
Automatic Induction of First-Order Logic

Descriptors Type Domains from Observations

Stefano Ferilli, Floriana Esposito, Teresa M.A. Basile, and Nicola Di Mauro

Department of Computer Science, University of Bari, Italy
{ferilli,esposito,basile,nicodimauro}@di.uniba.it

Abstract. Successful application of Machine Learning to certain real-
world situations sometimes requires to take into account relations among
objects. Inductive Logic Programming, being based on First-Order Logic
as a representation language, provides a suitable learning framework
to be adopted in these cases. However, the intrinsic complexity of this
framework, added to the complexity of the specific application context,
often requires pure induction to be supported by various kinds of meta-
information on the domain itself and/or on its representation in order
to prune the search space of all possible definitions. Indeed, avoiding the
exploration of paths that do not lead to any correct solution can greatly
reduce computational times, and hence becomes a critical issue for the
performance of the whole learning process. In the current practice, pro-
viding such information is often in charge of the human expert. It is also
a difficult and error-prone activity, in which mistakes are highly probable
because of a number of factors. This makes it desirable to develop pro-
cedures that can automatically generate such information starting from
the same observations that are input to the learning process.
This paper focuses on a specific kind of meta-information: the types used
in the description language and their related domains. Indeed, many
learning systems known in the literature are able to exploit (and some-
times require) such a kind of knowledge to improve their performance.
An algorithm is proposed to automatically identify types from observa-
tions, and detailed examples of its behaviour are given. An evaluation
of its performance in domains with different characteristics is reported,
and its robustness with respect to incomplete observations is studied.

Keywords

Description Languages, Knowledge Acquisition

1 Introduction

Learning in particular contexts, characterized by a high degree of complexity,
often requires pure induction to be supported by a variety of techniques that
can cope with different aspects of the learning task. A way to overcome such
a limitation is the use of other kinds of inferences in support of induction, ac-
cording to an integrated framework that tries to emulate the human way of

reasoning [11]. For instance, some learning systems can take great advantage
from meta-information on the domain itself and/or on its representation, in or-
der to prune the search space and focus on the parts of it in which a solution is
more likely to be found.

In the current practice, it is in charge of the human expert to specify all the
‘added-value’ information needed by such techniques for being applicable. It goes
without saying that quality, correctness and completeness in the formalization of
such meta-information is a critical issue, that can determine the very feasibility
of the learning process. Providing it is a very difficult task, also, that requires
a deep knowledge of the application domain, and is in any case an error-prone
activity, since omissions and errors may take place for a number of reasons. For
instance, the domain and/or the language used to represent it might be unknown
to the experimenter, because he is just in charge of properly setting and running
the learning system on a dataset provided by third parties and/or generated by
other people (or even by automatic systems), as in the case of classical machine
learning datasets available on the Internet. In any case, it is often not easy
for non-experts to single out and formally express such meta-knowledge in the
form of parameters or other kinds of representations needed by the automatic
systems, just because they are not familiar with the representation language and
the related technical issues. Other possible causes include the great number of
such parameters to be specified, and the fact that they are sometimes hidden
from the normal focus-of-attention when reasoning on the problem.

These considerations would make it highly desirable to develop procedures
that can automatically generate such information starting from the same obser-
vations that are input to the learning process. Hence, a strong motivation for
the research presented in this paper, aimed at proposing algorithms to automat-
ically infer the meta-information required by the techniques referred to above,
and at assessing the validity and performance of the corresponding procedures.
The challenge in this attempt is that it does not try to learn something about
the given instances, but instead aims at gathering information on the domain
and/or its description from the given instances. This means that we are no more
concerned with the description of concepts by proper juxtaposition of literals,
but rather with the meaning underlying the language used. Thus, the problem
can be seen as a higher-order learning, that deals with semantics rather than
with syntax.

The next section presents a technique to automatically infer the description
language from the very same data used by the learning procedure, and motivates
the interest of researchers for having available this kind of meta-information.
Then, Sections 3 and 4 extensively test the proposed approach, even in the case
of incomplete input information. Last section concludes the paper and outlines
future work.

2 Inducing Descriptors Type Domains

One of the most interesting issues, when dealing with observations in an un-
known language, is the identification of what properties are used to describe the
available knowledge, and what are the possible values for each property. In other
words, there is a need to know what are the types used in the description lan-
guage and their related domains. These issues are clearly strongly related to work
on ontologies, where we are concerned with the representation of concepts along
with their interrelationships and properties/domains. However, most of the cur-
rent research in that field is devoted to devise methodologies and techniques for
representing and exploiting ontological information (that in the current practice
is tipically entered by human experts), while the issue of automatically learning
and refining such information has not yet been takled thoroughly (also due to
the inherent complexity of the task).

On the other hand, various learning systems in the literature can exploit
meta-information of this kind, if available, to prune the search space and obtain
this way more efficiency. Just to cite the major ones, MIS [14], FOIL [3], Pro-
gol [13] and Mobal [12] allow the experimenter to specify the type of arguments
in the predicates of the description language. A straightforward exploitation of
such kind of information is to carry out a pruning of the search space, that elim-
inates hypotheses that contrast with the descriptor meaning. This would turn
out to be particularly useful in the case of incomplete descriptions, where the
presence of particular properties can be only abductively guessed and the avail-
ability of integrity constraints of this kind may be a valuable help for driving
such guesses. For instance, knowing that male and female are two different val-
ues of one domain, would allow a learning system to avoid generating and testing
clauses that refer both values to the same individual. It is clear that, along with
the complexity of the representation language and the number of properties and
values used, significant amounts of impossible hypotheses could be recognized in
this way and discarded in advance.

Some attempts to automatically infer such information have already been
carried out: in [10], for instance, the Authors exploit the occurrence, in the
available observations, of the same specific value in different positions to identify
predicate arguments to be filled with information of the same type. In this case,
the domain of a type can be inferred by simply collecting all the constants
that appear in the predicate positions associated to that type. However, some
issues about type inference still remain unsolved. Indeed, theories learned by
many systems are constant-free, and allow only variables as terms. In those
cases, the information expressed by constants can be recovered by a process of
reification, that (loosely speaking) transforms common nouns into predicates,
and uses constants as just proper nouns for specific objects. For instance, the
property color(bicycle,red) is translated into color(b,r),bicycle(b),red(r), this way
being able to express the fact that an object is red as color(X,Y),red(Y).

This is usual when using First Order Predicate Logic as a representation
language: n-ary (n > 1) predicates are used to express relationships among
different objects. Specifically, binary predicates, in addition to expressing a re-

lationship between two objects, can be exploited to associate objects with the
corresponding values for their relevant (atomic) properties. In order to avoid
such ambiguity, a process of reification can be carried out on symbolic proper-
ties, so that each possible value for them becomes itself a property, and hence
can be represented by a unary predicate. This obviously breaks the association
of specific values and types to particular predicate arguments, which makes it
more difficult to collect them according to the properties they refer to. In such a
situation, discovering the type domains for the properties in the language can be
cast as the search for groups of unary predicates that semantically refer to the
same attribute. Knowing this kind of types could be of great help for limiting the
search space in some systems that are not strongly observation-driven: systems
like Claudien [4], Primus [7] and Tertius [8], for instance, could avoid generating
clauses in which more than two values belonging to the same type are associated
to one object, thus dramatically limiting the combinatorial explosion in clause
generation.

Example 1. Given the following examples and descriptions:
not(target(a)) :- part of(a,a′), high(a′), large(a′), white(a′),
part of(a,a′′), low(a′′), small(a′′), white(a′′), to right(a′,a′′).
target(b) :- part of(b,b′), high(b′), small(b′), blue(b′),
part of(b,b′′), low(b′′), large(b′′), red(b′′), on top(b′,b′′).
target(c) :- part of(c,c′), high(c′), small(c′), yellow(c′),
part of(c,c′′), high(c′′), large(c′′), red(c′′), to right(c′,c′′).

the set of unary predicates in the description language is:
{high, large, white, low, small, blue, red, yellow}

We would like the system to understand that the values they represent define
three domains referred to different types, according to the following groups:

– {white, blue, red, yellow} (that, being able to catch their semantics, could
be recognized as belonging to property color),

– {small, large} (that are related to property size), and
– {high, low} (related to property height).

In the rest of this presentation, the following (clearly non restricting) as-
sumptions will be made:

– all non-numeric (symbolic or discretized) properties are reified, so that all of
their possible values are expressed by means of unary predicates1;

– there is no overloading on unary predicates, i.e. no unary predicate expresses
a value that belongs to many types (this is a typical feature of strongly typed
programming languages, e.g. for enumerative types);

– there are no ‘boolean’ properties, i.e. properties that are expressed by just
the presence or absence of a corresponding predicate (e.g., found, would
require an opposite predicate not found);

1 This is the actual problematic situation, since if the property values were associated
to objects as arguments of (e.g., binary) predicates, the predicates themselves would
be sufficient to separate and semantically identify the type domains.

– all properties are applicable to any object that occurs in the descriptions (in
case this does not hold, it is sufficient to include an additional not applicable
value to each property that makes sense for some objects only)2.

The first consideration one can do is that different values for the same at-
tribute are mutually exclusive, since one given object cannot have two of them
at the same time (e.g., an object can be black or blue, but not both). Hence,
the first problem to be solved is finding all couples of predicates that are mu-
tually exclusive, i.e. never co-occur referred to the same object in the available
knowledge of the world (let us call them constraints3). Such information can be
obtained as follows: after collecting the set of all unary predicates used in the
available example descriptions, all the possible pairs of such predicates (with-
out regard to the order) are generated, associated with the same variable as
argument and then tested for occurrence in the observations themselves.

Example 2. The set of unary predicates identified in the previous example yields
56 possible pairs to be tested. Among these, some occur in the available obser-
vations, and hence the corresponding predicates cannot belong to the same type
domain. For instance:

〈high(X), large(X)〉, 〈large(X), white(X)〉, 〈high(X), white(X)〉
are verified by object a′. Others never occur, some including values that actually
belong to the same semantic domain:

〈high(X), low(X)〉, 〈large(X), small(X)〉, 〈red(X), white(X)〉, . . .
and others including values that belong to different ones:

〈small(X), red(X)〉, 〈large(X), yellow(X)〉, 〈low(X), blue(X)〉, . . .

It goes without saying that finding mutually exclusive couples is not sufficient:
More precisely, any value in a given domain cannot co-occur in one object with
any other value in the same domain. Thus, the problem becomes identifying
groups of unary predicates whose elements are couplewise mutually exclusive. In
particular, since for any set of predicates fulfilling such property it holds that
all of its subsets fulfill the same property as well, we are interested in maximal
sets only, i.e. we discard groups that are subsets of other groups. This can be
obtained by mapping the problem onto a corresponding one in the graph context.
Specifically, we build an undirected graph Ge whose nodes are unary predicates
in the description language, and where an edge connects two nodes if and only if
they are mutually exclusive. In such a setting, the maximal sets we are looking
for correspond to all the maximal cliques (i.e., cliques that cannot be further
extended) in Ge.

2 For instance, when describing books, properties weight and price would make sense
only for the book as a whole, and not for its layout/content components such as title,
foreword, etc. In such a case, the domains of the above properties (e.g., {weight light,
weight medium, weight heavy} and {cheap, expensive}) could be extended by two
additional values weight not applicable and price not applicable, respectively.

3 This notion of constraint can be extended to the case of n-tuples of predicates that
never occur together referred to the same object.

Example 3. Applying the above technique to the set of unary predicates and
mutually exclusive pairs obtained in previous examples, the following cliques
(i.e., groups of pairwise mutually exclusive values) are found:

– {blue, large, yellow}
– {blue, low, yellow}
– {blue, red, white, yellow}
– {high, low}
– {large, small}
– {red, small}

The groups found this way are still far from being the desired solutions.
Indeed, there can be groups of predicates with couplewise mutually exclusive
elements even if they do not refer to a same attribute. For instance, it is generally
true that a line is never too tall, hence in a paper document domain we might find
the group {line, high, very high, highest} in which it is obvious that value line
belongs to the domain of type shape, while the other three values refer to the type
height. Nevertheless, we expect that two correct (i.e. distinct, or, more precisely,
disjoint) groups exist, one containing all (and only those) values belonging to
property shape, and the other containing all (and only those) values belonging
to property height. Here, the clue is that, in the end, the desired solution will
include only groups that have no element in common. Hence, since the above
group would have elements in common with properties height and shape, it
should be discarded. Again, this problem can be solved in the graph context
by building an undirected graph Gd in which nodes are groups identified in the
previous step as cliques of graph Ge, and an edge connects two nodes if and only
if they are disjoint sets. Now, the solution will be made up by only couplewise
disjoint subsets, and specifically by maximal groups of disjoint subsets, each of
which corresponds to a maximal clique in Gd.

Example 4. Continuing with the previous examples results, the clique technique
returns the following sets of possible mutually disjoint groups of predicates:

– { {blue, large, yellow}, {high, low}, {red, small} } (including 7 values)
– { {blue, low, yellow}, {large, small} } (including 5 values)
– { {blue, low, yellow}, {red, small} } (including 5 values)
– { {blue, red, white, yellow}, {high, low}, {large, small} } (including 8 values)

As in the example above, the clique in Gd will probably not be unique, in
which case one must have a clue for choosing the right one. The intuition, in
this case, is that any ‘wrong’ clique, in order to fulfill the mutual disjunction
requirement, will have overall a number of values that is less than that of the
correct solution, since the correct solution should be the only one containing
all the possible values for each property (represented by a group), and hence
the union of predicates in all of its components should be equal to the whole
set of values for all possible attributes. In other words, the solution is actually
a partition of the set of unary predicates. This holds because the description

Algorithm 1 Identification of type domains

Require: L: Description language
1: U := {p ∈ L | p unary}
2: E := {(p, q) ∈ U × U | 6 ∃X : p(X) ∧ q(X)}
3: Ge := (U, E)
4: S := {C ⊆ U | C clique in Ge}
5: F := {(p, q) ∈ S × S | p ∩ q = ∅}
6: Gd := (S, F)
7: T := {C ⊆ S | C clique in Gd}

Ensure: argmax t∈T (|
⋃

ti∈t
ti|): type domains

language is assumed not to contain ‘boolean’ properties; if it does, the union
would not be a partition, but should in any case contain more unary predicates
than any other candidate partition.

Example 5. Among the sets of disjoint groups identified in the previous step, the
only one containing all 8 unary predicates in the description language is { {blue,
red, white, yellow}, {high, low}, {large, small} }, that also corresponds to the
solution, as expected.

The whole strategy is summarized in Algorithm 1. Given a set of examples
along with their descriptions, all unary predicates (corresponding to property
values) in the description language are collected, and a graph is built having
such predicates as nodes and an edge between two nodes if the corresponding
predicates are never referred to the same object in the available observations.
Then, the cliques in such a graph are identified, and used as nodes for building
another graph, whose edges connect two nodes if they share no predicate. Lastly,
for each clique in this latter graph the union of the sets of predicates in the
nodes is computed, and the one with the greatest cardinality is chosen as the
solution. argmax t∈T (|

⋃
ti∈t ti|) corresponds to the clique t in Gd that maximizes

the cardinality of (i.e., the number of predicates in) the set union of its composing
nodes ti.

It is presented in a simple and linear fashion, since it includes two clique
computations (for which algorithms are known in the literature and often im-
plemented as standard libraries in programming languages compilers) in steps
4 and 7, and other trivial operations: steps 3 and 6 consist of a simple name
assignment to graphs, step 1 requires to scan the descriptors used in the given
observations just once in order to collect the corresponding unary predicates;
steps 2 and 5 collect all couples of graph nodes without regard to the order
(which can be done in O(m2) steps for m nodes) and test a condition on each
of them. Informally speaking, the problem resembles a puzzle, in which more
pieces than necessary are provided, such that the additional pieces can partly
fit the others, but when added will always prevent reaching a complete solution.
A consideration is worth. The feasibility of reaching the target solution requires
that the number of values for the domains to be identified and the amount of
available knowledge about observations to be strictly proportional. Indeed, the

more the values, the more the possible interrelations that can take place be-
tween them. If the available observations are not sufficiently significant, i.e. too
many existing interrelations are not recognizable in them, then knowledge about
the actual biases in the given domain would be too loose for the algorithm to
properly separate semantically different values.

Example 6. Given the following problem setting:
not(target(a)) :- part of(a,a′), high(a′), large(a′), blue(a′),
part of(a,a′′), low(a′′), small(a′′), white(a′′), to right(a′,a′′).
target(b) :- part of(b,b′), high(b′), small(b′), black(b′),
part of(b,b′′), low(b′′), large(b′′), red(b′′), on top(b′,b′′).
target(c) :- part of(c,c′), high(c′), small(c′), yellow(c′),
part of(c,c′′), high(c′′), large(c′′), red(c′′), to right(c′,c′′).

two different partitions, both involving all 9 unary predicates {high, large, blue,
low, small, white, black, red, yellow} could be found, and specifically:

– { {black, blue, red, white, yellow}, {high, low}, {large, small} }
– { {black, large, white, yellow}, {blue, red, small}, {high, low} }

which provides no clue for understanding which is the correct one.

As to the practical implementation of the proposed algorithm, some consid-
erations can be made that are useful to restrict the search space of candidate
disjoint predicate groups. First, note that when all unary predicates in the de-
scription language represent values of only one type, they are all mutually ex-
clusive, thus the graph Ge is completely connected and yields just one candidate
group, which coincides with the only element of the singleton partition to be
found (thus, there is no need for computing Gd). Let us now face the case in
which at least two types are present. Here, a way to restrict the range of possi-
bilities to be checked is inspired to a well-known mathematical trick, that runs
more or less as follows. “A man wakes up early in the morning, and has to dress
up to go work; since he cannot turn on the light not to wake up his wife, he has to
pick his socks from the drawer in the dark; knowing the drawer contains ni pairs
of socks for each color i = 1, ..., m, how many socks should he draw at random to
be sure that at least two of them are of the same color?” The answer is, clearly,
m + 1 (the number of colors plus one), so that the set of socks will contain at
least a double. In our case, a procedure (sketched in Algorithm 2) is implemented
that progressively returns the pairs (nk, mk)k=2,3,..., where nk is the number of
unary predicate k-tuples that are new constraints (i.e., constraints that are not
a superset of a previous constraint found at a step j < k), and mk is the number
of those that are not constraints, according to the available observations, until
a (n

k
, m

k
) is found such that (n

k+1
, m

k+1
) = (0, 0).

Then, only the cliques of size (greater than or) equal to k must be taken
into account. Indeed, if the number of types is k, any group of unary literals
of size k + 1 will contain at least 2 values taken from one type domain. Thus,
these two literals have surely appeared previously as binary constraints, and
hence no (new) constraint nor non-constraint will be present of size k + 1, i.e.

Algorithm 2 Identification of the maximum number of domains

Require: U : Unary predicates in the description language, O: Available observations
NonConstraints1 ← {{p}|p ∈ U}
n1 ← 0; m1 ← |NonConstraints1|
k← 1
while ¬(nk = 0 ∧mk = 0) do

k← k + 1
NonConstraintsk ← ∅
Constraintsk ← ∅
for all N ∈ NonConstraintsk−1 do

for all p ∈ U , p 6∈ N do

if N ′ = N ∪ {p} is verified by some object in O then

NonConstraintsk ← NonConstraintsk ∪ {N
′}

else

if 6 ∃C ∈ Constraintsj , j < k ∋′ C ⊂ N ′ then

Constraintsk ← Constraintsk ∪ {N
′}

end if

end if

end for

end for

nk ← |Constraintsk|; mk ← |NonConstraintsk|
end while

Ensure: k: number of domains in O

(n
k+1

, m
k+1

) = (0, 0). Conversely, for k ≤ k there will surely be a k-tuple
of unary predicates, in which each unary predicate is taken from a different
domain. Such a k-tuple is either a (superset of a previous) constraint, or it is
verified by the available observations, in which case it is a non-constraint (and
thus mk > 0).

Example 7. Given the following examples and descriptions:
not(target(a)) :- part of(a,a′), large(a′), part of(a,a′′), small(a′′).
target(b) :- part of(b,b′), small(b′), blue(b′), part of(b,b′′), large(b′′), red(b′′).
target(c) :- part of(c,c′), small(c′), part of(c,c′′), large(c′′), red(c′′).

the set of unary predicates in the description language is:
U = {large, small, blue, red}

We would like the procedure to infer the number k of types. We first set:
NonConstraints1 = {{large}, {small}, {blue}, {red}},
n1 = 0 and m1 = |NonConstraints1| = 4.

Since m1 6= 0, each singleton in NonConstraints1 must be extended in all
possible ways by means of a new unary predicate in the description language,
thus the procedure generates the following couples:

{large, small}, {large, blue}, {large, red},
{small, blue}, {small, red}, {blue, red}.

By testing each of such couples against the available observations, the procedure
generates the following sets:

NonConstrainst2 = {{small, blue}, {large, red}}

since in the observations object b′ is both small and blue, and there are two
objects (b′′ and c′′) that are large and red at the same time.

Constraints2 = {{large, blue}, {small, red}, {large, small}, {blue, red}}.
since no observed object is at the same time large and blue, nor small and red,
nor large and small, nor blue and red.
Now, since n2 = |Constrainst2| = 4 6= 0 and m2 = |NonConstrainst2| = 2 6= 0
the procedure tries to extend each couple in NonConstrainst2 by adding a
new unary predicate. But each triple that can be obtained in this way is a
superset of an element of Constraints2, thus we will have NonConstraints3 =
Constraints3 = ∅ and hence n3 = m3 = 0 ⇒ k = 2.

Not only this avoids the computational overhead of handling those with lesser
size, since they will not be part of the solution, but can be used also to recognize
that the available data are not sufficient to carry out the desired task. Indeed, if
no cliques (i.e., partitions) of size (i.e., cardinality) at least k exist in the graph,
the procedure can warn the user that information in the observations is probably
too loose to allow the reconstruction of the types in the representation language
used.

3 Experimental Results

The proposed method was implemented in SICStus Prolog, and tested on various
domains, suitably chosen in order to cover all the possible cases of available ob-
servations and target types to be recognized. Here, we report the results obtained
on one sample dataset for each case.

The Scientific Papers dataset [6] is based on a representation language made
up of predicates with various arities, of which unary predicates represent val-
ues belonging to many different domains (general case). It includes 112 scientific
papers, belonging to 4 different classes (Springer-Verlag Lecture Notes, Proceed-
ings of the International Conference on Machine Learning, IEEE Transactions,
and none of the above) whose layout structure was described in terms of its
composing layout blocks features (height, width, horizontal position, vertical
position, content type) and relative position (horizontal adjacency, vertical ad-
jacency, horizontal alignment, vertical alignment). The procedure reached k = 5,
and found the following (correct) types:

1. Width: {large, medium, medium large, medium small, small, very large,
very small}

2. Content : {graphic, hor line, image, mixed, text,ver line}
3. Vertical position: {lower, middle, upper}
4. Horizontal position: {center, left, right}
5. Height : {large, medium, medium large, medium small, small, smallest,

very large, very small, very very large, very very small}

The Family Relationships dataset [2] refers to a description language made
up of predicates with various arities, of which unary predicates all belong to the

same type. It describes a hypothetical family in terms of each person’s sex and of
the basic relations among persons (parent and married), whose members’ pairs
are tagged according to the derived relations (father, mother, son, daughter,
uncle, aunt, etc.). In this case, all the unary predicates fell in one group (thus
there was no need for building Gd), that was also the only type (successfully
retrieved by the algorithm):

1. Sex : {female, male}

The Multiplexer dataset [5] describes 6-bit configurations, with the aim of
inducing the definition of a multiplexer such that, among the last four bit po-
sitions, the position denoted by the first two bits must be 1. All 64 possible
bit configurations are included, which should make significantly easier the type
induction task, as confirmed by the algorithm output:

1. Sixth bit : {bit6at0, bit6at1}
2. Fifth bit : {bit5at0, bit5at1}
3. Fourth bit : {bit4at0, bit4at1}
4. Third bit : {bit3at0, bit3at1}
5. Second bit : {bit2at0, bit2at1}
6. First bit : {bit1at0, bit1at1}

The Tic Tac Toe dataset [1] description language is made up of unary pred-
icates only (representing values of different types). It contains all possible in-
stances of final game configurations, each reporting the status (blank, X, or
O) of all 9 positions (identified by their horizontal and vertical position on the
board). Thus, with respect to the previous dataset, here the complexity is aug-
mented by the greater number of types, the greater number of values per type
and the elimination of a significant portion of all possible board configurations
(specifically, all non-final ones). In this case, k = 9 (even if no new constraints
of size 7, 8 and 9 were found), just like the number of types (each corresponding
to one possible position) correctly recognized by the system:

1. Top-Right position content : {tr b, tr o, tr x}
2. Top-Center position content : {tc b, tc o, tc x}
3. Top-Left position content : {tl b, tl o, tl x}
4. Middle-Right position content : {mr b, mr o, mr x}
5. Middle-Center position content : {mc b, mc o, mc x}
6. Middle-Left position content : {ml b, ml o, ml x}
7. Bottom-Right position content : {br b, br o, br x}
8. Bottom-Center position content : {bc b, bc o, bc x}
9. Bottom-Left position content : {bl b, bl o, bl x}

Lastly, the Congressional Votes [9] dataset describes 435 Congressmen as
being democrats or republicans according to their votes on 16 issues. It is made
up of 435 examples, described by means of 32 predicates, each representing the
favorable (y) or opposite (n) vote on one of the above issues. It is particularly
interesting because a certain amount of noise is present in the descriptions, in
the form of unknown (omitted) votes, as reported in Table 1. Nevertheless, the
algorithm is able to correctly infer all the 16 types (corresponding to the issues),
each with its 2 descriptors (corresponding to the yes/no options).

Issue No. of Omissions

handicapped infants 0

crime 25

adoption budget resolution 48

mx missile 15

physicians fee freeze 11

el salvador aid 11

religious groups in schools 15

immigration 22

synfuels corporation cutback 7

education spending 21

water project cost sharing 12

duty free exports 17

aid to nicaraguan contrast 14

superfund right to sue 31

export administration act S.A. 28

anti satellites test ban 11
Table 1. Noise on Congressmen votes

4 Experiments with Incomplete Knowledge

Once assessed the validity of the proposed algorithm in contexts with different
characteristics, an interesting issue is evaluating its effectiveness under stress. A
preliminary idea about this was given by the Congressional Votes dataset, where
a number of observations missed some votes. Specifically, the aim was checking
if it works also in presence of a small amount of information, and to what ex-
tent it does. To this purpose, we focused on the Scientific Papers dataset, for
a number of reasons. First, because it is a real-world one, and is probably the
most complex among those considered. Second, the shape of the descriptions is
not fixed, differently from the Votes, Multiplexer and Tic Tac Toe ones. Third,
it was made up of many different observations, differently from the Family one.
Various experiments were run, in which noise was progressively introduced in the
dataset descriptions. For each fixed amount of noise to be introduced, 10 ran-
dom corruptions of the dataset were performed, on which running the proposed
algorithm. Then, the learned types were checked and categorized in one of the
following categories (listed by decreasing desirability): correct, incomplete (i.e.,
missing some types or some values in some type domains, but without mixing val-
ues belonging to different types), impossible (when the algorithm autonomously
recognized that the available information was too loose for getting to a correct
solution), and wrong (when at least one of the identified types contained in its
domain values actually belonging to different types).

A first experiment in this direction aimed at assessing how sensitive the
algorithm is to the amount of observations provided to it. In this case, the dataset
corruption consisted in progressively eliminating observations (examples) from
it (remember that the initial size was 112). The amount of corruption ranged

Fig. 1. Performance for Progressively Smaller Datasets

between 10% and 90% of the entire dataset, and the corresponding results are
reported in Figure 1. It is interesting to note that the algorithm never generated
undesirable (i.e., impossible or wrong) type domains. Actually, up to 50% of
the dataset it always gave correct and complete answers. After that threshold,
completeness started decreasing, but even when 90% of the observations was
dropped (i.e., only 12 paper descriptions were available) in 2 cases it succeeded
in finding the correct and complete types. This should allow one to state that
the system is effective also when provided with very few observations.

Then, the next question was how much noise could be present in the available
knowledge in order for the system not to be misleaded in its task. For this
purpose, all the available observations were corrupted by eliminating from them
a progressively larger amount of information, ranging from 10% to 60%. The
experimental outcomes, graphically represented in Figure 2, suggest that the
algorithm is more sensitive to partial descriptions than it was to a small number
of observations. Indeed, in this case complete and correct types are induced
only up to 20% of corruption, while accepting also incomplete types is ok up to
30%. Anyway, also after that threshold, the sum of desirable cases (i.e., correct
and incomplete ones) far outperforms the number of undesirable ones. Only
when 60% of each description in the dataset is dropped the number of wrong
inductions becomes predominant, but interestingly it does not exceed half of the
trials.

This behaviour can be explained because the proposed algorithm heavily re-
lies on co-occurrence of values for inducing the type domains. Thus, eliminating
whole observations, but leaving complete the remaining ones, potentially still

Fig. 2. Performance for Progressively Incomplete Descriptions

preserves many co-occurrences. On the contrary, dropping portions of each ob-
servation is likely to introduce false (supposed) incompatibilities among values
that actually belong to different types. As already pointed out, some of these
false incompatibilities are already present in the complete dataset (e.g., a line
can have any width or height but is never too thick), thus artificially adding
more noise of this kind makes an already hard task even harder. However, if the
procedure is to be used in a Machine Learning context, incomplete (unknown)
information in the available observations is a problem on its own, and exper-
imental results show that abductive operators can cope with it only to some
extent, which is in any case far below the threshold after which the proposed
algorithm’s performance becomes too low to be acceptable (and in general does
not deal with datasets in which all descriptions are corrupted).

5 Conclusions

Many learning systems known in the literature are able to exploit and/or require
knowledge about the types used in the description language and their related do-
mains to improve their performance by pruning accordingly the search space of
all possible hypotheses. This paper proposed an algorithm to automatically iden-
tify this kind of meta-information from the same observations that are input to
the learning process, providing detailed examples of its behaviour. Experimental
evaluation in several domains with characteristics that stress different features of
the algorithm reveals encouraging performance. Moreover, being the algorithm

dependent on the amount and quality of observations available, specific exper-
iments have been run aimed at assessing its robustness, even when incomplete
information is provided.

Given the good performance of the algorithm by itself in identifying type
domains from observations, the next step will be exploiting the induced meta-
information to support the inductive step of learning algorithms, in order to
assess the gain in computational effort and predictive accuracy that it can bring,
in particular when the available descriptions are incomplete and abduction is to
be used. Additional future work will concern a theoretical study of the algorithm
behavior and complexity, in order to develop heuristics that can improve its
performance by avoiding unnecessary computations. A comparison with other
(e.g., Constraint Satisfaction Problem – CSP) solutions to the same task is
also planned. Then, the next objective will be studying the case of structured
types, which causes additional interrelations among descriptors to be taken into
account.

Acknowledgement

This work was partially funded by the EU project IST-507173 Two Knowledge
VIKEF, “Virtual Information and Knowledge Environment Framework”.

References

[1] D. W. Aha. Incremental constructive induction: An instance-based approach.
Proceedings of the 8th International Workshop on Machine Learning, pages 117–
121. Morgan Kaufmann, 1991.

[2] H. Blockeel and L. De Raedt. Inductive database design. In Foundations of

Intelligent Systems, volume 1079 of Lecture Notes on Artificial Intelligence, pages
376–385. Springer, 1996.

[3] R.M. Cameron-Jones and J.R. Quinlan. Efficient top-down induction of logic
programs. SIGART bulletin, 5(1):33–42, 1994.

[4] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26(2):99–146,
1997.

[5] W. V. de Velde. IDL, or Taming the Multiplexer Problem. Proceedings of the 4th

European Working Session on Learning. Pittman, 1989.
[6] S. Ferilli, N. Di Mauro, T.M.A. Basile and F. Esposito. Incremental Induction of

Rules for Document Image Understanding. In AI*IA 2003: Advances in Artificial

Intelligence, volume 2829 of Lecture Notes on Artificial Intelligence, pages 176–
188. Springer, 2003.

[7] P.A. Flach and N. Lachiche. Cooking up integrity constraints with primus. Pre-
liminary Report CSTR-97-009, University of Bristol - Department of Computer
Science, December 1997.

[8] P.A. Flach and N. Lachiche. Confirmation-guided discovery of first-order rules
with Tertius. Machine Learning, 42(1/2):61–95, 2001.

[9] A. Kakas and F. Riguzzi. Abductive concept learning. New Generation Comput-

ing, 1999.

[10] E. McCreath and A. Sharma. Extraction of meta-knowledge to restrict the hy-
pothesis space for ilp systems. In Proceedings of the 8th Australian Joint Confer-

ence on Artificial Intelligence, pages 78–82. World Scientific, 1995.
[11] R. S. Michalski. Inferential theory of learning. developing foundations for multi-

strategy learning. In R. S. Michalski and G. Tecuci, editors, Machine Learning. A

Multistrategy Approach, volume IV, pages 3–61. Morgan Kaufmann, San Mateo,
CA, U.S.A., 1994.

[12] K. Morik. Balanced cooperative modeling. Machine Learning, 11:217–235, 1993.
[13] S. Muggleton. Inverse entailment and Progol. New Generation Computing, Special

issue on Inductive Logic Programming, 13(3/4):245–286, 1995.
[14] E. Shapiro. Inductive inference of theories from facts. Technical Report 192,

Computer Science Department, Yale University, 1981.

