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Abstract. Traditional Machine Learning approaches are based on sin-
gle inference mechanisms. A step forward concerned the integration of
multiple inference strategies within a first-order logic learning frame-
work, taking advantage of the benefits that each approach can bring.
Specifically, abduction is exploited to complete the incoming informa-
tion in order to handle cases of missing knowledge, and abstraction is
exploited to eliminate superfluous details that can affect the performance
of a learning system. However, these methods require some background
information to exploit the specific inference strategy, that must be pro-
vided by a domain expert.

This work proposes algorithms to automatically discover such an in-
formation in order to make the learning task completely autonomous.
The proposed methods have been tested on the system INTHELEX,
and their effectiveness has been proven by experiments in a real-world
domain.

1 Introduction

In real-life domains, learning systems often have to deal with various kinds of
imperfections in data: presence of random errors in both training examples and
background knowledge (noise); too sparse training examples from which it is
difficult to reliably detect correlations (incompleteness); inappropriateness of the
description language which does not contain/facilitate an exact representation
of the target concept (inezact data). Another kind of imperfection, more difficult
to be dealt with, is represented by missing values in the training examples. As
a solution, various noise-handling mechanisms have been exploited.

In dealing with such situations, most traditional Machine Learning appro-
aches that exploit simple or constrained knowledge representations for the sake
of efficiency, and are based on single (often simple or simplified) inference mech-
anisms, have reached their limits [16]. In order to investigate how to broaden
the applicability of machine learning schemes, it is necessary to make different
inference strategies work together, taking advantage of the benefits that each
approach can bring. Many studies presented in the literature aimed at enforc-
ing the integration of multiple inference strategies within a logic programming
framework for first-order logic learning.
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The general schema of the inductive concept-learning paradigm (BK UT
O) involves four variables, namely: the language £, for which in this work the
single representation trick [1] will be assumed, the background knowledge BK
and the theory T that contains concept definitions explaining the occurrence of
some observations O. Observations O stand for the extensional representation
of concepts, and the aim is building an intensional description T', expressed in
the language £, that explains such concepts, supposed that BK is insufficient
to give such an explanation. Most approaches focus on inductive mechanisms to
fine-tune T in order to achieve the learning goal.

Two problems of the traditional approach to concept-learning can be singled
out: the partial relevance of the available evidence O and the insolvability of
a learning problem when the language £ is not enough powerful to express a
proper predicate definition in 7. Abduction and abstraction can be exploited,
respectively, to overcome such limitations: the former could bridge the gap be-
tween the observations and the definitions in the theory. The latter could shift to
a higher language bias when the current one does not allow to capture the target
predicate definition. From an operational viewpoint, abduction should somehow
complete the observations with unknown facts that are likely to take place in the
given situation and that can help in solving the learning problem at hand; it can
be carried out by an abductive proof procedure, that shares the falsity-preserving
nature with the inductive refinement operators [I4]. As regards abstraction, it
should deal with cases when learning can be more effective if it can take place
at multiple (different) levels of complexity, which can be compared to the lan-
guage bias shift considered in [2]; a useful perspective for the integration of this
inference operator in an inductive learning framework was given in [23].

According to such a perspective, the incremental ILP system INTHELEX
was extended in previous works to exploit abduction and abstraction to sup-
port the learning process [5]. However, it assumes that the information needed
to apply the additional inference strategies is provided by the user. The objec-
tive of this work is investigating solutions for the automatic inference of such
information from the same observations that are input to the inductive process,
assuming that they are sufficiently significant. Abstraction should simplify the
description language by grouping or eliminating correspondences that hold often
or seldom, respectively, among the given observations. Abduction should con-
sider as integrity constraints combinations of properties and relations that do
not hold in the available observations. In the former case, the method focuses on
the discovery of sets of common features in the observations; in the latter, sets
of mutually exclusive features have to be singled out.

2 The General Framework

2.1 Handling Incomplete Information: Abduction

The problem of abduction, defined as inference to the best explanation according
to a given domain theory, can be formalized as follows []: Given a theory

! Here, the theory T is assumed to include also the background knowledge.
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some observations O and some constraints I, Find an explanation H such that:
TUH is consistent and satisfies I, TUH = O. Candidate explanations H should
be described in terms of domain-specific predicates, referred to as abducibles,
that are not (completely) defined in T, but contribute to the definition of other
predicates. They carry all the incompleteness of theory T': if it was possible to
complete these predicates then the theory would be correctly described. The
integrity constraints I should provide indirect information about them [I0].

Since abduction is able to capture default reasoning (a form of reasoning
which deals with incomplete information [10]), it can be exploited to face the
problem of relevance and incompleteness. Indeed, when partial relevance is as-
sumed, it could be the case that not only the set of all observations is partially
known, but also any single observation may turn out to be incomplete. The
usual Abductive Logic Programming framework [14] [6] can be adapted to con-
cept learning theory revision problem as follows:

Definition 1. An abductive logic theory is a triple AT = (T, A,Z) where T is
a (hierarchical) normal logic program; A is the set of abducible predicates; T is
a set of integrity constraints represented as program clauses.

In the original ALP framework, the theories are full normal logic programs in-
terpreted according to the Stable Model semantics [11]. We restrict to hierar-
chical theories in order to exploit the Least Herbrand Models semantics, where
if T = P, ..., T | P, then it also holds that T = P, A --- A P,, which is
fundamental in an incremental setting, where examples are provided over time,
to check correctness of the refined hypotheses with respect to older examples by
testing them separately. This cannot be done when stable models semantics is
adopted (cf. [6] for an example). Additionally, Least Herbrand Models semantics
allows to cope with negation by means of the Negation as Failure rule, without
transforming the theory and goals into their positive version, as required by the
original framework. The integrity constraints Z can be represented in principle
as any first order formulee. Some restrictions are to be applied: in the integrated
framework described in [3], they are represented as range-restricted Horn clauses.

An abductive proof procedure can find explanations that make hypotheses
(abductive assumptions) on the state of the world, possibly involving new ab-
ducible concepts, and is generally goal-driven by the observations that it tries
to explain. The abductive proof procedure proposed in [I2] works just like a
standard SLD derivation [15], only when a literal cannot be proved the proce-
dure does not fail immediately but first checks if it can be (or has already been)
abductively hypothesized. In such a case, a consistency-check subroutine must
ensure that no integrity constraints Z is violated, by inductively or abductively
deriving the falsity of at least one literal in each of them. Thus, the two pro-
cedures may call each other both when a new abductive assumption requires
further consistency checks against the constraints and vice-versa.

2.2 Shifting Representation Language: Abstraction

Abstraction is defined as a mapping between representations that are related
to the same reference set but contain less detail (typically, only the information
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that is relevant to the achievement of the goal is maintained). It is useful in
inductive learning when the current language bias proves not to be expressive
enough for representing concept descriptions that can explain the examples.

Definition 2. Given two clausal theories T (ground theory) and T’ (abstract
theory) built upon different languages L and L' (and derivation rules), an ab-
straction is a triple (T, T, f), where f is a computable total mapping between
clauses in L and those in L.

An Abstraction Theory (an operational representation of f) is used to perform
such a shift of language bias [22] 2] to a higher level representation:

Definition 3. An abstraction theory from L to L' is a consistent set of clauses
c:—dy,...,dn where c is a literal built on predicates in L', and d;, j=1,...,m
are literals built on predicates of L.

i.e., it is a collection of intermediate concepts represented as a disjunction of al-
ternative definitions. Inverse resolution operators [I7] (inter-construction, intra-
construction and absorption) can be a valuable mechanism to build and exploit
abstraction theories, as introduced in [9]. This work is interested in the case of
Datalog programs, as in [19], where clauses are flattened, hence function-free.

Definition 4 (absorption). Let C and D be two Datalog clauses. If 30 unifier
such that S = body(D)f C body(C), then applying the absorption operator yields
the new clause C" such that head(C’) = head(C) and body(C") = (body(C) \
S) U {head(D)6}.

i.e., if all conditions in D are verified in the body of C', the corresponding literals
are eliminated and replaced by head(D).

According to the framework proposed in [23], abstraction takes place by
means of a set of operators, that generally includes operators for grouping indis-
tinguishable objects into equivalence classes; grouping ground objects to form
a compound object (that replaces them in the abstract world); ignoring terms
(that disappear in the abstract world); merging values that are considered indis-
tinguishable; reducing the arity of a function or relation (even up to elimination
of all arguments). Modifications are performed by mappings.

2.3 Learning Background Knowledge for Multi-inference Strategies

As already pointed out, the exploitation of the two strategies reported above
and their integration in an inductive concept learning framework is based on the
assumption that the knowledge needed to use them is provided by an expert
of the application domain. Here we propose an approach to automatically learn
such knowledge to be exploited by the abduction/abstraction operators. It is
worth recalling that the feasibility of reaching the target solution requires that
the number of values for the domains to be identified and the amount of available
knowledge about observations to be strictly proportional. Indeed, the more the
values, the more the possible interrelations that can take place between them. If
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the available observations are not sufficiently significant, i.e. too many existing
interrelations are not recognizable in them, then knowledge about the actual
biases in the given domain would be too loose for the algorithm to properly infer
significant and correct information.

3 Learning Abduction Theories

The exploitation of the abductive proof procedure presented in Section 2] re-
quires the specification of an abductive theory for the specific application do-
main. Usually, it is provided by a domain expert; in the following we propose a
methodology for automatically inferring it starting from the available observa-
tions, in order to make the learning system completely autonomous.

3.1 Abducibles

In setting up an abductive logic programming task, the logic program is typically
to be learnt, while abducibles and integrity constraints have to be provided
by the domain expert. Thus, a first problem is deciding on which properties
and/or relations abduction can be carried out, i.e. listing the abducibles. Indeed,
abductive reasoning needs to know them in order to assess on which concepts
abductions (i.e., guesses about unknown facts) can be made. We assume that all
predicates that make up the description language, and have no definition in the
theory (in order to fulfil the requirements for abducibles [4]), are considered as
abducibles since by hypothesis some of their instances could be missing in the
available dataset. Indeed, in the absence of further information, any fact that
can help in solving the problem at hand is useful, and the automatic system
should be allowed to hypothesize it, in order to provide the abductive reasoner
with all the freedom it needs for hypothesizing information.

3.2 Integrity Constraints

The other issue, far more complex, concerns the definition of the integrity con-
straints. It is, at the same time, a fundamental and difficult task, whose quality
can determine the very feasibility of the learning process. Hence, the motiva-
tion for automatically inferring such constraints, this way overcoming possi-
ble problems related to omissions and/or wrong formalization of the human
expert.

Learning denials (the form in which integrity constraints are coded in an ab-
ductive theory) cannot be simply cast as a supervised learning task, since it aims
at inducing rules whose head is empty. Rather, it can be seen as a specific case
of unsupervised learning aimed at finding regularities (specifically, conditions
that are never verified) in a first-order logic database. Thus, the data mining
approaches are better suited to carry out this task. Some systems are present
in the literature that can learn denials. One of them is Claudien [I8], that ac-
tually implements a more general algorithm for finding regularities that occur
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in a set of unlabelled observations represented as facts. It requires a template of
the clauses to be induced, and can limit the corresponding search space using
heuristics and resource bounds. By properly setting its parameters, it can be
applied for learning classification rules, association rules, (non necessarily def-
inite) clauses and also denials. Such a system inspired a number of successive
works, among which the development of the systems Primus and its successor
Tertius [8]. They are based on the generation of possible (H, B) couples, where
H and B are sets of literals in the given description language to be interpreted,
possibly negated, as candidate head and body, respectively, of a clause to be
generated. The frequency with which each candidate rule is (or is not) verified
in the dataset is computed, and statistical approaches are exploited to decide
if such frequencies are significant, in which case a corresponding rule is gen-
erated. Background knowledge (i.e., derived predicates such as ancestor in a
family environment) can be used, but increasing the number of literals in H and
B causes high computational costs, thus sampling and non-redundant operators
are exploited. Another widely known learning system that can induce integrity
constraints is Aleph [2I], that works in a similar way as Claudien. All of these
systems can actually learn denials, but this is just a specific setting or a side-
effect of a wider range of possibilities that the implemented algorithms provide.
Thus, the aim of this paper is devising simpler procedures, purposely devoted
to the generation of integrity constraints for an abductive theory, that being
limited to this specific task can carry out it in a more focused and effective way.
The starting point in doing this is the fact that integrity constraints rep-
resent situations that cannot occur in the described world. Thus, the available
observations cannot actively help in defining them. Rather, the aim is identify-
ing combinations of descriptors and of the related arguments that cannot hold.
In doing so, one possible strategy is generating a number of such combinations,
according to a given strategy, and then exploiting the available observations pas-
sively to check if the generated combination occur in at least one case or not.
In the former case, it cannot be a constraint, according to the assumption that
observations are correct and report only true information. In the latter case, this
can be taken as a suggestion, but not of course as a guarantee (since its absence
could be due to just the fact that by chance that situation did not ever occur in
the specific observations at hand), that the combination does not occur because
it in fact makes no sense in the considered world3. This, of course, raises the
problem of having a set of observations that is significant not only numerically,
but also in the sense that they depict a significant amount of different cases. Nev-
ertheless, such a significance should be assumed, because otherwise the learning
task itself, to be carried out on such observations, would hardly make sense.
Now, the point is how to proceed in generating the literals (and variables)
combinations to be tested. Indeed, it is clear that generating and testing all pos-
sible combinations becomes soon impossible even for relatively small datasets.
Bounding the cardinality of the combinations to be generated to a given [, al-

2 . . . . . .
In any case, this makes useless counting the frequencies as in Tertius, since every
combination that is verified is not a constraint, no matter how many times it happens.
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though useful, is not sufficient to avoid the combinatorial explosion. Thus, it is
necessary to identify specific classes of constraints that can be considered mean-
ingful in general (i.e., without reference to specific datasets or environments)
and thus are worth checking. A first important class is that of object properties,
represented by unary predicates. Indeed, it is undoubtedly interesting to know
which combinations of attributes are (im-)possible for a given object, in order
for the abductive proof procedure to avoid them (e.g., it generally holds that a
line is either tall or wide, but cannot be both at the same time). In this case, the
problem can be significantly simplified since the presence of just one variable
in the predicates allows to focus on just the predicates combinations, exclud-
ing the generation of duplicate literals and the presence of unrelated variables.
The procedure is detailed in Algorithm [l NotConstraints and Constraints are
two (initially empty) lists, containing the currently identified non-constraints
and constraints, respectively. The presence of each potential constraint in the
observations is checked: in case of success, it is added to the list of constraints,
provided that the not_trivial function succeeds. A constraint is considered trivial
if it is a superset of some other (shorter) constraint that is already present in
the Constraints list, so the not_trivial function avoids generating (and learning)
redundant constraints, just like in related work. In the first step, all possible
n-tuples (with 2 < n < N for a fixed N) of unary predicates, all applied to
the same variable, are generated and checked for occurrence in the available ob-
servations. The generation proceeds from lower to higher values of n. First, all
pairs of unary predicates are generated and checked for occurrence: those that
are not satisfied by the observations are considered constraints and added to
the Constraints list; conversely, those that happen at least once are added to
the NotConstraints list. Then, all non-constraints of cardinality 2 are extracted
from NotConstraints and extended with one more unary predicate, checked for
occurrence and added to NotConstraints or Constraints accordingly. Then, all
newly found non-constraints of cardinality 3 are extended and checked, and so
on until the fixed N is reached.

However, although very useful, constraints on properties are not sufficient.
It is often important, for the purpose of learning a significant abduction theory,
to consider also constraints built on n-ary predicates. Without loss of gener-
ality, in this work we restrict to binary predicates, and propose a set of typi-
cal relationships among the arguments that appear in pairs of such predicates
that are deemed as significant to be exploited as constraints. Specifically, given
two predicate variables P and @ (not necessarily distinct) ranging on binary
predicates of the representation language £, and three variables X, Y, Z, the
rules schemas [13] (denials) that we propose to check are « P(X, X). (reflex-
wity), — P(X,Y),Q(Y,X). (symmetry), «— P(X,Y),Q(Y,Z). (transitivity),
— P(X,Y),Q(Z,Y). (convergence), and «— P(X,Y),Q(X, Z). (divergence).

In the next step, all binary predicates are considered, and checked for occur-
rence of the reflexive, symmetric, transitive, converging and diverging relation-
ships. Again, when a relationship has no counterpart in the available observa-
tions, it is added to the Constraints, otherwise it is added to the NotConstraints.
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Algorithm 1. Induction of Integrity Constraints made up of unary predicates

Create_Constraints(N; £; UnaryPreds; NotConstraints; Constraints);
{ N: Maximal cardinality of constraints to generate; £: Set of observations;
UnaryPreds: Set of Unary Predicates; NotConstraints: Set of non-Constraints;
Constraints: Set of Integrity Constraints }
NotConstraints := (); Constraints := ()
for all a,b € UnaryPreds,a # b do
if £+ {a(X),b(X)} then
NotConstraints :== NotConstraints U {{a(X),b(X)}}
else
Constraints := Constraints U {{a(X),b(X)}}
for n := 3..N do
for all NC € NotConstraints,[NC| =n —1 do
for all a(X) € UnaryPreds do
if not_trivial(Constraints, {a(X)} U NC) then
if £F {{a(X)} UNC} then
NotConstraints := NotConstraints U {{a(X)} UNC?}
else
Constraints := Constraints U {{a(X)} UNC}

Lastly, all possible combinations of non-constraints on binary predicates re-
lationships and on unary predicates (applied to any of the variables appearing
in the former), whose cardinality does not exceed the fixed N, are checked for
occurrence and added to the Constraints, if it is the case, according to Algorithm
B 1t starts the process taking as input the list of non-constraints, both unary
and binary, built so far. UnaryNotConstrs and BinaryN otConstrs are the sets
of non-constraints found in the previous steps. Since all constraints on unary
predicates have at least cardinality 2, a preliminary step in which all possible
combinations of constraints on binary predicates with a single unary predicate
must be separately checked. Note that, in this step, no candidate constraint can
be trivial, since its binary component is not a constraint by itelf and its unary
component is just a singleton. Conversely, in the loop that combinates unary and
binary constraints, the only way a constraint can be trivial is being a superset
of a constraint obtained in the previous loop, since none of its components is a
constraint by itself.

Ezxample 1. Consider the description language made up of the predicates:
{ block/1, line/1, low/1, medium/1, high/1, narrow/1, wide/1, part_of/2,
on_top/2, to_right/2 }. Let the available observations be:

{ part_of(a,b), part_of(a,c), part_of(a,d), part_of(a,e), part_of(a,f), line(b),
medium(b), narrow(b), block(c), high(c), wide(c), line(d), low(d), wide(d),
block(e), medium(e), wide(e), block(f), medium(f), wide(f), on_top(d,b),
on_top(d,e), on_top(d,f), on_top(b,c), on_top(e,c), on_top(f,c),to_right(b,e),
to_right(f,b) } (representing the block world in Figure EPB and N be fixed to 4.

— Step 1:
e Pairs of unary predicates: Constraints = { {block(X), line(X)},
{block(X),low(X)}, {block(X),narrow(X)}, {line(X), high(X)},
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Algorithm 2. Integrity Constraints made up of unary/binary predicates

Create_constraints_with_binary_and_unary literals(N; Unary; Constrs;
UnaryNotConstrs; BinaryNotConstrs);
{N: Maximal cardinality of constraints to generate; £: Set of observations; Unary:
Set of Unary Predicates; Constrs: Set of Integrity Constraints made up of unary or
binary predicates; UnaryNotConstrs: Set of non-constraints made up of unary pred-
icates; BinaryNotConstrs: Set of non-constraints made up of binary predicates. }
for all NC € BinaryNotConstrs, X € vars(NC),p € Unary do
if INC| < NAEW NCU{p(X)} then Constrs := Constrs U {{p(X)} UNC?}
for all BNC € BinaryNotConstrs do
V := vars(BNC); TentativeConstr := BNC,;
for all S CV do
apply a UNC € BinaryNotConstrs to each X € S, add it to TentativeConstr
if |TentativeConstr| < N A not_trivial(Constrs, TentativeConstr)A
E I TentativeConstr then
Constrs := Constrs U {TentativeConstr}

Fig. 1. Sample block world

{low(X), medium(X)}, {low(X), high(X)}, {low(X), narrow(X)},
{medium(X), high(X)}, {high(X),narrow(X)}, {narrow(X), wide(X)} }
NotConstraints = { {block(X), medium(X)}, {block(X), high(X)},
{block(X),wide(X)}, {line(X), low(X)}, {line(X), medium(X)},
{line(X),narrow(X)}, {line(X), wide(X)}, {low(X), wide(X)},
{medium(X),narrow(X)}, {medium(X), wide(X)}, {high(X), wide(X)} }

e Triplets of unary predicates (extending couples of NotConstraints):
Constraints={{line(X), medium(X),wide(X) },{line(X), high(X), wide(X)}}
NotConstraints = { {block(X), medium(X), wide(X)},

{block(X), high(X), wide(X)}, {line(X), low(X), wide(X)},
{line(X), medium(X), narrow(X)} }
All other possible extensions of binary non-constraints are trivial.

e 4-tuples of unary predicates: all 4-tuples obtained extending ternary non-
constraints are trivial, thus in this step both Constraints and NotConstraints
are empty. As a side effect, there are no non-constraints of cardinality 4 to be
extended, and hence no constraints of cardinality larger than 4 can be found.

— Step 2:

e Reflexivity: NotConstraints = ()
Constraints = { {part_of(X, X)},{on_top(X, X)}, {to_right(X, X)} }
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e Symmetry: NotConstraints = ()
Constraints={{partof(X,Y),partof (Y, X)}, {on_-top(X,Y), on_top(Y, X)},
{to_right(X,Y), toright(Y, X)}, {part-of (X,Y),on_top(Y, X)},
{partof(X,Y),to_right(Y,X)}, {ontop(X,Y), toright(Y,X)} }

e Transitivity: NotConstraints = { {on_top(X,Y),on_top(Y, Z)},
{toright(X,Y), toright(Y, Z) }, {partof (X,Y),ontop(Y, Z)},
{partof(X,Y),to_right(Y, Z)}, {to_right(X,Y),on_top(Y, Z)} }
Constraints={{partof(X,Y),partof(Y,Z)},{ontop(X,Y),partof (Y, Z)},
{toright(X,Y), partof (Y, Z)}, {on_top(X,Y), toright(Y, X)}}

e Convergence: NotConstraints = { {on_top(X,Y),on_top(Z,Y)},
{on_top(X,Y),partof (Z,Y )}, {toright(X,Y ), partof (Z,Y)},
{on_top(X,Y), toright(Z,Y)} }
Constraints = { {partof(X,Y),part_of(Z,Y)},
{to_right(X,Y), to_right(Z,Y)} }

e Divergence: NotConstraints = { {partof(X,Y),partof(X,Z)},
{on_top(X,Y),ontop(X, Z)}, {on-top(X,Y), toright(X, Z)} }
Constraints = { {toright(X,Y), toright(X, Z)},
{on_top(X,Y),part of (X, Z)}, {to_right(X,Y),partof (X, Z)} };

— Step 3 (omitted due to lack of space)

3.3 Descriptors Type Domains and Abducibles

At the end of the procedure reported in Algorithm [[], the set of constraints of
cardinality 2 can be input to the type induction procedure presented in [7] in
order to infer type domains. Then, all pairs of unary predicates belonging to
the same domain can be eliminated from the set Constraints, thus reducing the
complexity of the abductive proof procedure, and a new kind of constraint will
be introduced to represent types, such that no two values from the same type
domain will be allowed applied to the same object. For example, if the descriptor
type domain for the color property is {blue, red, yellow, black, green}, and the
object X is part of an observation, it will be impossible to abduce two different
color descriptors from the above set applied to X.

4 Learning Abstraction Theories

As pointed out in Section[Z2] abstraction aims at discarding or hiding the infor-
mation that is irrelevant to achieve the goal. To be able to perform abstraction
during the learning task, the system must be provided with an abstraction the-
ory for the specific application domain, that (according to Definitions 2] and [3)
contains the operators encoding the abstraction mapping f between languages
L and L’ represented as a set of clauses, i.e. domain rules.

Usually, such domain rules are hand-coded by the domain expert; this section
proposes a methodology aimed at automatically learning them. The main idea
underlying the proposed strategy consists in searching for correspondences that
often or seldom hold among the available set of observations. These correspon-
dences are then exploited to simplify the description language in two different
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Algorithm 3. Identification of shifting/neglecting rules

Require: £7: set of positive observations; £ : set of negative observations; e: seed;
Provide: AT set of domain rules that make up an abstraction theory;
if 3 unary predicates in e then
S := 0, UnaryPreds := set of unary predicates in e
C = {c1,c2,...,cn} set of constants in the description of e
for all ¢; € C do
Si := {l; € UnaryPreds s.t. ¢; is argument of ;}
if | S;|#0and |S; |#1then S:=5JS;
for i=1..n do
for all §; € S do
find all the subsets s;m of S; s.t.
(0 —a < Score(sjm) < 0+ a) OR (Maz — a < Score(sjm) < Max + )
create the rule: rules;,, (¢i) « sjm
replace in €7, in £ and in e, sj,, with rules,, (ci)
while F' (:= set of all leaf predicates of ) # () do
for all l; € F do
if I; has only one parent (let g;(as,...,an) be the l;’s parent) then
create the rule: ruley, (as, ...an) < gi,li; H := true
replace in €1, in £~ and in e, gi,1; with rule, (a;, ...an))

for all rule; < l;,,...,l;, generated do
if {l;;,...,li, } occurs in some rule rule; then
replace l;,, ..., l;, in rule; by rule;

eliminate rule; form the set of rules generated
Evaluate the set of generated rules

ways: by generating shifting rules that replace significant, characteristic or dis-
criminant groups of literals by one single literal representing their conjunction,
or by generating neglecting rules that eliminate groups of literals that are not
signiﬁcantﬁ. Both kinds of rules will be applied in order to perform the shift of
language bias according to the absorption operator presented in Definition [

Algorithm [3] sketches the overall procedure conceived to discover common
paths in the application domain that potentially could make up the Abstraction
Theory. It firstly generates domain rules involving unary predicates only, that
represent the characteristics of an object in the description, and then the rules
involving predicates whose arity is greater than 1, that represent the relationships
between two or more objects contained in the descriptions. Crucial point of the
algorithm is the choice of the observation (referred to in the following as the
seed) that will act as the representative of the concept that one would abstract.
It is currently selected as the first encountered observation.

Once the seed is identified, for each constant ¢; in its description, the algo-
rithm finds the set of all the unary predicates having that constant as an ar-
gument, and computes all its possible subsets (except the empty set, that does

3 The loss in detail is evident in the latter, while in the former derives from the
impossibility to handle independently subsets of the grouped literals.
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not give information about the object, or the singleton subsets, that express just
single properties of the objects). Each subset identified in this way is a potential
candidate to become the body of a rule, in the Abstraction Theory, made up of
unary predicates. The selection among these subsets is done considering those
that are the best representative for the class of the concept to be abstracted
according to the seed e. Specifically, each subset is assigned a score based on
the number of times that it occurs in the descriptions of positive and negative
examples in the whole training set. Such a value represents the coverage rate
of the subset with respect to the observations and indicates the quality of the
subset. The selection aims at choosing those subsets that are neither too spe-
cific, because they are present in few observations, nor too general, because they
are encountered in almost all the observations. Each selected subset s;, inter-
preted as a conjunction of literals, becomes the body of a rule in the Abstraction
Theory, formulated in the following way:

abstract_predicate(c;) «— s; iff  score(s;) > P (shifting rule)
— s; iff  score(s;) <P (neglecting rule)

where P is a threshold that depends on the application domain at handd. In the
former case s; is present in almost all the observations, hence it is considered
significant as a whole for the learning process and thus it is taken as the body of a
shifting rule, to be replaced by a single abstract predicate. In the latter case s; is
assumed to indicate a detail in the description that is not very significant for the
learning process and thus it is eliminated (replaced by an empty head). In both
cases, the abstraction operators will replace each occurrence in the description
of the observations of the rule’s body with the corresponding head, this way
reducing the description length of observations and hence making the learning
process more efficient.

The algorithm continues with the identification of rules made up of predicates
whose arity is greater than 1 representing the relationships between two or more
objects. Thus, once the abstraction rules, that are identified in the previous step,
are replaced in all the observations, they don’t contain any unary predicates. At
this point, an iteration that groups together the n-ary predicates is performed
until one of the following conditions succeeds: 1) the description of the seed e
does not contain leaf predicates (predicates that share arguments with at least
another predicate); 2) the step n generates exactly the same rules already built
in the step n — 1. The search of the leaf predicates is particularly complex due
to the large number of relationships that could hold between the objects in the
descriptions. The identification of such predicates is done by representing the
observation with a tree in which each level is determined by the propagation of
the variables: the root is the head of the observation and its direct descendants
are all the predicates that share with it at least one argument. This procedure is
iterated until all the predicates in the description have been inserted in the tree
(a considered predicate does not participate anymore to the tree construction).

4 In order to make P independent on the specific domain, the score can be normalized
as a percentage of the maximum score actually computed in the given dataset.
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After the tree is constructed, we select the set of leaf nodes (predicates) that
have only one parent, let it be L = l3,1s,...,1,. Successively, for each element
l € L its parent, let be it the literal g(a, ..., an), is extracted from the tree and
the following rule is generated:

rule(ay, ..., am) — g(ai,...,am),l
Finally, for each rule rule; «— l;,,...,l;, if the body of rule;, i.e. l;,,... L,
appears in some rule rule; then [; ,...,l;, is replaced in rule; by rule; and

rule; is eliminated by the set of rules that are being generated. At the end
of this step again the evaluation phase of the potential rules to make up the
Abstraction Theory is performed according to the procedure above mentioned.

As to the score function, we need a statistical model able to take into ac-
count the significance of the subset for (i.e., its frequency in) the descriptions.
Specifically, a significant subset should be able to characterize a concept, or to
discriminate it from the others, better than other subsets. Conversely, a subset
that is not characterizing or discriminant could be assumed as non-significant.
An indication for such a setting could come from the distribution of the subset
in the whole set of observations: in this perspective, an high significance value
is associated to subsets that appear frequently in instances of one concept but
rarely in instances of others (and hence help to distinguish a concept from the
others), while a low significance value is associated to subsets that appear uni-
formly throughout different concepts (and hence are superfluous for the learning
process). A statistical model that reflects such considerations is represented by
the Term Frequency - Inverse Document Frequency (TF-IDF) [20]. Here, it must
be adapted to a work context facing with positive and negative observations. In
the following a brief description of the adapted method is provided.

Each subset s; is associated with a vector V; = (V;1, Via,..., Vin) where N
is the number of available observations and V;; is the weight of the i-th subset
in the j-th observation, computed as:

Vij = FREQ;; * (lg %}3@- +1)

The term (lg ﬁm + 1) represents the inverse of the frequency of subset
s; in the whole set of observations. Notice that the result of this computation
will be positive if the j-th observation is positive, negative otherwise, thus the
resulting vector will be of the form V; = (4+,—,+,+,—,+,...). This will allow
to distinguish the significance of the subset according to its presence in the
positive and negative observations. Now, having for each subset s; the vector of
its weights in the various observations, its score can be computed as follows:

score(si) = |2 2;-1,. v Vil
It is worth noting that this score will be around zero if the subset equally
occurs in both positive and negative observations, in which case it is considered
insignificant and could be exploited as a neglecting rule in the abstraction phase.
Conversely, an high absolute value indicates a strong correlation of the subset
with the positive or the negative observations. Specifically, highly positive (resp.,
negative) scores indicate that the subset is very frequent in the positive (resp.,
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negative) observations. In both cases, it is considered significant and hence it
could be exploited to build shifting rules for the abstraction phase.

Ezample 2. Let h(1) : —p(1,2),p(1,4),p(1,5),¢(2,3), f(5,6),d(4), s(6) the seed
chosen in the observations (in this case it represents the set of observations too).

e Step 1:
— Grouping unary predicates: S = () (no groups of unary predicates, referred to
the same constant, with cardinality strictly greater than 1 can be recognized);
e Step 2:
— Recognize Leaf Nodes: F = {c(2,3), d(4), s(6)}, indeed ¢(2,3) has only one
parent p(1,2); d(4) has only one parent p(1,4); s(6) has only one parent f(5,6).
— Create the rules - ruley, (ai, ...an) < gi, li:
¢(2, 3) with parent p(1,2) — rulel(X,Y) : —p(X,Y), (Y, Z).
d(4) with parent p(1,4) — rule2(X,Y) : —p(X,Y),d(Y).
5(6) with parent f(5,6) — rule3(X,Y) : —f(X,Y),s(Y).
— Replace the rule in the set of the observations:
h(1) : —p(1,2),p(1,4),p(1,5),¢(2,3), f(5,6),d(4), s(6). —
h(1) : —rulel(1,2),rule2(1,4),p(1,5), rule3(5, 6).
e Step 3:
— Recognize Leaf Nodes:
F = {rule3(5,6)}, indeed rule3(5, 6) has only one parent p(1,5).
— Create the rules - ruley, (ai, ...an) < gi, li:
rule3(5,6) with parent p(1,5) — ruled(X,Y) : —p(X,Y),rule3(Y, Z).
— Replace the rule in the set of the observations:
h(1) : —rulel(1,2),rule2(1,4),p(1,5), rule3(5,6). —
h(1) : —rulel(1,2),rule2(1, 4), ruled(5, 6).
e Step 4: END - No more Leaf Nodes can be recognized

The procedure continues with the evaluation of the generated rules, that are:
rulel(X,Y) : —p(X,Y), (Y, Z). rule2(X,Y) : —p(X,Y),d(Y).
rule3(X,Y) : —f(X,Y),s(Y). ruled(X,Y) : —p(X,Y), rule3(Y, Z).
Now, supposing that P = 95% and that the scores of the rules are:

Scorel = 95%; Score2 = 99%; Score3 = 75%; Scored = 86%,

rulel and rule2 will be shifting rules, while rule3 and rule4 will be neglecting
rules:

rulel(X,Y) : —p(X,Y), (Y, Z). rule2(X,Y) : —p(X,Y),d(Y).
—f(X)Y),s(Y). :—p(X,Y),rule3(Y, Z).

5 Experiments

The proposed methods were implemented in SICStus Prolog, and tested on the
learning system INTHELEX with various experiments, whose results are re-
ported in the following. 33 repetitions of each learning task were carried out,
in each of which the dataset was randomly split into a training set (including
70% of the observations), exploited also to induce the rules for the abstraction
operators) and a test set (made up of the remaining 30%).
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Table 1. System performance with the exploitation of the discovered abductive theories

Without abduction With abduction With abduction
Without type domains|With type domains
Min - Max 3-13 2-8 0-2
Lgg Med - StDev 7.72 - 2.08 5.48 - 1.5 1-0.66
Min - Max 2-6 2-5 1-3
Claus. Med - StDev 4.09 - 1.12 3.18 - 0.95 1.72 - 0.72
Min - Max 89% - 100% 94% - 100% 91% - 100%
Accur. Med - StDev 96.24% - 2.27 99.32% - 1.61 98.75% - 3.02
Min - Max 3.20 - 13.36 4.98 - 170.36 3.06 - 84.40
Runtime Med 5.16 40.05 24.29

5.1 Exploitation of the Learned Abductive Theories

The first experiment aimed at checking whether the abducibles and the integrity
constraints automatically learned according to the proposed algorithms are ef-
fective to allow the abductive procedure implemented in INTHELEX to handle
cases of missing information in the observations. The experiments concern the
induction of layout-based classification rules for scientific papers belonging to
ICML series. The available dataset was corrupted by eliminating the 8% of the
descriptors for each observation contained in the tuning set. The learning system
was applied on this dataset firstly without exploiting the abductive procedure.
Successively, the learning process was repeated, allowing the system to exploit
its abductive capability and the abduction theory automatically learned. We
focused our attention on binary constraints made up of unary and binary pred-
icates. One more experiment was run to test the usefulness of replacing groups
of simple integrity constraints belonging to the same type by means of type
constraints automatically inferred.

Table [l reports the system performance in the various cases as regards the
amount of performed refinements, 1gg’s and added clauses, predictive accuracy
and runtime (sec). As we can note, the system performance improved with the
exploitation of abduction with respect to all parameters except runtime. Actu-
ally, runtime increases because of the additional reasoning carried out by the
abductive procedure; however, as expected, exploiting the type domains signifi-
cantly reduces runtime because of the fewer constraints to be taken into account.
According to a paired t-test, all differences are statistically significant except the
predictive accuracy between the second and third rows. Thus, exploiting the au-
tomatically learned abduction theory allows the system to significantly improve
its performance in the presence of missing data. The number of theory refine-
ments and learned clauses decreases both using abduction and, even more, when
type domains are exploited, indicating that the system was able to correctly
complete the corrupted observations without applying the refinement procedure.
Noticeably, except for accuracy, also the standard deviation constantly decreases,
revealing more stability in the system behavior.
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Table 2. System performance exploiting the discovered abstraction theories

ICML SVLN IEEET
With Abs No Abs | With Abs No Abs | With Abs No Abs
Lgg 5.81 5.54 7.36 8.12 8.03 8.30
Cl 1.21 1.27 2.75 2.69 2.03 2.27
Accuracy|96.93% 96.75% | 86.54% 87.36% | 90.69% 90.57%
Runtime 2.00 3.16 11.34 19.46 7.64 27.55

Table 3. Abstraction on ICML logic type components

Author Page Number Title
With Abs No Abs | With Abs No Abs | With Abs No Abs
Lgg 8.9 8.96 8.15 8.12 8.81 9.09
Cl 2.33 2.06 2.39 2.45 2.42 2.54

Accuracy|97.18% 97.12% | 97.81% 97.54% | 98.12% 97.87%
Runtime | 14.44 29.07 34.06 76.22 27.70 51.67

5.2 Exploitation of the Abstraction Theories

The second experiment aimed at checking the effectiveness of the abstraction
theories learned according to the proposed algorithms. Such rules were provided
to INTHELEX, that was allowed to exploit the abstraction operators. The learn-
ing tasks involved the induction of classification rules for three classes of scientific
papers (96 documents of which 28 for ICML, 32 for SVLN, 36 for IEEET), and of
rules for identifying the logical components Author [36+, 332-], Page Number
[27+, 341-] and Title [28+, 340-] in the ICML papers (in square brackets the
number of positive and negative instances for each label are reported). To build
neglecting rules, the threshold for considering low significance (i.e. the score near
to zero) was empirically set to P = 5%. To build shifting rules that have high
significance (i.e. very frequent in positive observations and rarely present in neg-
ative observations and vice versa) the threshold was empirically set to P = 95%
for the classification task and to P = 75% for the understanding task.

The average results on the 33 folds, along with the number of refinements and
of clauses learned, the predictive accuracy of the learned theories and the runtime
(sec), are reported in Tables 2] and Bl According to a paired ¢-test, there is no
statistical difference between the results with and without abstraction, except
for runtime. Having the same performance (predictive accuracy) and behavior
(no. of clauses and refinements) both with and without abstraction means that
the proposed technique was actually able to eliminate superfluous details only,
leaving all the information that was necessary for the learning task, which was a
fundamental requirement for abstraction. Conversely, runtime was dramatically
reduced when using abstraction thanks to the shorter descriptions obtained by
eliminating the details, which was exactly the objective of using abstraction.

An example of neglecting rule identified with the proposed strategy is:

:— type_graphic(A), pos_lower(A).
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by which we understand that a graphics being placed in lower position is not
discriminant between positive and negative examples. As expected, exploiting
the abstraction operators the system learns shorter clauses. For instance, the
theory learned for author contains two clauses made up of 18 and 15 literals
(against the 19 and 37 without using abstraction):

logic_type_author(A) :- height_medium_small(A), pos_upper_type_text(4),
part_of(B, A), part_of(B, C), height_very_small_type_text(C),
pos_upper_type_text(C), part_of(B, D), width_very_large(D),
height_smallest(D), type_hor_line(D), pos_center_pos_upper (D),
alignment_left_col(D, E), on_top(F, E), part_of(B, E), part_of(B, F),
part_of (B, G), type_text_width_medium_large(G), pos_left_type_text(G).

logic_type_author(A) :- part_of(B, A), part_of(B, C),
pos_upper_type_text(A), pos_center_pos_upper(A),
pos_upper_type_text(C), pos_left_type_text(C),
height_very_very_small_type_text(C), on_top(C, D),
part_of(B, D), on_top(E, A), width_very_large(E), height_smallest(E),
pos_center_pos_upper(E), on_top(F, E), alignment_center_col(F, E).

where the presence of several abstract predicates confirms that the automatically
generated abstraction theory was able to identify discriminative intermediate
concepts. An example of shifting rule learned (and exploited above) is:

pos_upper_type_text(A) :- type_text(A), pos_upper(4).

6 Conclusion and Future Works

This paper presented a technique for automatically inferring meta-information
needed to apply abduction and abstraction operators in and inductive learning
framework, exploiting the same observations that are input to the inductive al-
gorithm. Application of the proposed technique in a real learning system proved
their viability for learning from incomplete observations without loosing predic-
tive accuracy and for significantly improving learning time in complex real-world
domains. Future work will concern a deeper investigations of which properties
can be considered significant to infer integrity constraints for abduction, devel-
opment of strategies to improve the generation of abductive theories, and design
of techniques that can provide information for further abductive operators.
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