ACL1 [11] and
mFOIL [13], the FOIL extension able to deal with incomplete data
on the family and congressional votes datasets (the same exploited
by [11] for the same purpose). Table 5 reveals that predictive accu-
racy on the family dataset for progressive corruption (which percent-
age is reported in the first row of the table) is almost the same as
that obtained by the other systems, while on congressional voting
INTHELEX turned out to be better with respect to the other systems.

Table 5. Comparison of Abduction on the Family dataset

100 90 80 70 60 50 40
INTH. 1 99.17 1 1 1 1 98.75
ACL1 1 1 99.60 1 1 97.20 97.60
mFOIL 1 99.20 98.40 97.50 98.40 98.40 95.10

4 CONCLUSION

This paper presented the ILP incremental learning system
INTHELEX, with specific focus on its abductive capability that al-
lows it to takle the problem of relevance within a language bias,

that is typical of many real-world domains. After presenting and
discussing, an abductive proof procedure that aims at attacking the
problem by hypothesizing likely facts that are not explicitly stated
in the observations, a framework in which inductive and abductive
inference been brought to cooperation, and its implementation in
INTHELEX, that make it able to add unseen information that can
be consistently hypothesized or deduced, have been mentioned.

The abductive proof procedure exploited in this work requires that
an abductive theory for the specific application domain is available.
In the current practice, it is in charge of the human expert to spec-
ify it, but it is not easy to single out and formally express such pa-
rameters. Of course quality, correctness and completeness in the for-
malization of such meta-information can affect the feasibility of the
learning process. To overcome such a bottleneck, we also developed
a procedure that can automatically generate such information start-
ing from the same observations that are input to the learning process,
thus making the learning system completely autonomous [7]. Actu-
ally, the abductive theories provided to INTHELEX for the experi-
ments in Section 3 were automatically learned using our procedure.
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