
On the LearnAbility of Abstraction Theories

from Observations for Relational Learning

Stefano Ferilli, Teresa M.A. Basile, Nicola Di Mauro, and Floriana Esposito

Department of Computer Science, University of Bari, Italy
{ferilli, basile, ndm, esposito}@di.uniba.it

Abstract. The most common methodology in symbolic learning con-
sists in inducing, given a set of observations, a general concept definition.
It is widely known that the choice of the right description language for a
learning problem can affect the efficacy and effectiveness of the learning
task. Furthermore, most of the real-world domain are contaminated by
various kinds of imperfections in data such as inappropriateness of the
description language which does not contain/facilitate an exact repre-
sentation of the target concept. To deal with such kind of situations,
Machine Learning approaches have moving from a framework exploiting
a single inference mechanism, such as induction, towards one integrating
multiple inference strategies such as abstraction. The literature so far
assumed that the information needed to the learning systems to apply
additional inference strategies is provided by the an expert domain. The
objective in this work is the automatic inference of such information.
The efficacy of the proposed method in generating effective theories to
perform abstraction was tested by providing the generated abstraction
theories to the learning system INTHELEX allowing it to exploit its mul-
tistrategy capabilities, in particular the abstraction one. Various exper-
iments were carried out on a real-world application domain of scientific
paper documents showing the validity of the proposed method.

1 Introduction

The efficacy of induction algorithms has been demonstrated on a wide variety
of benchmark domains. However, current machine learning techniques are inad-
equate for learning in more difficult real-world domains like weather prediction,
financial risk analysis and drug design. The nature of the problem can be of
different type as noise in the descriptions and lack of data, but also the low level
representation of the examples of the target concept. It is well known that the
inappropriateness of the description language, which does not contain/facilitate
an exact representation of the target concept, can affect the efficacy/effectiveness
of the learning task. Hence, the choice of the right representation for a learning
problem has a significant impact on the performance, in general, of Machine
Learning systems and, in particular of ILP systems [10]. Generally, a low level
representation is made up of all the information necessary to the learning task,
but individual parts contained in the representation are only remotely related to

the target concept, making pattern hard to identify. Low level representations
are common in real-world domains, where examples are naturally described by
many small measurements, in which there is not enough knowledge in order to
represent the data in few highly relevant features.

Various strategies have been proposed to overcome this limitation, like as the
different ways to exploit the framework for the abstraction strategy proposed in
[15]. In [16], for example, the abstraction is exploited to address the problem
of potentially many mappings that can be between descriptions in first order
representation language to select one particular type of mapping at a time and
use it as a basis to define a new hypothesis space, performing, in this way, a
representation change. It was also used to overcome the knowledge acquisition
bottleneck that limits the learning task in particular application domains such
as the automation of cartographic generalization in [11]. More generally, the
abstraction is used to model a priori the hypothesis space before the learning
process starts introducing it as a multi-strategy capability that could shift to
a higher language bias when the current one does not allow to capture the
target predicate definition [3, 6, 8]. From an operational viewpoint, it should deal
with cases when learning can be more effective if it can take place at multiple
(different) levels of complexity, which can be compared to the language bias
shift considered in [2]; a useful perspective for the integration of this inference
operator in an inductive learning framework was given in [15]. According to
such a framework, the abstraction operator was endowed in the learning system
INTHELEX [4] making it able to perform the shift.

In the current practice, it is in charge of the human expert to specify all
the information needed by such strategy for being applicable. It goes without
saying that quality, correctness and completeness in the formalization of such
information is a critical issue, that can determine the very feasibility of the
learning process. Providing it is a very difficult task because of it requires a deep
knowledge of the application domain, and is in any case an error-prone activity,
since omissions and errors may take place. For instance, the domain and/or the
language used to represent it might be unknown to the experimenter, because he
is just in charge of properly setting and running the learning system on a dataset
provided by third parties and/or generated by other people. In any case, it is
often not easy for non-experts to single out and formally express such knowledge
in the form needed by the automatic systems, just because they are not familiar
with the representation language and the related technical issues.

These considerations would make it highly desirable to develop procedures
that can automatically generate such information. This work aims at propos-
ing solutions to automatically infer the information required by the abstraction
framework from the same observations that are input to the inductive process,
assuming that they are sufficiently significant, and at assessing the validity and
performance of the corresponding procedures. In the following of the paper, af-
ter an introduction to the general operational framework for abstraction, the
method for the automatic definition of appropriate rules to fire the operator will
be presented along with an experimental session on a real-world domain.

2 Abstraction Inference Strategy: The general framework

Abstraction is defined as a mapping between representations that are related
to the same reference set but contain less detail (typically, only the information
that is relevant to the achievement of the goal is maintained). It is useful in
inductive learning when the current language bias proves not to be expressive
enough for representing concept descriptions that can explain the examples.
Indeed, Abstraction should be included for dealing with cases when learning can
be more effective if it can take place at multiple different levels of complexity,
which can be compared to the language bias shift considered in [2].

Definition 1. Given two clausal theories T (ground theory) and T ′ (abstract
theory) built upon different languages L and L′ (and derivation rules), an ab-
straction is a triple (T, T ′, f), where f is a computable total mapping between
clauses in L and those in L′.

An Abstraction Theory (an operational representation of f) is used to per-
form such a shift of language bias [14, 2] to a higher level representation:

Definition 2. An abstraction theory from L to L′ is a consistent set of clauses
c : −d1, . . . , dm where c is a literal built on predicates in L′, and dj , j = 1, . . . ,m
are literals built on predicates of L.

i.e., it is a collection of intermediate concepts represented as a disjunction of
alternative definitions.

Inverse resolution operators [10], by tracking back resolution steps, can sug-
gest new salient properties and relations of the learning domain. Inverse reso-
lution operators can be a valuable mechanism to build abstraction theories, as
introduced in [7]. To this purpose, the absorption, inter-construction and intra-
construction operators can be exploited, also in the case of first order clauses. In
this work we are interested in the case of a Datalog program [1, 9] as ground space
of the abstraction, as in [12], where clauses are flattened, hence function-free.

Definition 3 (Absorption & Inter-construction).

absorption: let C and D be two Datalog clauses. If there exists a unifier θ such
that ∃S ⊂ body(C), S = body(D)θ, then applying the absorption operator
yields the new clause C ′ such that:

– head(C ′) = head(C)
– body(C ′) = (body(C) \ S) ∪ {head(D)θ},

i.e., if all conditions in D are verified in the body of C, the corresponding
literals are eliminated and replaced by head(D).

inter-construction: let C = {Ci|i = 1, . . . , n} be a set of Datalog clauses. If
there exists a set of literals R and a unifier θi for each clause Ci, such that
∃Si ⊂ body(Ci), Si = Rθi, then we define:

– a new predicate L← R

– for all i = 1, . . . , n body(Ci) can be rewritten as (body(Ci) \ Si)∪ {Lθi}.

i.e., if all conditions in R are verified in the body of each Ci ∈ C, the cor-
responding literals are eliminated and replaced by L that is a new predicate,
with a definition in the theory, never present in the description language.

A useful perspective for the integration of this inference operator in an inductive
learning framework was given in [15]. In this view, concept representation deals
with entities belonging to three different levels. Underlying any source of experi-
ence there is the world, where concrete objects (the ‘real things’) reside. It is not
directly known, since any observer’s access to it is mediated by his perception of
it (P (W)). The percept reality consists in the ‘physical’ stimuli produced on the
observer. To be available over time, these stimuli must be memorized in an or-
ganized structure (S), i.e. an extensional representation of the perceived world,
in which stimuli related to each other are stored together. Finally, to reason
about the perceived world and communicate with other agents, a language (L)
is needed, that describes it intensionally. World, representation and language
make up a reasoning context. Given a reasoning context, it is possible to reason
at any of the given levels. Indeed, moving from the perception level P (W) by
means of a set of operators one can propagate to higher levels, i.e. S and L,
where it is possible to identify operators corresponding to the previous ones.
Generally these sets contain operators for performing operations such as: group-
ing indistinguishable objects into equivalence classes; grouping a set of ground
objects to form a new compound object1 that replaces them in the abstract
world; ignoring terms that can be in the abstract world, where they disappear;
merging a subset of values that are considered indistinguishable; dropping a sub-
set of arguments, thus reducing the arity of a relation; eliminating all arguments,
so that the relation moves from a predicate logic to a propositional logic setting
(which corresponds to a propositional abstraction at the language level).

3 Learning Abstraction Theories

As already pointed out, the exploitation of the Abstraction framework reported
above and its integration in an inductive concept learning framework is based on
the assumption that the knowledge needed to use it is provided by an expert of
the application domain. In this Section we propose an approach to automatically
learn such knowledge to be exploited by the abstraction operators.

The abstraction procedure reported in Section 2, aims at discarding or hid-
ing the information that is insignificant to the achievement of the goal. In order
to make the system able to perform an abstraction during the learning task,
it must be provided with the operators encoding such a strategy by means of
an abstraction theory for a specific application domain. An abstraction, accord-
ing to Definition 1, is a tuple made up of a function f that is a computable
mapping between theories built upon two different representation languages L

1 It is called term construction [8], and offers the most significant promises for limiting
the complexity of learning in a first order logic setting, since it simplifies the matching
process between hypotheses and examples.

Algorithm 1 Identification of domain rules for Abstraction Operators

Require: E+: set of positive observations; E−: set of negative observations; e: seed;
if ∃ unary predicates in e then

S := ∅, UnaryPreds := set of unary predicates in e

C := {c1, c2, . . . , cn} set of constants in the description of e

for all ci ∈ C do

Si := {li ∈ UnaryPreds s.t. ci is argument of li}
if (| Si |6= 0 and | Si |6= 1) then S := S

⋃
Si

for i=1..n do

for all Sj ∈ S do

find all the subsets sjm of Sj s.t.
(0− α ≤ Score(sjm) ≤ 0 + α) OR (Max− α ≤ Score(sjm) ≤ Max + α)

create the rule: rulesjm
(ci) ← sjm

replace in E+, in E− and in e, sjm with rulesjm
(ci)

while F (:= set of all leaf predicates of e) 6= ∅ do

for all li ∈ F do

if li has only one parent (let gi(ai, . . . , an) be the li’s parent) then

create the rule: ruleli(ai, ...an)← gi, li; H := true
replace in E+, in E− and in e, gi, li with ruleli(ai, ...an))

for all rulei ← li1 , . . . , lin generated do

if {li1 , . . . , lin} occurs in some rule rulej then

replace li1 , . . . , lin in rulej by rulei

eliminate rulei form the set of rules generated
Evaluate the set of generated rules

and L′. The operational representation of function f is the Abstraction Theory
that encoded the abstraction operators by means of a consistent set of clauses,
i.e. domain rules (Definition 2). The proposed technique aims at learning such
domain rules by looking for correspondences that often or seldom hold among a
significant set of observations. These correspondences are generated according to
the inter-construction operator (Definition 3) and are then exploited to simplify
the description language in two different ways: by generating shifting rules that
replace significant, characteristic or discriminant groups of literals by one sin-
gle literal representing their conjunction, or by generating neglecting rules that
eliminate groups of literals that are not significant. Both kinds of rules will be
applied in order to perform the shift of language bias according to the absorption
operator presented in Definition 3.

Algorithm 1 sketches the overall procedure conceived to discover common
paths in the application domain that potentially could make up the Abstraction
Theory. It firstly generates domain rules involving unary predicates only, that
represents the characteristic of an object in the description, and then the rules
made up of predicates whose arity is greater than 1, that represent the relation-
ships between two or more object contained in the descriptions. Crucial point
of the algorithm is the choice of the observation (referred to in the following as
the seed) that will act as the representative of the concept that one would ab-
stract. Currently it is the first encountered positive observation. Once the seed

is identified, for each constant ci in its description, the algorithm finds all the
unary predicates the constant is argument of. Among the identified subsets we
discard those having cardinality equal to 0, that do not give information about
the object, or 1, that provide only properties of the objects.

Each subset such identified is a potential candidate to compose the body of
a rule, in the Abstraction Theory, made up of unary predicates. The selection
among these subsets is done considering the ones that are the best representative
for the class of the concept to be abstracted according to the seed e. Thus, each
subset is assigned a score based on the number of times that it occurs in the
positive and negative descriptions. This value represents the coverage rate of the
subset with respect to the observations and indicates the quality of the subset.
This kind of selection allows to choose the subsets that are neither too specific,
because of they are present in few observations, nor too general, because of they
are encountered in almost all the observations. Once the subsets sj are selected,
the rules to make the Abstraction Theory are formulated in the following way:

abstract predicate(ci) ← sj iff score(sj) ≥ P (shifting rule)
← sj iff score(sj) ≤ P (neglecting rule)

where P is a threshold depending on the application domain at handle2. In the
first case, the rule’s body, i.e. sj that is a conjunction of literals, is present in
almost all the observations thus it is fundamental for the learning process and
thus the corresponding rule represents a shifting rule in the Abstraction Theory.
In the second case the rule could indicate a detail in the description that is not
very significant for the learning process and thus it is considered a neglecting
rule. In both cases, replacing the rule’s body with its head in the description of
the observations reduces the length of observations, this way making the learning
process more efficient.

The algorithm follows with the identification of rules made up of predicates
whose arity is greater than 1 representing the relationships between two or more
objects. Thus, once the abstraction rules, that are identified in the previous step,
are replaced in all the observations, they don’t contain any unary predicates be-
longing to the original representation language. At this point, an iteration that
groups together the n-ary predicates is performed until one of the following con-
ditions succeeds: 1) the description of the seed e does not contain leaf predicates
(predicates that share arguments with at least an other predicate, excluding
the head’s predicate); 2) all the rules generated at step n have already been
generated at step n− 1.

The search of the leaf predicates is particularly complex due to the large
number of relationships that could hold between the objects in the descriptions.
The identification of such predicates is done by representing the observation
with a tree (see Figure 1 for an example) in which each level is determined
by the propagation of the variables/constants (no relation has to be imposed
between two or more predicates at the same level even if they share some vari-
able/constant): the root is the head of the observation and its direct descendants

2 In order to make P independent on the specific domain, the score can be normalized
as a percentage of the maximum score actually computed in the given dataset.

are all the predicates that share with it at least one argument. This procedure is
iterated until all the predicates in the description have been inserted in the tree
(a considered predicate does not participate anymore to the tree construction).

After the tree is constructed, we select the leaf nodes that have only one
parent, let be L = l1, l2, . . . , ln the set of such leaf predicates. Successively, for
each element l ∈ L its parent is extracted form the tree, let be it the literal
g(a1, . . . , am), and the following rule is generated:

rule(a1, . . . , am)← g(a1, . . . , am), l

Finally, for each generated rule rulei ← li1 , . . . , lin
, if the body of rulei, i.e.

li1 , . . . , lin
, appears in some rule rulej then li1 , . . . , lin

is replaced in rulej by
the predicate rulei and the rule rulei is eliminated by the set of rules that
are being generated. At the end of this step again the evaluation phase of the
potential rules to make up the Abstraction Theory is performed according to
the procedure above mentioned.

In order to associate a score to each subset we need a statistical model able
to take into account the significance of the subset for the descriptions, i.e. its
frequency in them. Specifically, a good subset is the one that has a great discrim-
inating power, i.e. that is able to discriminate better than any other subset a
description from the others. To this aim we exploit the distribution of the subset
in the whole set of observations: an high discriminating power means that the
subset is fundamental for the concept description since it helps to distinguish
a concept from another, on the other hand a low discriminating power is inter-
preted as a hint that the subset is superfluous for the learning process and thus
it could be eliminated from the description of the observations.

The statistical model that reflects such considerations is represented by the
Term Frequency - Inverse Document Frequency (TF-IDF) [13] adapted to our
work context facing with positive and negative observations. In the following a
brief description of the method adapted to our context is provided.

For each subset Si we create a vector Vi = (Vi1, Vi2, . . . , ViN) where N is the
number of the available observations and Vij is the weight of the i-th subset in
the j-th observation that is computed as:

Vij = FREQij ∗ (lg N
IFREQi

+ 1)

The term (lg N
IFREQi

+ 1) represents the inverse of the frequency of the
subset i in the whole set of observations. The result of this computation will
be positive if the j-th observation is a positive observation, negative otherwise,
thus the resulting vector will be of the form Vi = (+,−,+,+,−,+, . . .). This
will allow to distinguish the significance of the subset according to its presence
in the positive and negative observations.

Now, for each subset we have the vector of its weights in each observation.
To select the best subset the following value is computed for each subset i:

score(si) =
∑

j=1,...,N Vij

It is worth noting that this score will be around zero if the subset equally
occurs in both positive and negative observations, in which case it is considered
insignificant and could be exploited as a neglecting rule in the abstraction phase.
Conversely, an high absolute value indicates a strong correlation of the subset

with the positive or the negative observations. Specifically, highly positive (resp.,
negative) scores indicate that the subset is very frequent in the positive (resp.,
negative) observations. In both cases, it is considered significant and hence it
could be exploited to build shifting rules for the abstraction phase.

Example 1. Let h(1) : −p(1, 2), p(1, 4), p(1, 5), c(2, 3), f(5, 6), d(4), s(6) the seed
chosen in the set of the observations.

• Step 1:

– Grouping unary predicates:

S = ∅, no groups of unary predicates with cardinality strictly greater than 1
can be recognized;

• Step 2:

– Recognize Leaf Nodes:

F = {c(2, 3), d(4), s(6)}, indeed c(2, 3) has only one parent p(1, 2); d(4) has
only one parent p(1, 4); s(6) has only one parent f(5, 6).

– Create the rules - ruleli(ai, ...an)← gi, li:

c(2, 3) with parent p(1, 2) → rule1(X, Y) : −p(X, Y), c(Y, Z).
d(4) with parent p(1, 4) → rule2(X, Y) : −p(X, Y), d(Y).
s(6) with parent f(5, 6) → rule3(X, Y) : −f(X, Y), s(Y).

– Replace the rule in the set of the observations, for example:

h(1) : −p(1, 2), p(1, 4), p(1, 5), c(2, 3), f(5, 6), d(4), s(6). →
h(1) : −rule1(1, 2), rule2(1, 4), p(1, 5), rule3(5, 6).

• Step 3:

– Recognize Leaf Nodes:

F = {rule3(5, 6)}, indeed rule3(5, 6) has only one parent p(1, 5).

– Create the rules - ruleli(ai, ...an)← gi, li:

rule3(5, 6) with parent p(1, 5) → rule4(X, Y) : −p(X, Y), rule3(Y, Z).

– Replace the rule in the set of the observations:

h(1) : −rule1(1, 2), rule2(1, 4), p(1, 5), rule3(5, 6). →
h(1) : −rule1(1, 2), rule2(1, 4), rule4(5, 6).

• Step 4: END - No more Leaf Nodes can be recognized

Figure 1 reports the steps 2 and 3 of the tree and rule construction. The proce-
dure follows with the evaluation step of the generated rules, that are:
rule1(X,Y) : −p(X,Y), c(Y,Z). rule2(X,Y) : −p(X,Y), d(Y).
rule3(X,Y) : −f(X,Y), s(Y). rule4(X,Y) : −p(X,Y), rule3(Y,Z).
Now, suppose that P , the percentage empirically computed on the domain at
handle, is equal to 95% and that the Score Percentage of each rule is: score(1) =
95%; score(2) = 99%; score(3) = 75%; score(4) = 86%. Then, rule1 and rule2
will be shifting rules while rule3 and rule4 neglecting rules:
rule1(X,Y) : −p(X,Y), c(Y,Z). rule2(X,Y) : −p(X,Y), d(Y).
: −f(X,Y), s(Y). : −p(X,Y), rule3(Y,Z).

Fig. 1. Tree construction of an observation

4 Experimental Results

The proposed method was implemented in SICStus Prolog and tested provid-
ing the resulting abstraction theories to the incremental ILP learning system
INTHELEX [4] allowing it to exploit its multistrategy capabilities, in particu-
lar the abstraction one. Various experiments were carried out on a real world
application domain of scientific paper documents [5].

The learning tasks to which the learning system was applied, involved the
induction of classification rules for three classes of scientific papers (96 documents
of which 28 for ICML, 32 for SVLN, 36 for IEEET), and of rules for identifying the
logical components Author [36+, 332-], Page Number [27+, 341-] and Title [28+,
340-] in the ICML papers (in square brackets the number of positive and negative
instances for each label are reported). Figure 2 shows an example of document
and its simplified3 description in first order language. 33 repetitions of each
learning task were carried out, in each of which the dataset was randomly split
into a training set (including 70% of the observations), exploited also to induce
the rules for the abstraction operators) and a test set (made up of the remaining
30%).

To build neglecting rules, the threshold for considering low discriminating
power (i.e. the score near to zero) was empirically set to ±5% of the minimum
positive value and of the maximum of the negative ones in the vector associ-
ated to the rule. To build shifting rules that have an high discriminating power
(i.e. very frequent in positive observations and rarely present in negative ob-
servations) the threshold was empirically set to the score less then 95% of the
minimum positive value and of the maximum of the negative ones in the vec-
tor associated to the rule for the classification task and less then 75% of the

3 In the figure we report an extract of the whole description that is made up of 112
literals on average

Fig. 2. Sample ICML document and relative simplified description

minimum positive value and of the maximum of the negative ones in the vector
associated to the rule for the understanding task.

The average results on the 33 folds, along with the number of refinements
and of clauses learned, the predictive accuracy of the learned theories and the
runtime (sec), are reported in Table 1. According to a paired t-test, there is no
statistical difference between the results with and without abstraction, except
for runtime. Having the same performance (predictive accuracy) and behavior
(no. of clauses and refinements) both with and without abstraction means that
the proposed technique was actually able to eliminate superfluous details only,
leaving all the information that was necessary for the learning task, which was a
fundamental requirement for abstraction. Conversely, runtime was dramatically
reduced when using abstraction thanks to the shorter descriptions obtained by
eliminating the details, which was exactly the objective of using abstraction.

An example of neglecting rule identified with the proposed strategy is:

:- type_graphic(A), pos_upper(A).

by which we understand that a graphics being placed in upper position is not
discriminant between positive and negative examples. As expected, exploiting
the abstraction operators the system learns shorter clauses. For instance, the
theory learned for author contains two clauses made up of 18 and 15 literals
(against the 19 and 37 without using abstraction):

logic_type_author(A) :- height_medium_small(A), pos_upper_type_text(A),

part_of(B, A), part_of(B, C), height_very_small_type_text(C),

Table 1. System performance exploiting the discovered abstraction theories

ICML SVLN IEEET
With Abs No Abs With Abs No Abs With Abs No Abs

Lgg 5.81 5.54 7.36 8.12 8.03 8.30
Cl 1.21 1.27 2.75 2.69 2.03 2.27

Accuracy 96.93% 96.75% 86.54% 87.36% 90.69% 90.57%
Runtime 2.00 3.16 11.34 19.46 7.64 27.55

Author Page Number Title
ICML With Abs No Abs With Abs No Abs With Abs No Abs

Lgg 8.9 8.96 8.15 8.12 8.81 9.09
Cl 2.33 2.06 2.39 2.45 2.42 2.54

Accuracy 97.18% 97.12% 97.81% 97.54% 98.12% 97.87%
Runtime 14.44 29.07 34.06 76.22 27.70 51.67

pos_upper_type_text(C), part_of(B, D), width_very_large(D),

height_smallest(D), type_hor_line(D), pos_center_pos_upper(D),

alignment_left_col(D, E), on_top(F, E), part_of(B, E), part_of(B, F),

part_of(B, G), type_text_width_medium_large(G), pos_left_type_text(G).

logic_type_author(A) :- part_of(B, A), part_of(B, C),

pos_upper_type_text(A), pos_center_pos_upper(A),

pos_upper_type_text(C), pos_left_type_text(C),

height_very_very_small_type_text(C), on_top(C, D),

part_of(B, D), on_top(E, A), width_very_large(E), height_smallest(E),

pos_center_pos_upper(E), on_top(F, E), alignment_center_col(F, E).

where the presence of several abstract predicates confirms that the automatically
generated abstraction theory was able to identify discriminative intermediate
concepts. An example of shifting rule learned (and exploited above) is:

pos_upper_type_text(A) :- type_text(A), pos_upper(A).

5 Conclusion and Future Works

The integration of inference strategies supporting pure induction in a relational
learning setting, such as abstraction to reason at multiple levels, can be very
advantageous both in effectiveness and efficiency for the learning process. In
inductive learning, the shift to a higher level representation can be performed
directly when the abstraction theory is given and usually an expert domain
has to built such a theory. This paper presented a technique for automatically
inferring meta-information needed to apply abstraction operators in an induc-
tive learning framework, exploiting the same observations that are input to the
inductive algorithm. Application of the proposed technique in a real learning
system proved its viability for significantly improving learning time in complex
real-world domains. Future work will concern the analysis of heuristics to choose
the seed, to improve the generation of abstraction theories and the design of
techniques that can provide information for further abstraction operators.

References

[1] S. Ceri, G. Gottlöb, and L. Tanca. Logic Programming and Databases. Springer-
Verlag, Heidelberg, Germany, 1990.

[2] L. De Raedt. Interactive Theory Revision - An Inductive Logic Programming

Approach. Academic Press, 1992.
[3] G. Drastah, G. Czako, and S. Raatz. Induction in an abstraction space: A form

of constructive induction. In Proceeding of the International Joint Conference on

Artificial Intelligence, pages 708–712, 1989.
[4] F. Esposito, S. Ferilli, N. Fanizzi, T.M.A. Basile, and N. Di Mauro. Incremental

multistrategy learning for document processing. Applied Artificial Intelligence:

An Internationa Journal, 17(8/9):859–883, 2003.
[5] S. Ferilli, N. Di Mauro, T.M.A. Basile, and F. Esposito. Incremental induction of

rules for document image understanding. In A. Cappelli and F. Turini, editors,
Advances in Artificial Intelligence, volume 2829 of LNCS, pages 176–188. Springer,
2003.

[6] N. S. Flann and T. G. Dietterich. Selecting appropriate representations for learn-
ing from examples. In AAAI, pages 460–466, 1986.

[7] A. Giordana, D. Roverso, and L. Saitta. Abstracting concepts with inverse res-
olution. In Proceedings of the 8th International Workshop on Machine Learning,
pages 142–146, Evanston, IL, 1991. Morgan Kaufmann.

[8] A. Giordana and L. Saitta. Abstraction: A general framework for learning. In
Working Notes of the Workshop on Automated Generation of Approximations and

Abstractions, pages 245–256, Boston, MA, 1990.
[9] P.C. Kanellakis. Elements of relational database theory. In J. Van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B of Formal Models

and Semantics, pages 1073–1156. Elsevier Science Publishers, 1990.
[10] S.H. Muggleton and L. De Raedt. Inductive logic programming. Journal of Logic

Programming: Theory and Methods, 19:629–679, 1994.
[11] S. Mustière, L. Saitta, and J.-D. Zucker. Abstraction in cartographic generaliza-

tion. In Z.W. Ras and S. Ohsuga, editors, Foundations of Intelligent Systems:

12th International Symposium, volume 1932 of Lecture Notes in Computer Sci-

ence, pages 638–644. Springer, 2000.
[12] C. Rouveirol and J. Puget. Beyond inversion of resolution. In Proceedings of

ICML97, pages 122–130, Austin, TX, 1990. Morgan Kaufmann.
[13] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5):513–523, 1988.
[14] P.E. Utgoff. Shift of bias for inductive concept learning. In R.S. Michalski, J.G.

Carbonell, and T.M. Mitchell, editors, Machine Learning: an artificial intelligence

approach, volume II, pages 107–148. Morgan Kaufmann, Los Altos, CA, 1986.
[15] J.-D. Zucker. Semantic abstraction for concept representation and learning. In

R. S. Michalski and L. Saitta, editors, Proceedings of the 4th International Work-

shop on Multistrategy Learning, pages 157–164, 1998.
[16] J.-D. Zucker and J.-G. Ganascia. Representation changes for efficient learning

in structural domains. In L. Saitta, editor, Proceeding of the 13th International

Conference on Machine Learning, pages 543–551. Morgan Kaufmann, 1996.

