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Abstract. This work presents the application of INTHELEX, an incremental learning
system enhanced by multistrategy capabilities, on a dataset concerning family relation-
ships. The aim is to investigate if and how much abduction, abstraction and deduction
can support pure induction. The reported experimental results, although preliminary,
demonstrate that such a cooperation may improve efficiency and effectiveness of the
learning process.

1 Introduction

Supervised Machine Learning aims, given positive and negative examples of some concept
and possibly some background knowledge, at finding a theory that accounts for all positive
examples and is consistent with the negative ones and the background knowledge. While the
learning process is often run all at once on the whole evidence, sometimes this is not possible
because the examples set is not entirely available since the beginning or the concept to be
learnt has a changing nature and therefore has to be captured over time. In such cases, being
able to refine a previously generated theory, by taking into account new evidence as long as it
becomes available, is the only way to overcome the problem. In fact, in the Machine Learn-
ing (ML) literature there are systems that try to modify an existing incomplete or inconsistent
theory to fit a new set of pre-classified examples. Another important aspect to be analyzed
is the possibility of combining together different reasoning methods and learning strategies.
Indeed, while at the beginning ML research focused on single-strategy methods that apply a
primary type of inference and/or computational mechanism, more recently the limitations of
these methods led to exploit/combine various, different and complementary learning strate-
gies together. This mimes the typical ability of humans to apply a great variety of learning
strategies depending on the particular situation and problem faced. A theoretical framework
for integrating different learning strategies is the Inferential Learning Theory (ILT) [10].

All these considerations, plus the need of testing theoretical results on the Object Iden-
tity paradigm [6] in practice, led to the design and implementation of the learning system
INTHELEX [5]. Its most characterizing features are in its incremental nature, in the reduced
need of a deep background knowledge, in the exploitation of negative information, in the
peculiar bias on the generalization model, which reduces the search space and does not limit
the expressive power of the adopted representation language, and in the possibility to exploit
multistrategical operators whenever necessary during theory revision.



This paper is organized as follows. In Section 2 a general description of the system and
of the way in which it integrates multiple reasoning strategies is presented. Section 3 shows
experiments concerning application of the multistrategy operators to see if and how they
are able to enhance the system performance. Finally, Section 4 draws some conclusions and
future work.

2 Multistrategical learning in INTHELEX

INTHELEX (INcremental THEory Learner from EXamples) is a learning system for the
induction of logic theories from examples [5]. Among its characterizing features:

e it is based on the Object Identity assumption (terms, even variables, denoted by different
names within a formula must refer to different objects)';

e it learns theories expressed as sets of Datalog®! clauses [11] from positive and negative
examples;

e it can learn simultaneously multiple concepts, possibly related to each other according to
a given hierarchy (recursion is not allowed);

e it guarantees validity of the learned theories on all the processed examples;

e it is a closed loop learning system (i.e. a system in which feedback on performance is
used to activate the theory revision phase [1]);

e itis fully incremental, i.e. in addition to the possibility of refining a previously generated
version of the theory, learning can also start from an empty theory?.

It exploits a (possibly empty) previous theory, a graph describing the dependence rela-
tionships among concepts, and a historical memory of all the past examples that led to the
current theory. Whenever a new example is taken into account, it is stored in such a repository
and the current theory is checked against it.

A novelty in INTHELEX is the integration of various multistrategy operators that may
help in the solution of the theory revision problem by pre-processing the incoming infor-
mation [6]. Deduction is exploited to fill observations with information that is not explicitly
stated, but is implicit in their description, and hence refers to the possibility of better repre-
senting the examples and, consequently, the inferred theories. Abduction aims at completing
possibly partial information in the examples (adding more details). Lastly, abstraction allows
to the system to carry out language shift in the examples descriptions and hence in the theory
rules. Even if with opposite perspectives, both abduction and abstraction aim at reducing the
computational effort required to learn a correct theory with respect to the incoming exam-
ples. More details on the theoretical foundations of the cooperation of these strategies in our
environment are given in [3], whereas this paper focuses on their performance.

I'This often corresponds to human intuition, while allowing the search space to fulfill nice properties affecting
efficiency and effectiveness of the learning process [11].

2As already noticed in the previous section, this can be an important characteristic for handling real-world
situations.



2.1 Induction

Induction means inferring, from a certain number of significant observations, regularities and
laws valid for the whole population.

INTHELEX incorporates two inductive refinement operators, one for generalizing hy-
potheses that reject positive examples, and the other for specializing hypotheses that explain
negative examples.

In the former case, firstly one of the clauses defining the wrong concept in the theory
is chosen. Then, the 1ggo; of this clause and the example is computed [11], by taking into
account a number of parameters that restrict the search space according to the degree of
generalization to be obtained and the computational budget allowed. If one of the 1ggo;’s
is consistent with all the past negative examples, then it replaces the chosen clause in the
theory, or else a new clause is chosen to compute the 1ggo;. If no clause can be generalized in
a consistent way, the system checks if the example itself, with the constants properly turned
into variables, is consistent with the past negative ones. If so, such a clause is added to the
theory, or else the example is considered an exception.

In the specialization phase, the system chooses the clause to be refined among those oc-
curring in the SLD-derivation of the example, starting from the lowest possible level and
going upwards, and tries to add to it one (or more) positive literal(s), which characterize all
the past positive examples and can discriminate them from the current negative one. Again,
parameters that bound the search for the set of literals to be added are considered. In case of
failure on all of the clauses in the derivation, the system tries to add the negation of a literal,
that is able to discriminate the negative example from all the past positive ones, to the clause
related to the concept the example is an instance of. If this fails too, the negative example is
considered an exception.

New incoming observations are always checked against the exceptions (both positive and
negative) before applying the general rules.

2.2 Deduction

INTHELEX requires the observations to be expressed only in terms of the set of predicates
that make up the description language for the given learning problem. To ensure uniformity of
the example descriptions, such predicates have no definition. Nevertheless, since the system is
able to handle a hierarchy of concepts, combinations of these predicates might identify higher
level concepts that is worth adding to the descriptions in order to raise their semantic level. For
this reason, INTHELEX implements a saturation operator that exploits deduction to recognize
such concepts and explicitly add them to the examples description. Indeed, the system can be
provided with a background knowledge that is supposed to be correct, hence not modifiable,
and contains (complete or partial) definitions in the same format as the theory rules. Any
time a new example is considered, a preliminary saturation phase can be performed, that adds
the higher level concepts whose presence can be deduced from theory and/or background
knowledge rules by subsumption and/or resolution. In particular, the generalization model of
implication under Object Identity is exploited [4].

Since all the specific information used by saturation is left in the example description,
it is preserved in the learning process until other evidence reveals it is not significant for
the concept definition, which is a more cautious behaviour. This is fundamental when the
saturation phase involves concepts to be learnt (i.e., theory rules), since their definition could



not be stable yet, and hence the preserved information might be needed to recover from
deductions made because of wrong rules.

2.3 Abduction

Abduction was defined by Peirce as hypothesizing some facts that, together with a given
theory, could explain a given observation. According to the framework proposed in [8], an
abductive logic theory is made up by a normal logic program [9], a set of abducibles, i.e.
the predicates about which assumptions (abductions) can be made, and a set of integrity
constraints, that provide indirect information about them (each corresponds to a combination
of literals that is not allowed to occur).

The proof procedure implemented in INTHELEX starts from a goal and a set of initial
assumptions and results in a set of consistent hypotheses (abduced literals) by intertwining
abductive and consistency derivations. Intuitively, an abductive derivation is the standard
Logic Programming derivation suitably extended in order to consider abducibles. As soon
as an abducible atom is encountered, it is added to the current set of hypotheses, provided
that any integrity constraint containing it is satisfied, which happens when its components are
not all true. This is checked by means of a consistency derivation, that in turn may start an
abductive derivation to prove the falsity of the abducibles it encounters.

Abduction can be exploited at various moments in both the inductive refinement oper-
ators, according to a parameter introduced by the user. Specifically, during generalization
the system can decide to use the abduction procedure in one of the following cases: before
performing the 1ggo;, or before turning the constants of the example into variables, or be-
fore adding the example as an exception. On the other hand, in the specialization phase the
abduction procedure can be started before trying to add one (or more) positive literal(s) to
a theory clause, or before trying to append negative information to a definition, or before
adding the example as an exception. The later the application of abduction, the less influence
of uncertain information on the final theory and the more frequent theory changes.

2.4 Abstraction

Abstraction is a pervasive activity in human perception and reasoning. A possible exploitation
of abstraction concerns the shift from the language in which the theory is described to a
higher level one. According to the framework proposed in [13], concept representation deals
with entities belonging to three different levels. Concrete objects reside in the world, but any
observer’s access to it is mediated by his perception of it. To be available over time, these
stimuli must be memorized in an organized structure, i.e. an extensional representation of the
perceived world. Finally, to reason about the perceived world and communicate with other
agents, a language is needed, that describes it intensionally. If we assume that perception is
the source of information, that is recorded into a structure and then described by a language,
modifications to the latter two are just a consequence of differences in the former (due, e.g.,
to the medium used and/or the focus-of-attention). Thus, abstraction takes place at the world-
perception level by means of a set of operators, and then propagates to higher levels, where
it is possible to identify operators corresponding to the previous ones. An abstraction theory
contains information for performing the shift specified by the abstraction operators.

In INTHELEX, it is assumed that the abstraction theory is already given (i.e., it has not



to be learned by the system), and that the system automatically applies it to each incoming
observations before processing it. The implemented abstraction operators allow the system
to carry out language shift in a number of different ways: by eliminating superfluous details,
by grouping specific component patterns into compound objects, by reducing the number of
object attributes, by ignoring the number of instances of a given object or, lastly, by obtaining
a coarser grain-size for attribute values.

3 Experimental results

This section presents some results showing the effectiveness and efficiency of the system
when its multistrategy capabilities are exploited. In particular, the experiments concerned
learning definitions for family relationships, and were carried out exploiting the same dataset
as in [2], that includes a total of 778 facts describing people belonging to a given family.
Specifically, 159 of these facts concerned basic observations (72 parent facts, 31 male facts,
24 female facts and 32 married facts), and were taken as the description for all examples. The
other 619 concerned the relationships to be learnt, and hence were used as the set of positive
examples. Other 619 negative examples for the same concepts were generated from positive
ones, resulting in the following global distribution of the examples among the concepts to
be learnt: father (36+, 58-), mother (36+, 58-), brother (44+, 50 -), sister (38+, 51-), son
(46+, 56-), daughter (26+, 57-), aunt (50+, 47-), uncle (57+, 48-), grandmother (32+, 55-),
grandfather (32+, 52-), cousin (126+, 42-) and cousine (96+, 45-).

A first experiment was performed on the whole dataset by assuming independence be-
tween the concepts to be learnt and without providing the system with any background knowl-
edge. The learned theory, reported in Figure 1, was made up of just one definition for father,
mother, brother, sister, son, daughter, grandmother and grandfather, two definitions for aunt,
cousin and cousine and three for uncle. Figure 1, does not present one of the definitions for
cousine since it was added to the theory when the last example for this concept was consid-
ered, and hence it is very specific due to the fact that it was never refined. It is worth noting
that, starting from observations made up of 159 literals, the clauses in the resulting theory
have a length ranging between 3 literals (for son) and 9 (for brother). These 17 definitions
(clauses) were obtained performing 30 lgg’s, for an average number of 1.8 1gg’s per clause.
As to the concepts for which more than one clause was needed, a possible explanation is
the following: an uncle (respectively, an aunt) is the brother/brother-in-law (respectively, the
sister/sister-in-law) of either the mother or the father, and INTHELEX distinguishes all the
specific situations (some of the possible combinations are not represented because of lacking
of corresponding examples). A similar interpretation can be provided for the other concepts,
cousin and cousine.

To avoid multiple definitions for some concepts we tried to neglect the person’s sex.
Driven by the above observations, and with the aim of improving the results, a new experi-
ment was run in which the system was provided with a background knowledge containing the
definitions of sibling and au (corresponding to the brother/sister and uncle/aunt relationships,
respectively, regardless of the person’s sex). The resulting theory (see Figure 2) contained one
clause for all of the concepts; moreover the new definitions also eliminated superfluous in-
formation that was present in the previous theory. Such a result is supported by the increased
average number of 1gg’s performed, which is now 2.25 per clause (27 1gg’s, 12 clauses).

All these hypotheses, however, are represented by means of basic predicates only. Hence,



father (A, B) :— male (A),parent (C,B), female (C),parent (A,B) .

mother (A, B) :— female (A),parent (C,B), male(C),parent (A,B).
son (A, B) :— male (A),parent (B,A),parent (C,A) .
daughter (A, B) :— female (A),married(C,B),married(B,C),
parent (B,A),parent (C,A) .
grandmother (A,B) :— female (A),parent (C,B),parent (D,C),male (D),
parent (A,C), married(A,D),married(D,A).
grandfather (A,B) :— male (A),parent (C,B),parent (D,C), female (D),
parent (A,C),married(D,A),married(A,D) .
brother (A, B) :— male (A),parent (C,B),male(C),married(D,C),

female (D), married(C,D), parent (D,B),
parent (C,A),parent (D, A) .

sister (A, B) :— female(A),parent (C,B),male(C),parent (C,A).

uncle (A, B) :— male(A),parent (C,B),male(C),parent (D,C),
male (D), parent (A,E), female (E) .

uncle (A, B) :— male(A),parent (C,B), female(C),parent (D, C),
male (D), parent (D,A) .

uncle (A, B) :— male(A),male (B),parent (C,B),male(C),
parent (D,C), female (D), parent (D, A) .

aunt (A, B) :— female(A),parent (C,B),male(C),parent (D,C),
male (D), parent (D,A) .

aunt (A, B) :— female(A),parent (C,B),parent (C,E),male (D),

female (C), parent (D,C),parent (D,A) .

cousin (A, B) :— male(A),parent (C,B),male(C),parent(D,C),
male (D), parent (D,E),parent (E,A) .
cousin (A, B) :— male (A),parent (C,B), female(C),parent (D, C),
male (D), parent (D,E),parent (E,A) .
(

cousine (A, B) :— female(A),parent (C,B),male(C),parent (D, A),
male (D), parent (E,D),male (E) .

Figure 1: Definitions generated with the pure induction

in order to obtain definitions expressed in a higher level language, we tried to use abstraction.
For this purpose, we focused on concepts grandmother and grandfather, since they seemed
sufficiently complex to justify a higher level description. Knowing that “a grandmother (re-
spectively, grandfather) is the mother (respectively, father) of either the father or the mother”,
we aimed at checking if the system was able to learn a theory reflecting such information.
Thus we provide it with an abstraction theory containing the definitions for mother and fa-
ther that were learnt by the system itself in the previous experiments. The result, shown in
Figure 3, was indeed as expected.

Lastly, an experiment to check the effect of applying the abductive operator was per-
formed. In this case, in order for abduction to be meaningful, incomplete observations were
needed, which was obtained by corrupting the available family description according to the
modalities described in [7] (where the same dataset was exploited). Also according to the
approach in the same paper, other changes were made to the problem setting. First of all,
only the examples about father were taken into account: the training set included 36 positive
examples and 200 negative ones that were randomly generated. Moreover, the examples de-
scription is more complex than before, in that it includes not only the basic observations but



father (A, B)
mother (A, B)

son (A, B)
daughter (A, B)
grandmother (A, B)
grandfather (A, B)
brother (A, B)

sister (A, B)

uncle (A, B)

male (A) ,parent (A, B) .

female (A),parent (A, B) .

male (A) ,parent (B, A) .
female (A) ,parent (B,A) .

female (A) ,parent (C,B),parent (A,C) .
male (A),parent (C,B) ,parent (A,C) .
male (A) ,parent (C,B),sibling(B,A),
male (C),sibling (A,B),parent (C,A).
female (A) ,parent (C,B) ,parent (C,A7),
male (C),sibling(A,B),sibling(B,A).
male (A) ,parent (C,B) ,au (A,B),

sibling(A,C),sibling(C,A).

aunt (A, B) :— female (A),parent (C,B),parent (D,C),
au(A,B),sibling(A,C),sibling(C,A),
male (D), parent (D, A) .

cousin (A, B) :— male(A),parent (C,B),male(C),au(D,B),
parent (E,D),male(E),au(C,A).
cousine (A, B) :— female(A),parent (C,B), female (C),

male (D) ,married(C,D),married(D,C),
parent (D,B),au(C,A),au(D,A).

Figure 2: Definitions generated exploiting deduction

also all the known facts concerning the concepts other than father 3, for a total of 742 literals.
Progressive corruption of such a complete description was obtained by randomly eliminat-
ing facts from it. Specifically, learning was run on the following percentages of preserved
descriptions: 100% (no incompleteness), 90%, 80%, 70%, 60%, 50% and 40%. Hence, the
description size varied as follows: 742 literals (100%), 668 literals (90%), and so on. For each
percentage, 5 different corrupted observations were generated, and 5 corresponding learning
problems were obtained whose performances were averaged.

The abductive theory (see Section 2.3) for this domain contained the following set of
abducibles *: parent, male, female, married, mother, son, daughter, grandmother, grandfather,
brother, sister, cousin, cousine, uncle, aunt. The integrity constraints are reported in Figure 4;

99, <

their interpretation is: “one person cannot be both male and female”; “a son cannot be female,
and vice versa”; “a daughter cannot be male, and vice versa”. INTHELEX was allowed to
exploit abduction to hypothesize facts, concerning the above descriptors, before performing
lgg’s.

If we compare the performance with and without abduction on the corrupted datasets,
the benefit becomes very evident with respect to all the parameters taken into account in Ta-
ble 1: number of clauses, number of 1gg’s, runtime and accuracy. It is possible to note that
the number of 1gg’s per clause is higher with abduction than without it for less corrupted
datasets, indicating that abduction is less useful when descriptions tend to be complete. On

the contrary, in more corrupted cases, abduction shows its power since it is able to preserve

3This can be seen as a saturation of examples.

4By definition, abducibles cannot be concepts to be learnt, neither can they have definitions in the theory.
The presence of concepts such as son, daughter etc. here is allowed merely because of the new experimental
setting with the respect to the previous ones.



Abstraction theory

father (A,B) :—- male(A),parent (A,B).
mother (A,B) :— female (A),parent (A,B).

Generated Definitions

grandfather (A,B) :— father(A,C),mother(C,B).
grandfather (A,B) :— father(Aa,C), father(C,B).
grandmother (A,B) :— mother(A,C),mother (C,B).
grandmother (A,B) :— mother(A,C),father(C,B).

Figure 3: Definitions generated exploiting abstraction
Integrity Constraints

ic([male(X), female(X)]).
ic([son(X,Y), female(X)]) .
ic([daughter (X,Y),male(X)]).

Figure 4: Abductive Theory: integrity constraints

the theories from being refined (indeed, the number of 1gg’s per clause dramatically decreases
and goes below the case without abduction). Moreover, lower runtimes prove that the abduc-
tive procedure is also efficient. Finally, note that the number of clauses is less when using
abduction in all corrupted cases, nevertheless predictive accuracy is always comparable to,
and in some cases significantly higher than, the case without abduction.

4 Conclusions and Future Work

Approaches to machine learning that combine different reasoning strategies can help in ob-
taining more efficiency and effectiveness and hence might turn out to be useful in a number
of real-world situations. The incremental system INTHELEX works on first-order logic rep-
resentations. Its multistrategy learning capabilities were obtained by augmenting pure induc-
tion and abduction with abstraction and deduction. This paper presents some sample results
proving the benefits that the addition of each strategy can bring. Future work will concern
a more extensive experimentation, aimed at finding tighter ways of cooperation among the
learning strategies, and an analysis of the complexity of the presented techniques. Supported
by previous successful experience in the application of symbolic learning techniques to paper
documents [6, 12], benefits of applying multistrategy to real-world problems, such as learn-
ing rules for classification and interpretation of cultural heritage material, are currently under
study. Specifically, INTHELEX is being exploited as a learning component in EU project
COLLATE, dealing with historical filmographic documents concerning European production
in the 20ies and 30ies.



Table 1: Abduction on family dataset
| | Clause | Lgg | Lgg/Clause | Runtime | Accuracy |

100% noabd 1 1.6 1.6 34.65 0.994
abd 1.2 1.6 1.3 39.22 0.994
90%  noabd 3.6 5.6 1.6 377.62 0.956
abd 1.4 3.2 2.3 54.68 0.986
80%  noabd 44 9.2 2.1 362.67 0.948
abd 1.2 3 2.5 49.6 1
70%  noabd 6.6 7.8 1.2 615.82 0.940
abd 1.2 24 2 39.29 1
60%  noabd 6.8 104 1.5 323.11 0.924
abd 2.2 3.2 14 55.34 1
50%  noabd 7.6 9.4 1.2 294.85 0.920
abd 2.2 1.4 0.6 29.6 1
40%  noabd 10.6 11.8 1.1 446.05 0.896
abd 1.8 1.2 0.7 19.36 1
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