A Complete Subsumption Algorithm

Stefano Ferilli, Nicola Di Mauro, Teresa M.A. Basile, and Floriana Esposito

Dipartimento di Informatica, Universita di Bari
via E. Orabona, 4, 70125 Bari, Italia
{ferilli,nicodimauro,basile,esposito}@di.uniba.it

Abstract. Efficiency of the first-order logic proof procedure is a ma-
jor issue when deduction systems are to be used in real environments,
both on their own and as a component of larger systems (e.g., learning
systems). Hence, the need of techniques that can perform such a process
with reduced time/space requirements (specifically when performing res-
olution). This paper proposes a new algorithm that is able to return the
whole set of solutions to #-subsumption problems by compactly repre-
senting substitutions. It could be exploited when techniques available in
the literature are not suitable. Experimental results on its performance
are encouraging.

1 Introduction

The classical Logic Programming [3] provability relation, logic implication, has
been shown to be undecidable [12], which is too strict a bias to be accepted.
Hence, a weaker but decidable generality relation, called #-subsumption, is of-
ten used in practice. Given C' and D clauses, C' #-subsumes D (often written
C < D) iff there is a substitution 6 such that C6 C D. A substitution is a map-
ping from variables to terms, often denoted by 6 = {X1 — t1,...,X,, — t,},
whose application to a clause C, denoted by C#6, rewrites all the occurrences of
variables X; (i = 1...n) in C by the corresponding term ¢;. Thus, since program
execution corresponds to proving a theorem, efficiency of the generality relation
used is a key issue that deserves great attention.

In the following, we will assume that C' and D are Horn clauses having
the same predicate in their head, and that the aim is checking whether C 6-
subsumes D. Note that D can always be considered ground (i.e., variable-free)
without loss of generality. Indeed, in case it is not, each of its variables can be
replaced by a new constant not appearing in C nor in D (skolemization), and it
can be proven that C' #-subsumes D iff C' f-subsumes the skolemization of D.
| - | will denote, as usual, the cardinality of a set (in particular, when applied
to a clause, it will refer to the number of literals composing it). Since testing
if C' f-subsumes D can be cast as a refutation of {C'} U =D, a basic algorithm
can be obtained in Prolog by skolemizing D, then asserting all the literals in the
body of D an the clause C, and finally querying the head of D. The outcome is
computed by Prolog through SLD resolution [10], which can be very inefficient
under some conditions, as for C' and D in the following example.

A. Cappelli and F. Turini (Eds.): AT*TA 2003, LNAT 2829, pp. 1-13, 2003.
© Springer-Verlag Berlin Heidelberg 2003

2 Stefano Ferilli et al.

Ezample 1. C' = h(X7) :- p(X1,X2),p(Xo,X3),...,p(Xn_1,Xn),q(X,).
D = nh(c1) :- pler,e1), pler,ca), ..., pler,cn), plea,cr),
P(CQ,CZ): e e P(CQ,Cn): e e P(Cn,Cl), P(Cn,CQ), e ey p(Cn,Cn)-

In the following, the next section presents past work in this field; Section 3
presents the new f-subsumption algorithm, and Section 4 shows experimental
results concerning its performance. Lastly, Section 5 concludes the paper.

2 Related Work

The great importance of finding efficient #-subsumption algorithms is reflected
by the amount of work carried out so far in this direction in the literature. In
the following, we briefly recall some milestones in this research field.

Our brief survey starts from Gottlob and Leitsch [5]. After investigating
two classical algorithms (by Chang & Lee [1] and Stillman [14]) in order to
assess their worst-case time complexity, based on the number of performed literal
unifications, they define a new backtracking algorithm that attacks the problem
complexity through a divide and conquer strategy, by first partitioning the clause
into independent subsets, and then applying resolution separately to each of
them, additionally exploiting a heuristic that resolves each time the literal with
the highest number of variables that occur also in other literals.

A more formal approach was then taken by Kietz and Liibbe in [7]. They
start from the following definition:

Definition 1. Let C = Cy « Cpody and D = Dy < Dpoqy be Horn clauses. C
deterministically 6-subsumes D, written C' Foppr D, by 0 = 001 .. .0, iff Coby
= Dy and there exists an ordering C/Body = Ch,...,Cp of Cpoay such that for
all i, 1 <i < n, there exists exactly one 0; such that {Cq,...,C;}0p01 ...6; C
DBody-

Since in general C Fyoprpr D, in addition to identifying the subset of C' that
deterministically #-subsumes D, C'ppr, the algorithm can also return the rest
of C, CnonpET, to which other techniques can be applied according to the
definition of non-determinate locals, corresponding to the independent parts
of CnonpeT according to Gottlob and Leitsch. They can be identified in poly-
nomial time, and handled separately by #-subsumption algorithms.

The above ideas were extended by Scheffer, Herbrich and Wysotzki [11] by
transposing the problem into a graph framework, in which additional techniques
can be exploited. First, the authors extend the notion of ‘determinism’ in match-
ing candidates by taking into account not just single literals, but also their ‘con-
text’ (i.e., the literals to which they are connected via common variables). Indeed,
by requiring that two literals have the same context in order to be matched, the
number of literals in C' that have a unique matching candidate in D potentially
grows. Taking into account the context allows to test for subsumption in poly-
nomial time a proper superset of the set of determinate clauses according to the
definition by Kiets and Liibbe. The remaining (non-determinate) part of C' is

A Complete Subsumption Algorithm 3

then handled by mapping the subsumption problem onto a search for the max-
imum clique in a graph, for which known efficient algorithms can be exploited,
properly tailored.

In sum, all the work described so far can be condensed in the following al-
gorithm: First the ‘extended’ (according to the context definition) determinate
part of C' and D is matched; then the locals are identified, and each is attacked
separately by means of the clique algorithm. Note that all the proposed tech-
niques rely on backtracking, and try to limit its effect by properly choosing
the candidates in each tentative step. Hence, all of them return only the first
subsuming substitution found, even if many exist.

Finally, Maloberti and Sebag in [9] face the problem of #-subsumption by
mapping it onto a Constraint Satisfaction Problem (CSP). Different versions
of a correct and complete #-subsumption algorithm, named Django, were built,
each implementing different (combinations of) CSP heuristics. Experiments are
reported, proving a difference in performance of several orders of magnitude in
favor of Django compared to the algorithms described above. Note that Django
only gives a binary (yes or no) answer to the subsumption test, without providing
any matching substitution in case of positive outcome.

3 A New Approach

Previous successful results obtained on the efficiency improvement of the match-
ing procedure under the Object Identity framework [3] led us to extend those
ideas to the general case. The main idea to avoid backtracking and build in
one step the whole set of subsumption solutions is to compress information on
many substitutions by compactly representing them in a single structure. For
this reason, some preliminary definitions are necessary.

3.1 Preliminaries
Let us start by recalling a useful definition from the literature.

Definition 2 (Matching Substitution). A matching Substitution from a lit-
eral 11 to a literal Iy is a substitution u, such that lip = ls.

The set of all matching substitutions from a literal [€ C' to some literal in D is
denoted by [2] uni(C,l,D) ={u |l € C,lu€ D}

Now, it is possible to define the structure to compactly represent sets of
substitutions.

Definition 3 (Multisubstitutions). A multibind is denoted by X — T,
where X is a variable and T # 0 is a set of constants. A multisubstitution is
a set of multibinds © = {X1 — T1,..., X, = T} #0, where Vi # j : X; # X;.

In particular, a single substitution is represented by a multisubstitution in
which each constants set is a singleton (Vi : | T; | = 1). In the following, multi-
substitutions will be denoted by capital Greek letters, and normal substitutions
by lower-case Greek letters.

4 Stefano Ferilli et al.

Ezample 2. © = {X — {1,3,4},Y — {7}, Z — {2,9}} is a multisubstitution.
It contains 3 multibinds, namely: X — {1,3,4}, Y — {7} and Z — {2,9}.

Definition 4 (Split). Given a multisubstitution © = {X; — Ti,..., X, —
T, }, split(©) is the set of all substitutions represented by ©:
split(@) ={ {X1 —¢iy,.... Xpn — i,) Ve=1...n:¢, € Ty Ni=1...|Tx|}.

Ezample 3. Let us find the set of all substitutions represented by the multisub-
stitution © = {X — {1,3,4},Y — {7}, Z — {2,9}}, split(®) = {{X - 1,V —
772 -2} {X—>1,Y->772—-9}L{X—->3Y—->77-—-2}{X—3Y —
7,2 =9} {X —-4Y >772—-2} {X—4Y —-17,7—9}}

Definition 5 (Union of Multisubstitutions). The union of two multisubsti-
tutions ' = {X - T' X1 —= T1,....,Xp, — Tp} and @ = {X — T" X; —
Ty,..., X, — T} is the multisubstitution

@/ (] @N = {Y — T/ @] TN} @] {Xz — T%}lgign

Note that the two input multisubstitutions must be defined on the same set of
variables and must differ in at most one multibind.

Ezample 4. The union of two multisubstitutions ¥ = {X — {1,3},Y — {7},

Z —{2,9}}and © = {X — {1,4},Y = {7}, Z — {2,9}}, is:
Yue={X—-1{1,3,4},Y = {7}, Z — {2,9}}

(the only different multibinds being those referring to variable X).

Definition 6 (Merge). Given a set S of substitutions on the same variables,
merge(S) is the set of multisubstitutions obtained according to Algorithm 1.

Ezample 5. merge({{X — 1,Y - 2, Z - 3}, {X - 1.Y - 2,7 — 4},(X —
1,Y — 2,Z — 5}}) = merge({{X — {1},Y — {2},Z — {3,4}},{X —
{1},Y — {2},Z — {5}}}) = {X — {1},Y — {2},Z — {3,4,5}}}. This
way we can represent 3 substitutions with only one multisubstitution.

Definition 7 (Intersection of Multisubstitutions). The intersection of two
multisubstitutions ¥ = {X; — S1,..., X5, — Sn, Y1 — Spt1,- -, Yo — Sngm}
and O ={X; - Th,.... X, > Tn,Z1 — Thy1,.-.., 2 — Tpyi}, where n,m 1 >
0 and Vj, k : Y; # Zy, is the multisubstitution defined as:
YnOe={X;—SiNT}ti=1.n U{Y; = Sutiti=t.m U{Zk = Tngrtr=1..1
fVi=1...n:8;,NT; #0; otherwise it is undefined.

Algorithm 1 merge(S)

Require: S: set of substitutions (each represented as a multisubstitution)
while Ju,v € S such that v # v and uUv =t do
S = (S \ {u,v}) U{t}
end while
return S

A Complete Subsumption Algorithm 5

Ezample 6. The intersection of two multisubstitutions X' = {X — {1,3,4},Z —
(2,89 and © = {Y — {7},Z — {1,2,9}}is: 21O = {X — {1,3,4},Y —
{7},Z — {2,9}}. The intersection of ¥ = {X — {1,3,4},Z7 — {8,9}} and
O ={Y — {7}, Z — {1,2}} is undefined.

Lemma 1. The M operator is monotonic in the set of variables. Specifically,
XLl <|Xne|l=n+m+1

Proof. The M operator transposes in the result all the multibinds concern-
ing Y;,7 = 1...m variables from X, and all the multibinds concerning 7,k =
1...[variables from @, whose constant sets are all nonempty by definition. More-
over, it preserves all the multibinds concerning X;,7 = 1...n variables common
to X and O, since all intersections of the corresponding constants sets must be
nonempty for the result to be defined. Hence: n,m,l > 0 and Vj, k : Y; # Zj
implies that [X¥ M O] = n+ m + 1 and both |X| = n+m < |X¥ 16| and
Ol =n+1<|XN06).

The above M operator is able to check if two multisubstitutions are compatible
(i.e., if they share at least one of the substitutions they represent). Indeed, given
two multisubstitutions X and @, if XM is undefined, then there must be at least
one variable X, common to X and ©, to which the corresponding multibinds
associate disjoint sets of constants, which means that it does not exist a constant
to be associated to X by both X and @, and hence a common substitution cannot
exist as well.

The M operator can be extended to the case of sets of multisubstitutions.
Specifically, given two sets of multisubstitutions S and 7, their intersection is
defined as the set of multisubstitutions obtained as follows:

SNT={¥Xne|xes,60cT}
Note that, whereas a multisubstitution (and hence an intersection of multisub-
stitutions) is or is not defined, but cannot be empty, a set of multisubstitutions
can be empty. Hence, an intersection of sets of multisubstitutions, in particu-
lar, can be empty (which happens when all of its composing intersections are
undefined).

3.2 The Matching Algorithm

In the following, for the sake of readability, we use the expression 6 € 7 to say
that the substitution 6 belongs to the split of some multisubstitution in the set
of multisubstitutions 7.

Proposition 1. V0 : COC D < 0 € S,,.

Proof. Let C = {l1,...,l,} and Vi = 1...n : T, = merge(uni(C,l;, D)); let
51:ﬂandVi:2...nISi:Si,1|_|7;.

(<) By induction on i: Vi € {1,...,n}:S; #0 =V € S; : {l1,...,;}0 C D.
Base 0 £ S =T, = V0 e T, :3ke DS 10 =ke D= {1,}0={k} C D.
Step S; = S;-1 M 7T; # () = (by definition of M) 3¥ € §;,.1,0 € 7; 9 XN O

6 Stefano Ferilli et al.

Algorithm 2 matching(C, D)

Require: C:co < ci,c2,...,¢n, D :do < d1,d2,...,dn: clauses
if 30y substitution such that cofy = do then
So :={00};

for i := 1 ton do
Si = Si—1 M merge(uni(C, c;, D))
end for
end if
return (S, # 0)

defined = Vy € X MO : v =00 9 o € split(X),0 € split(O) A 0,0 compat-
ible = {l1,...,lic1}o € D (by hypothesis) A{l;}¢ C D (by definition of 7;)
= {l1,...,lici}oU{;}6 € D = {ly,...,l;}00 C D. This holds, in particular,
for ¢ = n, which yields the thesis.

(=) By induction on i: Vi € {1,...,n}: {l1,....,}0 C D =0¢€cS,.

Base (Ad absurdum) $6|4,y = 6|y, & merge(uni(C,l1, D)) = 6|y,y ¢
uni(C, 1y, D) = {l1}0|q1,y € D = {l1}0 & D. But {l,}6 € D by hypothesis.
Step (Ad absurdum) 0|y, . 3= Oy, 0, 10luy) € Sio By construc-
tion, S; = S;—1 M 7;. By inductive hypothesis, 0|, . ;.3 € Si—1. Thus,

This leads to the #-subsumption procedure reported in Algorithm 2. It should
be noted that the set of multisubstitutions resulting from the merging phase
could be not unique. In fact, it may depend on the order in which the two mul-
tisubstitutions to be merged are chosen at each step. The presented algorithm
does not currently specify any particular principle according to which performing
such a choice, but this issue is undoubtedly a very interesting one, and deserves
a specific study (that is outside the scope of this paper) in order to understand
if the compression quality of the result is actually affected by the ordering and,
in such a case, if there are heuristics that can suggest in what order the multi-
substitutions to be merged have to be taken in order to get an optimal result.

Ezxample 7. Consider the following substitutions:
0={X —1Y <273} 0={X 1Y <274}
oc={X 1Y «—2, 75} T={X<— 1Y <573}
One possible merging sequence is (6 U 0) U o, that prevents further merging
and yields the following set of multisubstitutions:

{X < {1}, Y — {2}, Z — {3,4,5}}, {X «— {1}, Y — {5}, Z — {3}}}
Another possibility is first merging # U 7 and then § Ll o, that cannot be further
merged and hence yield:

X {1}, Y « {2,5}, Z « {3}},{X < {1},}Y «— {2}, Z — {4,5}}}

A Complete Subsumption Algorithm 7

3.3 Discussion

Ideas presented in related work aimed, in part, at leveraging on particular situa-
tions in which the #-subsumption test can be computed with reduced complexity.
This aim inspired, for instance, the concepts of determinate (part of a) clause
and of k-locals. However, after identifying such determinate and independent
subparts of the given clauses, the only possible way out is applying classical,
complex algorithms, possibly exploiting heuristics to choose the next literal to
be unified. In those cases, the CSP approach proves very efficient, but at the cost
of not returning (all the) possible substitutions by which the matching holds.
Actually, there are cases in which at least one such substitution is needed by
the experimenter. Moreover, if all such substitutions are needed (e.g., for per-
forming successive resolution steps), the feeling is that the CSP approach has
to necessarily explore the whole search space, thus loosing all the advantages on
which it bases its efficiency. The proposed algorithm, on the contrary, returns all
possible matching substitutions, without performing any backtracking in their
computation. Specifically, its search strategy consists in a kind of breadth-first
in which the explored nodes of the search space are compressed; this means that,
when no compression is possible for the substitutions of each literal, it becomes
a normal breadth-first search (it would be interesting to discuss in what — non
purposely designed — situations it happens). Hence, it is worth discussing the
complexity of the different steps involved thereof. Because of the above consid-
erations, in the following only linked clauses will be taken into account, so that
neither determinate matching nor partitioning into k-locals apply.

Let p; be the i-th distinct predicate in C, a; its arity and m; be the number
of literals in D with predicate symbol p;. Let [; be the j-th literal in C. Call a
the maximum arity of predicates in C' (predicates with greater arity in D would
not be considered for matching), and ¢ the number of distinct constants in D.
Each unifier of a given p; with a literal on the same predicate symbol in D
can be computed in a; steps. There are m; such unifiers to be computed (each
represented as a multisubstitution), hence computing uni(C, 1, D) has complex-
ity a; * m; for any literal [€ C built on predicate p,. Note that the constants
associated to each argument of p; are the same for all literals in C' built on it,
hence such a computation can be made just once for each different predicate,
and then tailored to each literal by just changing the variables in each multibind.

(Checking and) merging two multisubstitutions requires them to differ in at
most one multibind (as soon as two different multibinds are found in the two mul-
tisubstitutions, the computation of their merging stops with failure). Hence, the
complexity of merging two multisubstitutions is less than a;*2m;, since there are
at most a; arguments to be checked, each made up of at most m; constants (one
for each compatible literal, in case they are all different)!. The multisubstitu-
tions in the set uni(C,l, D) can be merged by pairwise comparing (and, possibly,
merging) any two of them, and further repeating this on the new sets stepwise ob-
tained, until no merging is performed or all multisubstitutions have been merged

! Assuming that the constants in each multibind are sorted, checking the equality of
two multibinds requires to scan each just once.

8 Stefano Ferilli et al.

into one. At the k-th step (0 < k < m; — 1), since at least one merging was per-
formed at each step, the set will contain at most m; — k multisubstitutions, for
a total of at most (miz_k) couples to be checked and (possibly) merged. Globally,
we have a merge complexity equal to? S 77" ("“2_]“) * a; * 2m; ~ O(a; *m}).

As to the intersection between two multisubstitutions, note that one of the
two refers to a literal [€ C built on a predicate p;, and hence will be made up
of a; multibinds, each of at most m; constants. In the (pessimistic) case that all
of the variables in [are present in the other multisubstitution, the complexity
of the intersection is therefore® a; * m; * min(c, | D).

When discussing the overall complexity of the whole procedure, it is necessary
to take into account that a number of interrelations exist among the involved
objects, such that a growth of one parameter often corresponds to the decrease
of another. Thus, this is not a straightforward issue. Nevertheless, one intuitive
worst case is when non merging can take place among substitutions for all liter-
als? and each substitution of any literal is compatible with any substitution of
all the others. In such a case, the number of intersections is O(m™) (supposing
each literal in C' has m matching substitutions in D), but it should be noted that
in this case each intersection does not require any computation and is reduced
to just an append operation. One intuitive best case is when all substitutions
for each literal can be merged into one. In this case, the dominant complexity is
that of merging, i.e. O(n * a * m*).

4 Experiments

The new algorithm has been implemented in C, and its performance in com-
puting #-subsumption between Horn clauses having the same predicate in their
head was to be assessed. Actually, to the authors’ knowledge, no algorithm is

2 Actually, this is a pessimistic upper bound, that will not ever be reached. Indeed, it
is straightforward to note that a number of simplifying interrelations (not taken into
account here for simplicity) hold: e.g., the number of steps is at most m;; the more
the number of performed mergings, the less the number of possible steps, and the
less the number of substitutions to be merged at each step; the more the number of
steps, the less the number of merged multisubstitutions, and the less the number of
constants in each of them; at each step, only the new merged multisubstitutions are
to be taken into account for merging with the previous ones; and so on.

Note that the other multisubstitution comes from past intersections of multisubsi-
tutions referred to already processed literals, and hence each of its multibinds may
contain at most a number of constants equal to the maximum number of literals in D
that are compatible with a literal in C, i.e. max;(m;) < |D|, or to the maximum
number of different constants, whichever is the less: min(c,|D|).

Remember that we suppose to deal only with linked clauses, otherwise the matching
procedure can be applied separately to the single connected components and then
the global substitution can be obtained by simply combining in all possible ways
such partial solutions, that will be obviously compatible since they do not share any
variable.

A Complete Subsumption Algorithm 9

Fig.1. Performance of the new algorithm and Django on Mutagenesis (sec)

available that computes the whole set of substitutions (except forcing all pos-
sible backtrackings in the previous ones, which could yield unacceptable run-
times), to which comparing the proposed one. Thus, the choice was between not
making a comparison at all, or comparing the new algorithm to Django (the
best-performing among those described in Section 2). In the second case, it is
clear that the challenge was not completely fair for our algorithm, since it always
computes the whole set of solutions, whereas Django computes none (it just an-
swers ‘yes’ or ‘no’). Nevertheless, the second option was preferred, according to
the principle that a comparison with a faster system could in any case provide
useful information on the new algorithm performance, if its handicap is properly
taken into account. The need for downward-compatibility in the system out-
put forced to translate the new algorithm’s results in the lower-level answers of
Django, and hence to interpret them just as ‘yes’ (independently of how many
substitutions were computed, which is very unfair for our algorithm) or ‘no’ (if
no subsuming substitution exists). Hence, in evaluating the experimental results,
one should take into account such a difference, so that a slightly worse perfor-
mance of the proposed algorithm with respect to Django should be considered
an acceptable tradeoff for getting all the solutions whenever they are required
by the experimental settings. Of course, the targets of the two algorithms are
different, and it is clear that in case a binary answer is sufficient the latter should
be used.

A first comparison was carried out on a task exploited for evaluating Django
by its Authors: The Mutagenesis problem [13]. The experiment was run on a PC
platform equipped with an Intel Celeron 1.3 GHz processor and running the
Linux operating system. In the Mutagenesis dataset, artificial hypotheses were
generated according to the procedure reported in [9]. For given m and n, such
a procedure returns an hypothesis made up of m literals bond(X;, X;) and in-
volving n variables, where the variables X; and X in each literal are randomly
selected among n variables {Xi,...,X,} in such a way that X; # X, and the
overall hypothesis is linked [6]. The cases in which n > m + 1 were not consid-
ered, since it is not possible to build a clause with m binary literals that contains
more than m + 1 variables and that fulfills the imposed linkedness constraint.
Specifically, for each (m,n) pair (1 < m < 10,2 < n < 10), 10 artificial hypothe-

10 Stefano Ferilli et al.

Table 1. Mean time on the Mutagenesis problem for the three algorithms (sec)

SLD |Matching| Django |
158,2358]0,01880281]0,00049569)

ses were generated and each was checked against all 229 examples provided in
the Mutagenesis dataset. Then, the mean performance of each hypothesis on the
229 examples was computed, and finally the computational cost for each (m,n)
pair was obtained as the average #-subsumption cost over all the times of the
corresponding 10 hypotheses.

Figure 1 reports the performance obtained by our algorithm and by Django
(respectively) on the #-subsumption tests for the Mutagenesis dataset. Timings
are measured in seconds. The shape of Django’s performance plot is smoother,
while that of the proposed algorithm shows sharper peaks in a generally flat
landscape. The proposed algorithm, after an initial increase, suggests a decrease
in computational times for increasing values of n (when m is high). It is no-
ticeable that Django shows an increasingly worse performance on the diagonal®,
while there is no such phenomenon in the plot on the left of Figure 1. However,
there is no appreciable difference in computational times, since both systems
stay far below the 1 sec threshold.

Table 1 reports the mean time on the Mutagenesis Problem for the three
algorithms to get the answer (backtracking was forced in SLD in order to obtain
all the solutions). It is possible to note that the Matching algorithm is 8415,5
times more efficient than the SLD procedure (such a comparison makes no sense
for Django because it just answers ‘yes’ or ‘no’). To have an idea of the effort
spent, the mean number of substitutions was 91, 21 (obviously, averaged only on
positive tests, that are 8,95% of all cases).

Another interesting task concernes Phase Transition [1], a particularly hard
artificial problem purposely designed to study the complexity of matching First
Order Logic formulas in a given universe in order to find their models, if any.
A number of pairs clause-example were generated according to the guidelines
reported in [1]. Like in [9], n was set to 10, m ranges in [10, 60] (actually, a wider
range than in [9]) and L ranges in [10,50]. To limit the total computational
cost, N was set to 64 instead of 100: This does not affect the presence of the phase
transition phenomenon, but just causes the number of possible substitutions to
be less. For each pair (m, L), 33 pairs (hypothesis, example) were constructed,
and the average #-subsumption computational cost was computed as the seconds
required by the two algorithms. Both show their peaks in correspondence of
low values of L and/or m, but such peaks are more concentrated and abruptly
rising in the new algorithm. Of course, there is an orders-of-magnitude difference
between the two performances (Django’s highest peak is 0.037 sec, whereas our

® Such a region corresponds to hypotheses with 4 literals and i + 1 variables. Such
hypotheses are particularly challenging for the #-subsumption test since their literals
form a chain of variables (because of linkedness).

A Complete Subsumption Algorithm 11

Table 2. Average #-subsumption cost in the YES, NO an PT regions

NO Phase Transition YES NEG
Django | Mean | 0,003907 0,00663 0,005189 [0,003761
St-Dev| 0,004867 0,00756 0,004673 | 0,00455
Matching| Mean |0,1558803 3,5584 7,5501 0,1139
St-Dev| 0,75848 10,5046 20,954 | 0,5147

39,8977 536,7119 1455,02023| 30,2845

algorithm’s top peak is 155.548 sec), but one has to take into account that the
new algorithm also returns the whole set of substitutions (if any, which means
that a ‘yes’ outcome may in fact hide a huge computational effort when the
solutions are very dense), and it almost does this in reasonable time (only 5.93%
of computations took more than 1 sec, and only 1.29% took more than 15 sec).
The mean #-subsumption costs in various regions are summarized in Table 2.
The region is assigned to a problem (m, L) according to the fraction f of clauses C
subsuming examples Fz, over all pairs (C, Ex) generated for that problem. In
particular, f > 90% denotes YES region, 10% < f < 90% denotes PT region,
and f < 10% means NO region. While for Django the cost in PT is 1,7 times
the cost in NO and 1,3 times the cost in YES, thus confirming the difficulty of
that region, in the new algorithm the cost across the regions grows according
to the number of substitutions, as expected. The last column reports the cost
in a region (NEG) corresponding to the particular case f = 0% (i.e., there
are no substitutions at all). The last row shows the gain of Django over the
new algorithm. Again, as expected, the gain grows as the number of solution
increases, because it stops immediately after getting an answer, whereas the
new algorithm continues until all substitutions are found. The only region in
which a comparison is feasible is NEG, where Django is 30 times better than
Matching (this could be improved by introducing heuristics that can bias our
algorithm towards recognizing a negative answer as soon as possible).

5 Conclusions and Future Work

This paper proposed a new algorithm for computing the whole set of solutions to
f-subsumption problems, whose efficiency derives from a proper representation
of substitutions that allows to avoid backtracking (which may cause, in particular
situations, unacceptable growth of computational times in classical subsumption
mechanisms). Experimental results suggest that it is able to carry out its task
with high efficiency.

Actually, it is not directly comparable to other state-of-the-art systems, since
its characteristic of yielding all the possible substitution by which #-subsumption
holds has no competitors. Nevertheless, a comparison seemed useful to get an
idea of the cost in time performance for getting such a plus. The good news
is that, even on hard problems, and notwithstanding its harder computational

12 Stefano Ferilli et al.

effort, the new algorithm turned out to be in most cases comparable, and in
any case at least acceptable, with respect to the best-performing system in the
literature. A Prolog version of the algorithm is currently used in a system for
inductive learning from examples.

Future work will concern an analysis of the complexity of the presented al-
gorithm, and the definition of heuristics that can further improve its efficiency
(e.g., heuristics that may guide the choice of the best literal to choose at any
step in order to recognize as soon as possible the impossibility of subsumption).

Acknowledgements

This work was partially funded by the EU project IST-1999-20882 COLLATE.
The authors would like to thank Michele Sebag and Jerome Maloberti for making
available the Django and for the suggestions on its use, and the anonymous
reviewers for useful comments.

References

[1] C.L. Chang and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973. 2

[2] N. Eisinger. Subsumption and connection graphs. In J.H. Siekmann, editor,
GWAI-81, German Workshop on Artificial Intelligence, Bad Honnef, January
1981, pages 188—198. Springer, Berlin, Heidelberg, 1981. 3

[3] S. Ferilli, N. Fanizzi, N. Di Mauro, and T.M. A. Basile. Efficient §-subsumption
under Object Identity. In Atti del Workshop AI*IA su Apprendimento Auto-
matico, Siena - Italy, 2002. 3

[4] A. Giordana, M. Botta, and L. Saitta. An experimental study of phase transitions
in matching. In Dean Thomas, editor, Proceedings of IJCAI-99 (Vol2), pages
1198-1203, S.F., July 31-August 6 1999. Morgan Kaufmann Publishers. 10

[5] G. Gottlob and A. Leitsch. On the efficiency of subsumption algorithms. Journal
of the Association for Computing Machinery, 32(2):280-295, 1985. 2

[6] N. Helft. Inductive generalization: A logical framework. In I. Bratko and
N. Lavrac, editors, Progress in Machine Learning, pages 149-157, Wilmslow, UK,
1987. Sigma Press. 9

[7] J.-U. Kietz and M. Liibbe. An efficient subsumption algorithm for inductive logic
programming. In W. Cohen and H. Hirsh, editors, Proceedings of ICML-94, pages
130-138, 1994. 2

[8] J.W. Lloyd. Foundations of Logic Programming. Springer, Berlin, New York, 2
edition, 1987. 1

[9] J. Maloberti and M. Sebag. 6-subsumption in a constraint satisfaction perspec-
tive. In Céline Rouveirol and Michele Sebag, editors, Proceedings of ILP 2001,
volume 2157 of Lecture Notes in Artificial Intelligence, pages 164—178. Springer,
September 2001. 3, 9, 10

[10] J.A. Robinson. A machine-oriented logic based on the resolution principle. Jour-
nal of the ACM, 12(1):23-49, January 1965. 1
[11] T. Scheffer, R. Herbrich, and F. Wysotzki. Efficient #-subsumption based on

graph algorithms. In Stephen Muggleton, editor, Proceedings of ILP-96, volume
1314 of LNAI pages 212-228. Springer, August 26-28 1997. 2

A Complete Subsumption Algorithm 13

[12] M. Schmidt-Schauss. Implication of clauses is undecidable. Theoretical Computer
Science, 59:287-296, 1988. 1

[13] Ashwin Srinivasan, Stephen Muggleton, Michael J.E. Sternberg, and Ross D.
King. Theories for mutagenicity: A study in first-order and feature-based induc-
tion. Artificial Intelligence, 85(1-2):277-299, 1996. 9

[14] R.B. Stillman. The concept of weak substitution in theorem-proving. Journal of
ACM, 20(4):648-667, October 1973. 2

	A Complete Subsumption Algorithm
	Introduction
	Related Work
	A New Approach
	Preliminaries
	The Matching Algorithm
	Discussion

	Experiments
	Conclusions and Future Work

