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Abstract. Efficiency of the first-order logic proof procedure is a ma-
jor issue when deduction systems are to be used in real environments,
both on their own and as a component of larger systems (e.g., learn-
ing systems). This paper proposes a new f-subsumption algorithm that
is able to return the set of all substitutions by which such a relation
holds between two clauses without performing backtracking. Differently
from others proposed in the literature, it can be extended to perform
resolution, also in theories containing recursive clauses.

1 Introduction

Logic Programming [6] is a computer programming approach based on the repre-
sentation of programs as first-order logic theories made up of Horn clauses, whose
execution is reduced to proving statements in the given theory. Since the clas-
sical provability relation, logic implication, is undecidable [10], the weaker but
decidable generality relation of #-subsumption is often used in practice. Given C'
and D clauses, C' §-subsumes D (often written C < D) iff there is a substitution
0 such that C8 C D. A substitution is a mapping from variables to terms, often
denoted by 6 = {X; — #1,...,X,, — tn}, whose application to a clause C,
denoted by C#, rewrites all the occurrences of variables X; (i =1...n) in C by
the corresponding term t;.

Since in this framework program execution corresponds to proving a theo-
rem, efficiency of the generality relation used is a key issue that deserves great
attention, whichever application Logic Programming is used for. In Theorem
Provers, explosion of the possible interactions between clauses is often limited
by deleting all clauses that are discovered to be already subsumed by other
clauses in the theory. In Inductive Logic Programming (ILP), a large amount of
tests is needed to check completeness and consistency of new hypotheses against
all given examples. Another exploitation of #-subsumption tests is to compute
the reduction of clauses, i.e. a clause that is equivalent to a given one but from
which all redundant (superfluous) literals have been deleted.

In the following, we will assume that C' and D are Horn clauses having the
same predicate in their head, and that the aim is checking whether C' §-subsumes
D. Note that D can always be considered ground (i.e., variable-free) without loss
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of generality. Indeed, in case it is not, each of its variables can be replaced by
a new constant not appearing in C' nor in D, obtaining a new clause D’, and
it can be proven that C #-subsumes D iff C' §-subsumes D’. Since the test if C
f-subsumes D’ can be cast as a refutation of {C'} U —D’, a basic algorithm can
be obtained in Prolog by asserting C plus all the literals in the body of D’, and
finally querying the head of D’. The outcome is computed by Prolog through
SLD resolution [8], which can be very inefficient under some conditions.

Ezxample 1. Given the following two clauses:

h(X) :- p(X,X1),p(X,X2), ..., p(X,X,)),q(X,)).

h(c) :- p(c,c1),ple,ca), ... ,plc,cm).
SLD-resolution will have to try all m™ possible mappings (backtrackings) before
realizing that the former does not subsume the latter because of the lack of
property q. Thus, the greater n and m, the sooner it will not be able to compute
subsumption between them two clauses within acceptable time.

The next section presents related work in this field; then, Section[3introduces
the new subsumption algorithm, while Section H] shows how it can be used to
perform resolution. Lastly, Section [H concludes the paper.

2 Related Work

The great importance of finding efficient #-subsumption algorithms is reflected
by the amount of work carried out so far in this direction in the literature. Two
classical algorithms are based on resolution: The former, by Chang and Lee [1],
carries out a complete resolution of each literal in C with all possible literals in
the negation of D, whereas the latter, by Stillman [I1], chooses one at each step
and then exploits backtracking in case of wrong choice. The latter uses back-
tracking to avoid the computation of further, useless unifications once a solution
is found. Based on such considerations, Gottlob and Leitsch [4] defined a new
backtracking algorithm that attacks the problem complexity by first partition-
ing the clause into independent subsets, and then applying resolution separately
to each of them, additionally exploiting a heuristic that resolves each time the
literal with the highest number of variables that occur also in other literals.

A more formal approach was then taken by Kiets and Liibbe [5]. They first
identify the subset of C that deterministically #-subsumes D, and then sepa-
rate the rest of C into independent parts that can be handled separately by
f-subsumption algorithms. Scheffer, Herbrich and Wysotzki [9] transposed the
problem into a graph framework, in which additional techniques can be ex-
ploited. They take into account not just single literals, but also their ‘context’
(i.e., the literals to which they are connected via common variables). Indeed, by
requiring that two literals have the same context in order to be matched, the
number of literals in C' that have a unique matching candidate in D potentially
grows. The remaining (non-determinate) part of C' is then handled by mapping
the subsumption problem onto a search for the maximum clique in a graph, for
which known efficient algorithms are known, and can be properly tailored.
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All the techniques presented so far rely on backtracking, and try to limit its
effect by properly choosing the candidates in each tentative step. Hence, all of
them return only the first subsuming substitution found, even if many exist.

Finally, Maloberti and Sebag [7] face the problem of #-subsumption by means
of a Constraint Satisfaction Problem (CSP) approach by transforming each lit-
eral involved in the hypothesis into a CSP variable with proper constraints encod-
ing the #-subsumption structure. Given such a representation, different versions
of a correct and complete #-subsumption algorithm, named Django, were built,
each implementing different (combinations of) CSP heuristics. Experiments in
various domains prove a difference in performance of several orders of magnitude
in favor of Django compared to the algorithms described above, thus compar-
ison of new algorithms to just this system should be enough to evaluate their
efficiency. Note that Django only gives a binary (yes or no) answer to the sub-
sumption test, without providing any matching substitution in case of positive
outcome.

3 A New Matching Algorithm

Ideas presented in Section[2 aim at identifying subparts of the given clauses for
which the #-subsumption test can be computed with reduced complexity, and
base their efficiency on the retrieval of just one solution (substitution). Then,
only classical algorithms can be applied to the remaining parts. In those cases,
the CSP approach proves very efficient, but at the cost of not returning any
substitution by which the matching holds. This suggests that they would not be
able to support resolution, in particular when recursive clauses are involved. The
proposed algorithm, on the contrary, returns all possible matching substitutions,
without performing any backtracking in their computation. Such a feature is im-
portant, since the found substitutions can be made available to further matching
problems, thus allowing to perform resolution.

Before discussing the new procedure proposed in this paper, it is necessary
to give some definitions on which the algorithm is based. In the following we will
assume C' and D to be clauses, such that C' is constant-free and D is ground.

Definition 1 (Matching substitution). A matching substitution from a lit-
eral Iy to a literal Iy is a substitution p, such that lyp = 5.

The set of all matching substitutions from a literal [ € C' to some literal in D is
denoted by [2]:
uni(C,l,D) ={p |l € C,lpn € D}.

Let us start by defining a structure to compactly represent sets of substitu-
tions.

Definition 2 (Multisubstitutions). A multibind is denoted by X — T', where
X is a variable and T # 0 is a set of constants. A multisubstitution is a set of

multibinds © = {X1 = T1,..., X, > T} #0, where Vi # j: X; # X;.



0-Subsumption and Resolution: A New Algorithm 387

Informally, a multibind identifies a set of constants that can be associated to a
variable, while a multisubstitution represents in a compact way a set of possi-
ble substitutions for a tuple of variables. In particular, a single substitution is
represented by a multisubstitution in which each constants set is a singleton.

Ezample 2. © = {X — {1,3,4},Y — {7},Z — {2,9}} is a multisubstitution.
It contains 3 multibinds, namely: X — {1,3,4}, Y — {7} and Z — {2,9}.

Given a multisubstitution, the set of all substitutions it represents can be
obtained by choosing in all possible ways one constant for each variable among
those in the corresponding multibind.

Example 3. The set of all substitutions represented by the multisubstitution
0 ={X —{1,3,4},Y — {7}, Z — {2,9}} is the following:

{X=1Y->72-2}{X=>1Y =729} {X —=3Y 17722},
{X=23Y=>7,Z-9{X =24Y =>17,Z -2} {X =4Y > 7,7 = 9}}.

Definition 3 (Union of multisubstitutions). The union of two multisubsti-
tutions @ = {X - T'.X1 - T1,..., Xy 2 Tp} and @ ={X - T",X; —
T1,..., X, — Ty} is the multisubstitution defined as

e'ue’ = {Y —T'U T”} U {Xz — Ti}lgign

Note that the two input multisubstitutions must be defined on the same set of
variables and must differ in at most one multibind.

Example 4. The union of two multisubstitutions

Y={X->{1,3},)Y = {7}, Z - {2,9}} and © = {X — {1,4},)Y = {7}, Z —
{2,9}},is: ZUO ={X — {1,3,4},Y = {7}, Z — {2,9}} (the only different
multibinds being those referring to variable X).

Definition 4 (merge). Given a set S of substitutions on the same variables,
merge(S) is the set of multisubstitutions obtained according to Algorithm [1l
Ezample 5. merge({{X — 1,Y - 2,7 -3} {X - 1,Y - 2,7 - 4}, (X —
1L,Y — 2,Z — 5}}) = merge({{X — {1},Y — {2},Z — {3,4}},{X —
(LY 5 {212 - {51}}) = {{X - (1LY = {2},Z — {3.4,5}}}.

This way we can represent 3 substitutions with only one multisubstitution.

Definition 5 (Intersection of multisubstitutions). The intersection of two
multisubstitutions X = {X1 — S1,... , Xn = Sn, Y1 = Sna1, -+, Yo = Snam}
and @ ={X; > T1,... ., Xp = Tn,Z1 = Thi1,... . Z1 = Tnyi}, wheren,m,l >
0 and Vj, k : Y; # Zy, is the multisubstitution defined as:

YN0 ={X; = SiNTi}iz1.n U{Yj = Sntjtij=1..m U{Zk = Thyk}r=1..1
Vi=1...n:5NT; #0; otherwise it is undefined.

Algorithm 1 merge(S)
Require: S: set of substitutions (each represented as a multisubstitution)
while Ju,v € § such that v # v and u Uv =t do
S = (S \{u,v}) U{t}

return S
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Ezample 6. The intersection of ¥ = {X — {1,3,4},Z — {2,8,9}} and © =
{Y - {7}, Z = {1,2,9}} is: YO ={X — {1,3,4},Y — {7}, Z — {2,9}}.
The intersection of X' = {X — {1,3,4},Z — {8,9}} and © = {Y — {7}, Z —
{1,2}} is undefined.

The above M operator is able to check if two multisubstitutions are compatible
(i.e., if they share at least one of the substitutions they represent). Indeed, given
two multisubstitutions X' and ©, if MO is undefined, then there must be at least
one variable X, common to X and ©, to which the corresponding multibinds
associate disjoint sets of constants, which means that it does not exist a constant
to be associated to X by both X and ©, and hence a common substitution
cannot exist as well. The M operator can be extended to the case of sets of
multisubstitutions. Specifically, given two sets of multisubstitutions S and T,
their intersection is defined as the set of multisubstitutions obtained as follows:

SNT={Xne|xXes,60cT}

Note that, whereas a multisubstitution (and hence an intersection of multisub-
stitutions) is or is not defined, but cannot be empty, a set of multisubstitutions
can be empty. Hence, an intersection of sets of multisubstitutions can be empty
(which happens when all of its composing intersections are undefined).

Proposition 1. Let C = {li,...,l,} and Vi = 1...n : T; =
merge(uni(C,l;,D)); let S1 =T1 andVi=2...n:8; = S;_-1MN7T;. C 0-subsumes
D iff S, #0.

This result, whose proof we omit, leads to the #-subsumption procedure re-
ported in Algorithm 21 Note that the set of multisubstitutions resulting from
the merging phase could be not unique. In fact, it may depend on the order
in which the two multisubstitutions to be merged are chosen at each step. The
presented algorithm does not specify any particular principle according to which
performing such a choice, but this issue is undoubtedly a very interesting one,
and deserves a specific study (that is outside the scope of this paper) in order to
understand if the quality of the result is affected by the ordering and, in such a
case, if there are heuristics that can suggest in what order the multisubstitutions
to be merged have to be taken in order to get an optimal result.

Ezample 7. Given the following substitutions: § = {X + 1,Y « 2,7 + 3},
0={X+ 1Y« 2Z2+4},0={X+ 1LY« 2 Z« 5} 71={X+ 1Y «

Algorithm 2 matching(C, D)

Require: C:co < ci,c2,... ,¢n, D :do < di,d2,... ,dn: clauses
if 30 substitution such that cpfy = dp then
So = {(90};

for i := 1 ton do
S; = Si—1 M merge(uni(C, c;, D))
return (S, # 0)
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5,Z « 3} one possible merging sequence is (6 U 0) U o, that prevents further
merging 7 and yields the following set of multisubstitutions:

{X « {1},Y « {2}, Z2 + {3,4,5}},{X <« {1}, Y < {5}, Z + {3}}}

Another possibility is first merging § U 7 and then ¢ Ll o, that cannot be further
merged and hence yield:

{X « {1}, Y « {2,5},Z «+ {3}, {X « {1}, Y « {2}, Z « {4,5}}}

Considering that the proposed algorithm yields all the possible substitutions
by which 6-subsumption holds, its time performance, even on hard problems,
turns out to be in most cases comparable, and in any case at least acceptable,
with respect to Django. The experimental results confirming such a claim are
not reported in this paper due to lack of space.

4 Resolution

The effectiveness of the new algorithm can be appreciated by considering that
it allows to perform resolution between Horn Clauses, avoiding backtracking.
This is possible thanks to its feature of returning all the substitutions for a
matching problem. Algorithm Bl shows how the matching procedure has to be
modified in order to perform resolution. First, the head of the example must be
separated from its body (the “observation”): the former will represent the top
level goal of the resolution process and will be used only once (at the beginning);
the atoms in the latter must be available at each resolution step. Note that the
goal of resolution must not be necessarily ground, which allows to use the given
procedure also to get computed answer substitutions [6] for unbound variables.

The algorithm has two basic behaviours. The former regards the proof of
basic literals, i.e. literals that don’t have a definition in the theory, but that
can be proved using only literals in the example. In this case, all the possible
substitutions between the literal to be proven and those in the observation are
collected and represented by a single multisubstitution. The latter behaviour
concerns the literals built on predicates that have a definiton in the theory.
Whenever a literal of this kind is encountered, we are interested in all the possible
substitutions coming from any rule that defines the corresponding predicate.
Hence, for each such rule, a new child matching process is started on each of
its literals and the corresponding results are intersected. The outer loop collects
all possible substitutions that make true g with respect to O. Recursive clauses
in the theory would lead to non-termination. This can be avoided by handling
recursive definitions in a slightly different way, i.e. considering only one clause
at a time and performing backtracking just like Prolog does.

Ezxample 8. Given the following theory T
hX) :- pX,Y), q(¥,2), tX,2). % 1

p&X,Y) - gX,V), s(V). % 2
t(X,Y) = £(X,Y). h 3
t(X,Y) :- dX,2), t(Y,Z). % 4 (recursive clause)

and the following example E:
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h(l) M g(1)2)’ g(153), g(1,4)) S(Q)’ S(S), f(4,5))
q(2,3), q(3,4), q(3,5), d(1,2), d(1,5), d(1,4).

The algorithm chooses from T a clause C' whose head is unifiable with the
head of E (if any, otherwise it fails). Hence, it chooses clause (1) (with the
multisubstitution {{X—{1}}}) and begins to prove it by selecting p(X,Y).
To solve p(X,Y) clause (2) is choosen, that is verified by the multisubstitu-
tion {{X—{1},Y—{2,3}}}. Indeed, literal g(X,Y) yields the multisubstitution
{{X—{1}, Y—{2,3,4}}}, that intersected with the multisubstitution associated
to literal s(Y), {{Y—{2,3}}}, gives the final multisubstitution for clause (2)
(note that the multisubstitutions for the literals g(X,Y) and s(Y') are obtained
using literals in E because there are no clauses for these predicates in T). Now,
the algorithm must prove literal ¢(Y, Z), that is true for {{Y—{2}, Z—{3}},
{Y—{3}, Z—{4,5}}} by exploiting literals in E. The partial multisubstitution
{{X—={1}, Y={2}, Z—{3}}, {X—={1}, Y—={3}, Z—{4,5}}} for clause (1) is ob-
tained. Finally, to prove h(1) it is necessary to prove literal ¢(X, Z) in clause
(1). Predicate t is recursively defined in the theory (clauses (3) and (4)), thus
the algorithm selects first clause (3), that is true for {{X—{4}, Y—{5}}} but
incompatible with the partial multisubstitution obtained so far. Then, it selects
clause (4), it solves literal d(X, Z) with {{X—{1}, Z—{2,4,5}}} and then calls
recursively t(Y, Z), that returns (using this time clause (3)) the multisubstitution
{{Y—{4}, Z—{5}}}. Finally, the algorithm returns for literal ¢(X, Z) in clause
(1) the multisubstitution {{X—{1}, Z—{4}}} that is compatible with the par-
tial one yielding the final multisubstitution {{X—{1}, Y—{3}, Z—{4}}}. This
process proves that h(1) is true in T via resolution.

5 Conclusions and Future Work

This paper proposed a new algorithm for computing #-subsumption, that is
able to carry out its task with high efficiency and can be extended in order to

Algorithm 3 Resolution
Resolution(g,T,0):S
Given a goal g, a theory T" and an observation O
if g is unifiable with some literal in O then
S + merge(uni(C, g,0))
else
S+ 0
for all clauses C' € T such that head(C) and g are unifiable do
C «+ C#0,s.t. head(C)0 =g
S’ + merge(0) {applies only to constants in 6}
for each literal | € body(C) do
S’ + 8'M Resolution(,T,0)
S+ Ssus
return(S)
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perform resolution. A Prolog version of the extended algorithm is currently used
in the ILP system INTHELEX [B]. Future work will concern an analysis of the
complexity of the presented algorithm, and the definition of heuristics that can
further improve its efficiency.
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