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Abstract. In the line of a feature generation paradigm based on relational con-
cept descriptions, we extend the applicability to other languages of the Descrip-
tion Logics family endowed with specific language constructors that do not have
a counterpart in the standard relational representations, such as clausal logics. We
show that the adoption of an enhanced language does not increase the complex-
ity of feature generation, since the process is still tractable. Moreover this can
be considered as a formalization for future employment of even more expressive
languages from the Description Logics family.

1 Introduction

Many interesting tasks in AI such as natural language processing, computer vision, and
planning require adequate relational representations. Examples include the problem of
identifying relations of interest, identifying a speaker given the conference schedule,
answering to free-form questions given relevant text, detecting people in an image or
defining a policy for planning. Hence, multi-relational representations must be taken
into account. The challenge is to provide the necessary expressivity, meeting the strong
tractability constraints posed by such tasks.

The problem with learning unbiased relational representations is their intractability
[1] which has led to the investigation of ways to impose some bias in order to make
deductive and inductive reasoning more efficient. In order to overcome the inherent
intractability, an increasing interest lately has been devoted to approaches based on
propositionalization[2], whose final aim is to exploit the efficiency of propositional
learning for inducing relational classifiers.

This work follows the approach to propositionalization that employs concept rep-
resentations for abstracting relational structures by generating new relevant features
through an efficientgenerating function(see [3]). Rather than during the learning pro-
cess, features are intended to be generated before learning takes place.

Various relational representations which may serve as a starting point for feature
construction, such asconcept graphsandframe systems, have been unified in the frame-
work of Description Logics(henceforth DLs) [4]. They are well suited for this purpose,
indeed DLs descriptions are employed in KRR as a means for expressing concepts (as
classes of individuals) and their properties. Besides, this family of languages is endowed
with well-founded semantics and reasoning services (mostly for deductive inference)
descending from a long research line.



Differently from other techniques for propositionalization, in the proposed approach
DLs representations constitute intermediate (rich) languages for transforming domain
elements into new features expressed in a new lexicon based on DLs throughfeature
generating functions[3]. The results of this transformation may then be piped as the
input for general-purpose propositional learners especially those that can handle ex-
amples with a variable number of (relevant) features which is much less than the total
number of (possibly infinite) features [5] for inducing structures that are described like
functions mapping propositional variables to DLs descriptions.

In this paper we aim at generalizing this approach in terms of more expressive DLs.
Differently from the mentioned work introducing DLs in the paradigm [3], where, for
the sake of tractability, a very simple DL language, theFeature Description Logic(FDL)
is employed. Actually FDL is a very simple language supporting only existential at-
tributes and conjunction which are well suited for existential descriptions like in an
ILP context. Yet, with the advent of the Semantic Web it is likely that many other KBs
expressed in DLs will be made available for interoperation.

However existential representations are not always well suited. Indeed, consider
features as a sort of types defined like in frame-based systems, E-R models and object-
oriented models [6], they have to be regarded as constructed on different constructors,
namely those based on universal restrictions. Therefore, we extend the original feature
construction framework towards different DLs which are still endowed with efficient
reasoning services requested by the paradigm. Particularly, we propose a method based
upon theALN logic [7, 8, 4] thus yielding more expressiveness for the relational de-
scriptions that are abstracted by the elicited features. These features, in turn, can be
acquired to enrich the starting knowledge base building up a new representation.

The original algorithm for feature extraction produces only active features acting as
positive examples for the adopted propositional learners, thus making a sort of Closed
World Assumption, which contrasts with the mainstream in DLs reasoning: an inactive
feature should be explicitly inferred from the knowledge base. By allowing negation in
the language, it becomes natural to represent also negative examples.

The paper is organized as follows. In Sect. 2 the representation language is pre-
sented. The learning framework is illustrated in Sect. 3 and it is discussed in Sect. 4.
Possible developments of the method are examined in Sect. 5.

2 The ALN Description Logic

ALN is a DLs language which allows for the expression of universal features and
numeric constraints [4]. It has been adopted because of the tractability of the related
reasoning services [9]. In order to keep this paper self-contained, syntax and seman-
tics for the reference representation is briefly recalled with the characterization of the
descriptions in terms of concept graphs.

In DLs, primitiveconceptsNC = {A, . . .} are interpreted as subsets of a certain do-
main of objects and primitiverolesNR = {R,S, . . .} are interpreted as binary relations
on such a domain. InALN , more complex concept descriptions are built using atomic
concepts and primitive roles by means of the constructors presented in Table 1. Their
meaning is defined by aninterpretationI = (∆I , ·I ), where∆I is thedomainof the



Table 1.Constructors and related interpretations forALN .

NAME INTENSION EXTENSION

top concept > ∆
bottom concept ⊥ /0

primitive concept A AI ⊆ ∆
primitive negation ¬A ∆\AI

concept conjunction C1uC2 CI
1 ∩CI

2
value restriction ∀R.C {x∈ ∆ | ∀y (x,y) ∈ RI → y∈CI }

at-mostrestriction ≤ n.R {x∈ ∆ | |{y∈ ∆ | (x,y) ∈ RI }| ≤ n}
at-leastrestriction ≥ n.R {x∈ ∆ | |{y∈ ∆ | (x,y) ∈ RI }| ≥ n}

interpretation and the functor·I stands for theinterpretation functionmapping the in-
tension of concept and role descriptions to their extension.

A knowledge baseK = 〈T ,A〉 contains two components: a T-boxT and an A-box
A . T is a set of concept definitionsC≡ D, meaningCI = DI , whereC is the concept
name andD is a description given in terms of the language constructors. Differently
from ILP, each (non primitive) concept has a single definition. Moreover, the DLs def-
initions are assumed not to be recursive, i.e. concepts cannot be defined in terms of
themselves.

The A-boxA contains extensional assertions on concepts and roles, e.g.C(a) and
R(a,b), meaning, respectively, thataI ∈ CI and (aI ,bI ) ∈ RI . Note that, differently
from the examples in the ILP setting, the concept descriptionC can be more complex
than LP facts. For instance they could assert a universal property of the an individual:
(∀R.(Au¬B))(a) that is, roleR relatesa exclusively to individuals1 that are instances
of the conceptAu¬B.

Example 2.1.Examples ofALN descriptions are2:
Polygamist≡ Personu∀isMarriedTo.Person u ≥ 2.isMarriedTo
Bigamist≡ Personu∀isMarriedTo.Person u= 2.isMarriedTo
MalePolygamist≡MaleuPersonu∀isMarriedTo.Person u ≥ 2.isMarriedTo

The notion ofsubsumptionbetween DLs concept descriptions can be given in terms
of the interpretations defined above:

Definition 2.1 (subsumption).Given two concept descriptionsC andD, C subsumes
D iff it holds thatCI ⊇DI for every interpretationI . This is denoted denoted byCwD.
The induced equivalence relationship, denotedC≡ D, amounts toCw D andDwC.

Note that this notion is merely semantic and independent of the particular DLs language
adopted. It is easy to see that this definition also applies to the case of role descriptions.

The most important difference between DLs and clausal logics arises. Indeed, while
in the context of DLs reasoning theOpen World Assumption(OWA) is adopted, in ILP
theClosed World Assumption(CWA) is generally required.

1 It holds even in case no suchR−filler is given.
2 Here(= n.R) is an abbreviation for(≤ n.Ru ≥ n.R).



Example 2.2.Considering again the concepts described in Ex. 2.1, the assertions:
A = { Person(Bob),Person(Meg),Person(Pam),Male(Bob),¬Male(Meg),

¬Male(Pam), isMarriedTo(Bob,Meg), isMarriedTo(Bob,Pam) }
would entail thatBob is an instance ofPolygamist if the CWA is adopted; otherwise
also∀isMarriedTo.Person(Bob) should be known forPolygamist(Bob) to hold.

Semantically equivalent (yet syntactically different) descriptions can be given for
the same concept. However they can be reduced to a canonical form by means of
equivalence-preserving rewriting rules, e.g.∀R.C1u∀R.C2 ≡ ∀R.(C1uC2) (see [7, 4]).
The normal form employs the notation needed to access the different parts (sub-descriptions)
of a concept descriptionC:

– prim(C) denotes the set of all (negated) concept names occurring at the top level of
the descriptionC;

– valR(C) denotes conjunction of conceptsC1u·· ·uCn in the value restriction of role
R, if any (otherwisevalR(C) =>);

– minR(C) = max{n∈ IN |Cv (≥ n.R)} (always a finite number);
– maxR(C) = min{n∈ IN |Cv (≤ n.R)} (if unlimited thenmaxR(C) = ∞).

Definition 2.2 (ALN normal form). A concept descriptionC is in ALN normal form
iff C => or C =⊥ or

C =
l

P∈prim(C)

P u
l

R∈NR

(∀R.CR u ≥n.Ru ≤m.R)

whereCR = valR(C), n =minR(C) andm= maxR(C).

The complexity of normalization is polynomial [4]. Besides, subsumption can be
checked in polynomial time too [9]. Note also that we are considering the case of sub-
sumption with respect to empty terminologies that suffices for our purposes. Otherwise
deciding this relationship may be computationally more expensive.

Although subsumption between concept descriptions is merely a semantic relation-
ship, a more syntactic relationship can be found for a language of moderate complexity
like ALN that allows for a structural characterization of subsumption [10].

Proposition 2.1 (subsumption in ALN ). Given twoALN concept descriptionsC
andD in normal form, it holds thatCw D iff all the following relations hold between
the sub-descriptions:

– prim(C)⊆ prim(D)
– ∀R∈ NR: valR(C)w valR(D)
– minR(C)≤minR(D)∧maxR(C)≥maxR(D)

Hence subsumption checking is accordingly polynomial likeO(nlogn), wheren is the
size of conceptC. In the following we will refer to concepts descriptions in normal form
unless a different case is explicitly stated.

The tree-structured representation of concept description are defined as follows [7]:

Definition 2.3 (description tree).A description treefor a conceptC in ALN normal
form is a treeG(C) = (V,E,v0, l) with root v0 where:



G(D) :

Fig. 1. The conceptD≡ ∀R.(Pu∀S.Q)u∀S.(Qu ≤ 1S) as a description tree.

– each nodev∈V is labelled with a finite setl(v) ⊆ NC∪{¬A | A∈ NC}∪{≥ n.R |
n∈ IN, R∈ NR}∪{≤ n.R | n∈ IN, R∈ NR}

– each edge inE is labelled with∀R, whereR∈ NR

Proposition 2.2 (equivalence).An ALN descriptionC is semantically equivalent to
an ALN description treeG(C) of size polynomial in the size ofC, which can be con-
structed in polynomial time.

Proof. Let C be a concept descriptionC in ALN normal form. It corresponds to the
treeG(C) = (V,E,v0, l) defined recursively on the depthd of nested restrictions inC:

(d = 0) G(C) = ({v0}, /0,v0, l) with l(v0) = prim(C)∪S
R∈NR

(≥n.Ru ≤m.R)
(d> 0) let NR(C) the names of roles at the top level ofC. For anyR∈ NR(C), let

G(CR) = (VR,ER,v0R, lR) be the description tree ofCR = valR(C), where w.l.o.g.
theVR’s are pairwise disjoint andv0 6∈

S
R∈NR

VR. Then:

– V = {v0}∪
S

R∈NR
VR

– E = {v0Rv0R}∪
S

R∈NR
ER

– if v = v0 thenl(v) = prim(C)∪S
R∈NR

(≥n.Ru ≤m.R)
otherwisel(v) = lR(v) (beingv∈VR)

Example 2.3.The concept descriptionD ≡ ∀R.(Pu∀S.Q)u∀S.(Q u ≤ 1S) is equiva-
lent to the tree depicted in Fig. 1.

Instance checking can be characterized in terms of homomorphisms between trees
and graphs [7]:

Definition 2.4 (A-box description graph). LetA be anALN A-box,a be an individ-
ual occurring inA (a∈ Ind(A)) andCa =

d
C(a)∈A C. LetG(Ca) = (Va,Ea,a, l) denote

the description tree ofCa. G(A) = (V,E, l) is aA-box description graphwith:

– V =
S

a∈Ind(A)Va

– E = {aRb| R(a,b) ∈ A}∪S
a∈Ind(A) Ea

– l(v) = la(v) for all v∈Va

Subsumption and instance checking can be used to translate an individual of the
domain (an instance of the target concept) into a set of features suitable for propositional
algorithms. Thus DLs that allow for efficient subsumption procedures, such asALN ,
are to be preferred.



3 Feature Generation Based onALN Descriptions

Now we recall the main issues of the paradigm developed in [3] adapted to a more
generic DLs context. The main point is the feature extraction method that can be used
to generate propositional formulae in terms of expressive features through subsumption
queries from arbitrarily complex data represented by concept graphs.

Assertions in an A-box are described in terms of the relational language (primi-
tive concept and role names). The aim is then producing a classifier that predicts new
assertions to hold for selected elements. The adopted propositional learning algorithm
requires examples to be generated on the basis of the available relational assertions in
the A-box. These examples make up a set ofactivepropositions (features) holding for
the target concepts. The propositions can be thought of as ground assertions described
in terms of the adopted DLs language.

Since the negation of primitive concepts is also allowed in this DLs language, it
is possible to represent explicitly also negative information of instances of the target
concept, something that was not possible in the original feature extraction paradigm
[3]. This method actually works with the adoption of the CWA which is something
unusual for dealing with DLs representations. The method can generate a large number
of features belonging to a limited number of types represented by DLs descriptions.
Thus the propositional learning algorithm to be employed has to be able to deal with
this kind of situations.

Definition 3.1 (feature). Given a concept descriptionD, a featureFD is a function
FD : W 7−→ {0,1}mapping interpretations to truth values. The featureFD is said to be
activein an interpretationI ∈W when it evaluates to1.

In the following, we will employ the canonic interpretationIA of an A-BoxA , where
the set of individuals stand for themselves.

Example 3.1.The descriptionD≡ ∀isMarriedTo.Person is active for the canonic inter-
pretationIA of the A-box presented in Ex. 2.1.

Active features may be employed as the input for efficient propositional learning
systems, such as SNoW [11]. In alearning from entailmentsetting, the central point is
the definition of efficient functions that are able to translate interpretations into sets of
features [3], thus expressing relational qualities of the individuals that stand as instances
of the target concepts.

Definition 3.2 (feature generating function).Let I be a model for an A-boxA and
let D be a set of descriptions. Afeature generating function (FGF), denoted withχ,
determines sets of features as follows:χ(I ,D) = {FD | D ∈D, FD(I ) = 1}.
Thus, the FGFχ performs a change of representation forI into the (subsumers of)
descriptionD. Now an interpretation can be regarded as a description graph in which
each element involved is in the extension of some node. To restrict the range of possible
interpretations, a particular oneIA can be regarded as the canonical model related to
the A-boxA [10] where each individual name stands for itself. This interpretation, in
turn, can be represented as the very description graphG(A) (by Def. 2.4).



function χmsc(I , D): Features
input: I : interpretation,

D: ALN description
output: Features: feature set

begin
Features←
for eacha∈ Ind(A) do

begin
Ma←msckA (a)
for eachD ∈D do

if DwMa then
Features← Features∧FD

end
return Features
end

Fig. 2. A simple FGF algorithm forALN .

A non-standard inference service for DLs computes themost specific conceptof an
individual a with respect to an A-boxA , denotedmscA(a), which is the most specific
concept description (with respect to subsumption) whose extension containsa with re-
spect to all of the models forA [8]. The generation of the features based on themsc
may be performed through the simple algorithm reported in Fig. 2. For each individ-
ual, themscwith respect to the A-box must be computed3. This is similar to the most
specific subsumer (mss) employed in [3], where the language admitted ground (and
partially ground) descriptions. We preferred themscsince it is well-known and inves-
tigated in the KRR community and can be performed throughinstance checkingwhich
is supported by existing reasoners.

Example 3.2.Let a generating description be:
D≡Male u ≤ 2.isMarriedTou∀isMarriedTo.¬Male.
In the canonical interpretation of the A-box in Ex 2.1, the featureFD is active. This
holds for all the assertions subsumed byD, such asmsc(Bob).

This inference is not possible in all the DLs. When the A-boxes are cyclic only ap-
proximations of themsccan be computed. The problem arises when the DLs language is
endowed with existential restrictions (such as FDL) or number restrictions (likeALN ).
For example consider a very simpleALN A-box A = {R(a,a),(≤ 1.R)(a)}. Themsc
for a: ∀R. · · ·∀R.(≤ 1.R u ≥ 1.R) makes an infinite descending chain of descriptions.
Something similar can be obtained also with numeric restrictions.

A solution could be recurring to a different semantics allowing for recursive descrip-
tions. However, it has been shown that such a solution may compromise the tractability
of the overall method, since in that case computing themsc’s has an exponential cost.
Another possible wayout is to allow for approximatedmsc’s [8], for example up to a
certain depth related to the maximum cycle in the A-box [12].

3 In case of cyclic A-boxes, the k-approximation of themscis considered.



ABoxA = { Person(Meg),¬Male(Meg),(∀isMarriedTo.⊥)(Meg),Parent(Meg,Bob),Parent(Meg,Pat),
Person(Bob),Male(Bob),Parent(Bob,Ann),
Person(Pat),Male(Pat),(∀isMarriedTo.⊥)(Pat),Parent(Pat,Gwen),
Person(Gwen),¬Male(Gwen),(∀isMarriedTo.⊥)(Gwen),
Person(Ann),¬Male(Ann),Parent(Ann,Sue), isMarriedTo(Ann,Tom),
Person(Sue),¬Male(Sue),
Person(Tom),Male(Tom)}

BK descriptions for feature generationTBK
Single≡ Personu ≤ 0.isMarriedTo;

Mother≡ ¬Maleu∀Parent.Personu ≥ 1.Parent;
GrandParent≡ Personu∀Parent.(Personu∀Parent.Person u ≥ 1.Parent)u ≥ 1.Parent

Positive (resp. negative) instances for the target concept: I+ = {Meg,Gwen} (I− = {Ann,Pat}).
Generated examples: P = {p1, p2} andN = {n1,n2} where

p1 = Single∧Mother∧GrandParent (for Meg)
p2 = Single∧Mother (for Gwen)
n1 = ¬Single∧Mother (for Ann)
n2 = Single∧¬Mother (for Pat)

whose easy generalization is:Single∧Mother.

Fig. 3. Toy example: a kinship learning problem.

Example 3.3(Kinship learning problem).Fig, 3 contains an ABox,A , and a back-
ground TBox,TBK, with some descriptions employed for feature generation that are
typical in a kinship learning problem. In particular, the descriptionSingle concerns an
individual that isnon-married person, Mother describes an individual that isa non-male
(female) parent of at least one person, andGrandParent regards an individual that isa
person that is parent of at least a person that is parent of at least another person.

Now, if Meg andGwen are deemed as positive instances for the target concept, and
Ann andPat as negative instances, the corresponding examples for the propositional
learning problem are to be generated; e.g., to generate features related toGwen, one
has to check whethermscA(Gwen) = (Personu¬Maleu∀isMarriedTo.⊥) is subsumed
by some BK description, obtaining the examplep2 reported in Fig. 3. After the feature
generation phase, it is easy to see how the two positive examples may be generalized in
order to induce a consistent propositional description.

4 Applicability

We intend to discuss the efficiency of the feature generation method in this setting
and its applicability. The overall algorithm including the FGF as a preprocessing phase
would act as follows. Each interpretation is processed using a set of generating descrip-
tions as a background knowledge oftypes. After the preliminary feature generation
phase, a vector of active features is generated per interpretation which is then passed to
the learning algorithm. As mentioned before, an algorithm that can work in variable-
length vector of features is more suitable [5] (there could be an unlimited number).



Just like the original method, the adaptation toALN presented here is tractable.
Indeed, similarly to that paradigm, the following result holds:

Theorem 4.1 (FGF complexity). Let I be an interpretation and letD be anALN
generating description. There is a FGFχmsc, based on the msc operator, that is capable
of generating all of the active features in polynomial time.

Proof. Let I be an interpretation that is the canonical model of an A-boxA . The al-
gorithm presented in Fig. 2 computes all the active features by finding the msc of each
individual and performing a subsumption query. When the input descriptionD sub-
sumes such an msc the corresponding feature can be considered as being active.

Now, the descriptionM = mscA(a) can be recursively constructed as follows:
prim(M) =

d
C(a)∈A C

val(M) =
d

R∈NR

d
R(a,b)∈A mscA(b)

max(M) = min(M) = |{b∈ Ind(A) | R(a,b) ∈ A}|
It is easy to see that computing the msc is linear in the depth of the A-box graph.

The algorithm is dominated by the construction of the msc and by the subsumption
which are both polynomial inALN (provided that no cycle occurs in the A-box).

In the original framework on using DLs for feature generation [3], the simple language
FDL was adopted which is roughly equivalent withEL [10] with a concrete domain
[4] for expressing attributes as datatype properties. This DL is basically endowed with
two constructors: conjunction and qualified existential restriction (∃R.C). As previously
discussed, theoretically also this setting may suffer of the presence of cycles in the graph
representing the interpretation.

As regards the problem of cyclic A-boxes, the characterization of concept descrip-
tions is terms of regular languages should be exploited [8]. Besides, a change of se-
mantics should be made in order to take into account cyclic definitions. However, the
computation ofmsc’s would not be tractable unless recurring to approximations [12].

Learning directlyALN representations may compromise the effectiveness of the
whole process. Indeed the standard generalizing operator for such description, theleast
common subsumer(lcs) applied tomsc’s [13], is known to yield poorly predictive gen-
eralizations. In our case, the exploitation of a tractable feature generation method allows
the application of efficient algorithms for propositional representations which can han-
dle cases with very large number of features [5, 11].

5 Conclusions and Future Work

In the line of the paradigm for feature generation employing a DLs knowledge base
as a collection of relational types, we have shown a method where a standard DLs
language likeALN is adopted. This extends the applicability to different features with
respect the original paradigm, namely universal and numeric restrictions, maintaining
the tractability of feature generation process. Moreover this can also be considered a
base for future extensions of the method toward even more expressive languages in the
DLs family.



This work could be extended towards more expressive languages endowed with
union and full negation in order to support completely the semantic concept mod-
els mentioned before [6]. This would allow for the exploitation of available pieces of
knowledge encoded in DLs to be used as a sort of background knowledge in the manner
indicated in the paper. Besides, the adoption of DLs languages with concrete domains
[4] may help to constrain more the search space, thus augmenting the efficiency of the
learning process. The next step will include investigation on the employment of feature
construction techniques in order to automatize the setup of the generating features, e.g.
concept learning algorithms applicable to DLs descriptions.
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