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Abstract: One of the most appreciated functionality of computers nowadays is 
their being a means for communication and information sharing among people. 
With the spread of the internet, several complex interactions have taken place 
among people, giving rise to huge information networks based on these 
interactions. Social networks potentially represent an invaluable source of 
information that can be exploited for scientific and commercial purposes. On 
the other hand, due to their distinguishing peculiarities (huge size and inherent 
relational setting) with respect to all previous information extraction tasks faced 
in computer science, they require new techniques to gather this information. 
Social network mining (SNM) is the corresponding research area, aimed at 
extracting information about the network objects and behaviour that cannot be 
obtained based on the explicit/implicit description of the objects alone, ignoring 
their explicit/implicit relationships. Statistical relational learning (SRL) is a 
very promising approach to SNM, since it combines expressive representation 
formalisms, able to model complex relational networks, with statistical 
methods able to handle uncertainty about objects and relations. This paper is a 
survey of some SRL formalisms and techniques adopted to solve some SNM 
tasks. 
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1 Introduction 

After their beginning as computation-focused machines, and a next stage involved in 
data-processing, computers have been characterised in the last decades as the main means 
for communication and information sharing among people all over the world. Supported 
by the World Wide Web (WWW), this perspective has taken the form of several (often 
huge) groups of (various kinds of) information items linked to each other in different 
ways, which are referred to as information networks. The WWW itself is an example, 
where the items are hypertextual documents connected to each other by hyperlinks. 
Social networks has flourished in the last years providing growing amounts of data, 
leading to the urgent need for social network mining (SNM) methods and techniques able 
to analyse them in order to gain useful, high-level information that emerges from the 
overall network and cannot be drawn considering single items separately. 

With the spread of the internet, lots of people have started contributing to build and 
extend these networks, by subscribing, accessing and exploiting several kinds of websites 
on the WWW (and on its evolution known as the Web 2.0) and services. This gave rise to 
huge networks, such as e-mail communication networks, instant messenger networks, 
mobile call networks, and friends networks. A few outstanding examples are: 

• citation networks, concerned with storing scientific papers, and with relating these 
papers and their subjects through their authors and the co-authorship or mutual 
reference relationships (e.g., DBLP) 

• semantic network service (SNS) websites, basically organised according to people 
and their mutual friendship or professional connection (e.g., Facebook, Linkedin, 
UNYK) 

• social shopping websites, focused on e-commerce (e.g., Amazon) and opinion 
sharing about products (e.g., Dooyoo) 
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• social media websites, that provide suggestions about music, movies, etc. based on 
user tastes and typical behaviours (e.g., Last.fm). 

Interest in social network analysis is motivated by several possible tasks, aimed at 
extracting information at different levels of granularity, ranging from the whole network 
up to single items. For instance, one might want to extract information about a person or 
an object that is not explicit in its description, but emerges from general considerations 
derived from its direct or indirect relationships in the network; or one might be interested 
in emerging groups of elements having similar behaviour or similar tastes, as determined 
by their features in the network. Thus, possible outcomes of the analysis activity are the 
discovery of social structures, social position or role of individuals. 

The peculiar feature distinguishing social networks is their consisting of rich 
collections of objects linked into complex relational networks. This makes SNM quite 
different from other information extraction tasks, and requires the exploitation of new 
techniques for carrying it out. First-order logic is the typical setting that provides 
sufficiently powerful representation languages to handle relationships. A machine 
learning subfield able to deal with logical representations is inductive logic programming 
(Muggleton, 1991), where both instances and learned models are represented using logic 
programming. Inductive logic programming aims to find a hypothesis H (a logic 
program) from a set of positive and negative examples fulfilling the constraint that the 
hypothesis H logically explains all positive examples and none of the negative examples. 
In order to have sufficiently robust and efficient systems able to deal with large quantities 
of possibly noisy data a lot of work, known under the names of statistical relational 
learning (SRL) (Getoor and Taskar, 2007), or probabilistic inductive logic programming 
(PILP) (De Raedt et al., 2008b), is appeared in the last few years. Models belonging to 
SRL and PILP combine expressive representation formalisms with statistical methods to 
perform probabilistic inference and learning on relational networks. 

In this paper, we survey some SRL formalisms and techniques for social network 
modelling and analysis. After introducing the setting and tasks of social network analysis 
in Section 2, and providing a brief overview of the fundamental of SRL in Section 3, we 
present the application of several SRL techniques to different tasks in social network 
analysis in Section 4, before concluding the paper in Section 5. 

2 Social networks analysis 

Social network analysis regards the study of relations among individuals, represented as a 
network, aimed at analysing aspects such as social structures and role analysis. A (social) 
network is normally represented with a complex structured graph where each potential 
node/edge is considered a random variable describing the state of the node/edge. From a 
machine learning point of view, the task is to learn the probabilistic dependencies 
between these random variables. In a graph representation, nodes represent the actors 
involved in the network, while edges denote the connections among the actors. Many 
relevant tasks can be setup on social networks; those relevant to the machine learning 
field are (Getoor, 2003; Getoor and Diehl, 2005; Tang and Liu, 2010): 

• link prediction, concerned with identifying when two actors may be connected or, 
more importantly, whether they may be connected in the future 
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• community detection, that tries to detect communities (groups of actors) by studying 
the network structure and topology 

• object classification and outlier detection, whose goal is to correctly predict the 
labels that may be associated to the actors 

• position/role analysis, aimed at identifying the role associated with different actors 

• information diffusion and viral marketing, that study and model how the information 
propagates in the social network, resulting in emerging relevant trends that can be 
exploited for a deeper understanding of the network and its elements. 

The link prediction task is very important in information network analysis. Link inference 
and link prediction are two recent statistical machine learning problems appeared as a 
result of the increasing interest in the broader problem of link mining in social networks 
[see Getoor and Diehl (2005) and Senator (2005) for a survey]. In a static perspective, it 
consists of identifying the connections between two items in a network, even if a direct 
connection between them is not explicitly present in the network graph. Inferring such an 
implicit link would allow to apply similar actions on those items, e.g., submitting them 
similar items of interest in a library or e-commerce context. In an evolutionary 
perspective, link prediction consists of the task of finding, given a snapshot of the 
network, which unobserved links among items are likely to occur in the future. This is a 
crucial topic in information network analysis, since effective predictions might allow to 
foresee how the whole net evolves, and hence to better understand and handle the context 
they represent. In both cases, it needs to work on descriptions that are not limited to 
simple attribute-value pairs, but involve relationships as a non-negligible component. As 
an additional issue, real world networks, such as social networks, are characterised by 
extremely noisy and sparse data. 

After initial efforts focused on unsupervised learning, several works started to explore 
supervised approaches to learning models for link prediction (Lichtenwalter and Chawla, 
2011) implemented a scalable and efficient multi-core tool link prediction including both 
unsupervised and supervised techniques), and on assessing which features can be more 
predictive. Hasan et al. (2006) identify key and efficient features to be exploited by 
propositional statistical learning algorithms. Other works exploit a random walk 
approach, guided towards promising nodes to be linked by node (Liu and Lu, 2006) or 
edge-related (Backstrom and Leskovec, 2011) functions. Also Liben-Nowell and 
Kleinberg (2007) define a proximity measure, taking different similarity measures  
(based on shortest path, node neighbourhoods, ensemble of all paths, coupled with  
meta-approaches that exploit their results for higher-level selection of best links) as 
indicators of the likelihood of introducing the corresponding edge. Lichtenwalter et al. 
(2010) focus on sparse networks, where only a few potential links actually form, and 
present an effective flow-based predicting algorithm and a completely general framework 
that outperforms unsupervised link prediction methods. Other works are based on the 
non-parametric Bayesian framework: Cao et al. (2010) address the data sparsity problem 
using a collective link prediction approach, which jointly predicts different kinds of links; 
Miller et al. (2009) use non-parametric latent feature models to simultaneously infer both 
the number of features and which entities have each feature. 

Several graph-based approaches have been attempted to solve the link prediction 
problem. Recently, Sarkar et al. (2011) correlate graph generation models associated to a  
 



   

 

   

   
 

   

   

 

   

    Social networks and statistical relational learning 189    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

latent metric space and link prediction heuristics to study several indicators such as role 
of node degree, path length, and non-determinism in the link generation process. Acar  
et al. (2009) exploit matrix and tensor-based methods to predict links in bipartite graphs 
that change in time. Leroy et al. (2010) face the cold start link prediction problem (in 
which the structure of the network is missing and only information regarding the nodes is 
available) by first generating an implicit network in the form of a probabilistic graph and 
then applying probabilistic graph-based measures to produce the prediction. 

The identification of communities in large networks is a very important problem 
because it allows to compactly represent and manage elements by class, and to notice 
trends in these groups. If the network is considered as a graph, detecting a community 
means finding a sub-graph whose elements exhibit strong linkedness and high similarity 
according to some parameter. Since many problems on graphs are computationally 
intractable, or practically infeasible for large inputs (as in the case of social networks), it 
turns out that community identification is very complex as well. Community detection 
approaches can be distinguished, from the perspective of their resulting output, based on 
their allowing or not overlapping communities (in the former case, a node can belong to 
several communities; in the latter, each node belongs to at most one community). In fact, 
this task is strictly related to clustering: fixed an objective function that allows to find sets 
of nodes with dense connections within sets and sparse connections between sets, 
approximation algorithms or heuristics can be applied to find the clusters accordingly. 
Leskovec et al. (2010) evaluate and compare a range of methods and objective functions, 
and examine several classes of approximation algorithms to optimise such functions, also 
considering community size as a quality indicator. To obtain a scalable algorithm that 
considers the whole network, Gargi et al. (2011) propose to combine a pre-processing 
stage, a local clustering stage, and a post-processing stage to generate labelled and 
consistent clusters of YouTube videos. Hohwald et al. (2009) work on mobile phone 
calls; they allow overlapping communities and focus on networks with unobserved 
interactions (missing edges) to predict future interactions. The methods also models inter 
and intra community interactions and their strength, used to decide whether merging 
communities based on binary decisions rather than weights. After applying an 
agglomerative hierarchical technique, links between communities are searched by using 
artificial neural networks and logistic regression, which perform better than a naive 
majority-class classifier. 

Maiya and Berger-Wolf (2010) do not allow overlapping communities, and recast the 
problem to univariate collective inference by defining the expansion sampling method, 
that allows to work on sampled items only. Random samples are considered 
representative of the overall network according to maximum expansion factor, where the 
maximum expander set can be approximated based on a greedy algorithm using snowball 
sampling or on Markov chain Monte Carlo simulation. 

Lozano et al. (2006) analyse large social datasets using a methodology based on 
community division, that allow to mix link and node attribute information. Hui et al. 
(2007) propose distributed approaches for mobile devices to detect both static and 
temporal communities that can approximate their corresponding centralised methods. 
Leung et al. (2009) analyse and extend an existing label propagation algorithm to obtain 
real-time community detection. Meo et al. (2011) present an approach that exploiting a 
novel measure of edge centrality discovers the community structure adopting a strategy 
inspired by the Louvain method, efficiently maximising the network modularity. 
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The identification of noteworthy elements in a social network may allow a deeper 
understanding of the behaviour of such items that could not be obtained without reference 
to the network as a whole. In particular, outliers are items showing a strange behaviour 
with respect to the overall network. Gao et al. (2010) detect global outliers (determined 
by their intrinsic features only) and contextual ones (that are ‘abnormal’ only relatively to 
related elements) during community discovery, based on an integrated probabilistic 
model, where generative mixture models are used to describe items, and hidden Markov 
random fields are used to determine the joint distribution of both data and links. 
Conversely, Tang and Liu (2011) ignore node features and leverage their relationships 
only, assuming that different kinds (labels) of links describe latent social dimensions. 
They use support vector machines and logistic regression to build from labelled nodes a 
discriminant classifier based on these dimensions (where each item may belong to many 
classes), and then apply it to the unlabeled ones. 

Karamon et al. (2007) define primitive operators for structural feature generation, 
whose combination automatically yields several social network indexes (some  
well-known, some others new), this way bridging the gap between the aggregation of 
network features for relational data mining and traditional analytical methods for social 
network analysis. Akoglu et al. (2009) propose a scalable algorithm, defining features 
and rules that are useful to identify nodes with strange behaviour in weighted graphs. 
Aggarwal et al. (2011) use a structural connectivity model for defining outliers in 
massive network/graph streams, dynamically partitioning the network to handle the 
sparsity problem and designing a reservoir sampling method to maintain structural 
summaries of the network. 

Chakrabarti (2004) works on the cross-point between clustering and outlier detection, 
relying on information theoretic principles to provide a parameter free and scalable 
algorithm aimed at overcoming the problems of other methods such as k-means 
clustering, METIS graph partitioning and singular value decomposition or principal 
component analysis. Bilgic et al. (2007) jointly face object classification and link 
prediction in case of missing or wrong attributes and links, proposing a collective 
algorithm that interleaves the two tasks. 

Social roles played by people in their interaction get a peculiar importance in online 
systems, because different kinds of roles can be associated to different types of users and, 
as a consequence, allow to generalise users’ behaviour and to detect and manage 
communities. Social roles in online community are defined in Gleave et al. (2009) as a 
combination of social psychological, social structural, and behavioural attributes; they 
also provide measurement and analysis strategies for identifying them in Usenet and 
Wikipedia. 

Ouimet et al. (2004) propose an approach to construct sociometric variables 
measuring the network positions of firms in a small industrial cluster: among the network 
measures used (degree, betweenness and effective size), only degree and effective size 
are positively correlated with radical innovation. McCallum et al. (2005) present the 
author-recipient-topic (ART) model, which learns topic distributions according to the 
relationships between people and is able to predict people’s roles on e-mail corpora. Hsu 
et al. (2008) investigate in the framework of first-order logic whether a concept can be 
defined using social positions, showing that this sometimes implies its definability using 
the corresponding social positions. 

Possible applications of diffusion analysis range from commerce, to medicine, to 
sociology. Viral marketing, in particular, focuses on how recommendations or just 
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opinions on given products, provided by some elements of the network, affect the 
adoption of those products by other (directly or indirectly related) elements of the 
network. 

Buskens and Yamaguchi (1999) focus on the efficiency of information transfer, 
proposing a model in which nodes may retain information after sending it that is able to 
predict diffusion times at different granularity levels and to generalise several network 
measures. They also analyse the relationships between diffusion times and centrality 
measures according to a series of network measures. Lafferty and Lebanon (2002) 
introduce a family of kernels for statistical learning, providing a natural way of 
combining generative statistical modelling with non-parametric discriminative learning, 
proving theoretical results and experiments on text classification. Kempe et al. (2003) 
provide a general approach and specific results about approximation guarantees on 
efficient and effective greedy algorithms for the NP-hard optimisation problem of 
selecting the most influential nodes, based on sub-modular functions. 

Gruhl et al. (2004) study the dynamics of information propagation in personal 
publishing environments, presenting both a macroscopic (at the network level) and a 
microscopic (at the level of individuals) characterisation of propagation, based on the 
theory of infectious diseases, deriving an algorithm to induce the propagation network 
from a sequence of posts. Yang and Leskovec (2010) note that patterns of influence 
depend on the type of the node and the topic of the information, developing a linear 
influence model that determines the number of newly infected nodes as a function of the 
nodes previously infected, and becomes scalable for large datasets in its non-parametric 
formulation (reducing to a simple least squares problem). Romero et al. (2011) study how 
tokens (hashtags) having different topic spread on a Twitter network depending on their 
‘stickiness’ and ‘persistence’, also based on their initial adopters and of the related 
subgraph structure. 

3 Statistical relational learning 

The vast interest in SRL (Getoor and Taskar, 2007) and in PILP (De Raedt et al., 2008b) 
has resulted in a wide variety of different formalisms, models and probabilistic 
programming languages (De Raedt et al., 2008a). 

Probability logic-based formalisms define probabilities using either a direct or an 
indirect approach (Cussens, 2007). In the former, probabilities are explicitly provided for 
each probabilistic fact, and the corresponding model is closely related to a Bayesian 
network. Formalisms falling into this category are probabilistic horn abduction (PHA) 
(Poole, 1993), probabilistic logic programming (PLP) (Ng and Subrahmanian, 1992), 
relational Bayesian networks (RBNs) (Jaeger, 1997), Bayesian logic programming (BLP) 
(Kersting et al., 2000), stochastic logic programmes (SLPs) (Muggleton, 1996), PRISM 
(Sato and Kameya, 1997), CLP(BN) (Costa and Cussens, 2003), ProbLog (De Raedt  
et al., 2007), and logic programmes with annotated disjunctions (LPADs) (Vennekens  
et al., 2004). Since some of these languages can be translated into Bayesian networks, 
when the networks contain hidden variables, learning the parameters of these languages 
requires the use of techniques for learning from incomplete data such as the expectation 
maximisation (EM) algorithm (Dempster et al., 1977) or the recent relational information 
bottleneck (RIB) framework (Riguzzi and Di Mauro, 2012). In the indirect approach, 
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conversely, formulæ are not explicitly associated to their probability, and the probability 
of a possible world is defined in terms of its features by means of an associated  
real-valued parameter. A formalism falling in this category is Markov logic networks 
(MLNs) (Richardson and Domingos, 2006). 

These approaches define a probability distribution in a logic-based formalism and 
solve the so-called inference problem, consisting in the computation of probabilities to 
answer specific queries. Their logical interpretation is in terms of classical least Herbrand 
models, while the probabilistic semantics is in terms of a possible worlds semantics. 
Since learning is a fundamental component of the systems based on SRL formalisms, 
there are two additional problems that should be considered: parameter estimation and 
structure learning. The assumption is that the observed data are a sample generated from 
an unknown distribution, and that the aim is learning such a distribution. When the 
structure of the model is known, there is a need to learn the parameters of the model. In 
general, both the structure and its parameters must be learned. 

Another category of modelling approaches concerns the combination of relational 
database models and graphical models as for the following formalisms: probabilistic 
relational models (PRMs) (Friedman et al., 1999), probabilistic entity relational models 
(PERMs) (David Heckerman and Meek, 2007) and relational Markov networks (RMNs) 
(Taskar et al., 2007). 

The parametric approaches to SRL listed above focus on probabilistic models with 
finitely many parameters, selecting a single model that performs best. Other  
non-parametric approaches work with probabilistic models with infinitely many 
parameters such as infinite (hidden) relational models (IHRMs) (Kemp et al., 2006; Xu  
et al., 2006) and the multi-relational Gaussian process model able to deal with an 
arbitrary number of relations recently proposed in Xu et al. (2009). 

Even if SRL formalisms are able to deal with complex domains their parameter 
learning and structure learning algorithms are not efficient when compared to classical 
propositional statistical learning methods. Recent works on lifted inference (Poole, 2003; 
de Salvo Braz et al., 2005) allows expressive representations whose inference is made 
much cheaper by abstracting away from specific instances of random variables and 
dealing instead with whole classes thereof at once. 

Another possible perspective towards SRL consists in restricting expressiveness, this 
way allowing for more efficient learning and inference algorithms. This category 
includes, among others, the following recent non-parametric approaches: nFOIL 
(Landwehr et al., 2005), that integrates the naive Bayes probabilistic model with a 
relational rule learner, kFOIL (Landwehr et al., 2006), where a relational kernel function 
is learned and defined in terms of a small set of interpretable relational features, Lynx  
(Di Mauro et al., 2011), that combines the naive Bayes probabilistic model with relational 
query construction and selection, and rsLDA (Taranto et al., 2011b) that combines a 
relational feature construction approach with the latent Dirichlet allocation hierarchical 
Bayesian model. 

In the following, we briefly introduce two examples of SRL formalisms, Bayesian 
logic programmes (Kersting and De Raedt, 2007) extending the direct graphical model of 
Bayesian networks, and MLNs (Richardson and Domingos, 2006) extending the 
undirected graphical model of Markov networks. In order to describe these SRL 
formalisms we firstly report some basic definitions about first-order logic. 

A first-order logic alphabet consists of a set of constants, a set of variables, a set of 
function symbols, and a non-empty set of predicate symbols. Each function symbol and 
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each predicate symbol have an associated number (its arity) specifying how many terms 
it must be applied to. A term is defined to be a constant symbol, a variable symbol, or an 
n-ary function symbol applied to n terms. An atom is a predicate symbol of arity n 
applied to n terms. Clauses are formulas of the form A ← B1, …, Bm, representing 
implications (B1 ∧ … ∧ Bm) ⇒ A), where A and the Bi’s are atoms (in particular, A is 
called the head of the clause, and the Bi’s its body) and all variables are implicitly 
understood to be universally quantified. A logic programme consists of a set of clauses. 
A term, atom or clause is called ground when there is no variable occurring in it. A 
substitution is an assignment of terms to variables. Applying a substitution θ to a set of 
atoms c, denoted as cθ, provides the instantiated set of atoms where all occurrences of the 
variables are simultaneously replaced by the corresponding term. The Herbrand base of a 
logic programme is the set of all ground atoms that can be built on the predicate, constant 
and function symbols in the alphabet of the programme. A Herbrand interpretation for a 
logic programme is a subset of its Herbrand base, while its least Herbrand model consists 
of all facts belonging to the Herbrand base and logically entailed by the programme. 

3.1 Bayesian logic programming 

Here, we describe Bayesian logic programmes (Kersting and De Raedt, 2007) by firstly 
introducing the graphical model that provides its foundation, i.e., Bayesian networks 
(Pearl, 1991). 

A Bayesian network is a directed acyclic graph G representing a dependency structure 
over a set of random variables X = {X1, …, Xn}, where each variable Xi is represented by 
a node in the graph and an edge between two variables denotes their direct influence. 
Furthermore, the random variables in X are associated to corresponding domains  
D = {D1, …, Dn} and probability distributions P = {P1, …, Pn} with ( | Pa ),ii i XP P X=  
where Pa iX  denotes the set of parents (i.e., the direct predecessors) of Xi in G. A 
Bayesian network represents a probability distribution P(X1, …, Xn) over the variables in 
X, and because of the conditional independence assumption of Bayesian networks (i.e., 

( | , Pa ) ( | Pa )),i ii X i XP X A P X=  we can write: 

( ) ( )1 .| Pa, ..., ii Xn
i

P P XX X =∏  

Bayesian logic programmes (Kersting and De Raedt, 2007) unify Bayesian networks with 
logic programming allowing to overcome both the propositional nature and limitation of 
Bayesian networks and the purely logical nature of logic programmes. 

The concept of logical clause is extended to that of Bayesian clause that is an 
expression of the form A | A1, …, An where n ≥ 0, the A, A1, …, An are Bayesian atoms, 
which means that they have an associated finite set of possible states, and all Bayesian 
atoms are universally quantified. When n = 0, the clause is called a Bayesian fact and is 
expressed as A. Assuming that for each Bayesian predicate there is a corresponding 
combining rule (i.e., a function mapping finite sets of conditional probability distributions 

1{ ( | , ..., ) | 1, ..., }ii inP A A A i m=  onto one combined conditional probability distribution 

P(A | B1, …, Bk) with { } { }11 1
,, ...,, ..., i

m
i ink i

A AB B
=

⊆∪  it is possible to formally define a 

Bayesian logic programme as consisting of a (finite) set of Bayesian clauses. For each 
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Bayesian clause there is exactly one conditional probability distribution and for each 
Bayesian predicate there is exactly one combining rule. 

A declarative semantics for Bayesian logic programmes can be formalised using the 
annotated dependency graph (Kersting and De Raedt, 2007). The dependency graph is a 
directed graph whose nodes correspond to the ground atoms in the least Herbrand model 
LH(B). It encodes the direct influence relation over the random variables in the least 
Herbrand model. In particular, there is an edge from a node X to a node Y if and only if 
there exist a clause c and a substitution θ such that Y = head(cθ), X ∈ body(cθ) and for all 
ground atoms Z in cθ : Z ∈ LH(B). 

A Bayesian logic programme is a template for a Bayesian network whose nodes are 
the relevant random variables. Traditional techniques used for parameter estimation of 
Bayesian networks, such as the EM algorithm, can be adapted for learning the parameters 
of Bayesian logic programmes. As regards the structure learning of Bayesian logic 
programmes, classical refinement operators used in inductive logic programming can be 
used. 

3.2 Markov logic networks 

This section reports an extension to the logical case of Markov networks model. A 
Markov network is an undirected graphical model for the joint distribution of a set of 
variables, made up of an undirected graph, containing a node for each variable, and a set 
of potential functions for each clique in the graph. Given a set of variables X and a set of 
potential functions φk, a Markov network represents the following joint distribution: 

( ){ }
1( ) ,kk

k

xP X x
Z

φ= = ∏  

where x{k} represents the state of the kth clique, and Z is the partition function given by 
( ){ } .kkx X k
xZ φ

∈
=∑ ∏  A Markov network can be also represented in a log-linear way 

as 

1 ( )( ) exp ,j j
j

w f xP X x
Z

⎛ ⎞= = ⎜ ⎟
⎝ ⎠
∑  

where each potential function has been replaced by a weighted sum of features. 
MLNs (Richardson and Domingos, 2006) extend Markov networks to first-order 

logic, where a possible world is an assignment of truth values to all possible groundings 
of predicates. A first-order formula can be seen as a hard constraint on the set of possible 
worlds (if a world violates even one formula, it has zero probability), while MLNs soften 
this constraint (when a world violates one formula it is less probable, but not impossible). 
To this purpose, each formula has associated a weight representing how strong a 
constraint it is. Thus, a MLN is a set of pairs (Fi, wi), where Fi is a formula in first-order 
logic and wi is a real number. 

Given a set of constants C, a MLN defines a Markov network containing one binary 
node for each possible grounding of each predicate appearing in the MLN, whose value is 
1 if the ground atom is true, or 0 otherwise. Furthermore, the Markov network contains 
one feature for each possible grounding of each formula Fi in L. The value of this feature 
is 1 if the ground formula is true, or 0 otherwise. The weight of the feature is the wi 
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associated with Fi in L. The probability distribution over possible worlds x specified by 
the ground Markov network is given by 

( ) ( )
{ }

1 1( )( ) exp ,in xi i ii
i i

w n x xP X x
Z Z

φ⎛ ⎞= = =⎜ ⎟
⎝ ⎠
∑ ∏  

where ni(x) is the number of true groundings of Fi in x, x{i} is the state of the atoms 
appearing in Fi, and { }( ) .iw

ix eφ =  An MLN can be viewed as a template for constructing 
Markov networks. 

The parameters of an MLN may be learned using many techniques to optimise the 
pseudo-log-likelihood, while its structure is usually learned adopting methods borrowed 
from inductive logic programming. 

4 Social network analysis with SRL 

Social networks are usually represented by a complex relational network involving many 
linked objects. SRL combines expressive knowledge representation formalisms with 
statistical approaches resulting in a good choice to perform probabilistic inference and 
learning on relational networks. In this section, we provide a survey of works that adopt 
SRL formalisms to solve specific social network tasks. 

4.1 Object classification 

Object classification regards the problem of predicting the label of an object within the 
network using its observed attributes and the observed/unobserved labels/attributes of the 
objects in its neighbourhood. To solve this task, it is necessary to perform collective 
classification (Jensen et al., 2004) where relationships among objects must be taken into 
account in order to enhance the predictive accuracy of the model: the labelling of an 
object should depend on the labels of its neighbours. Collective classification is one of 
the main tasks closely related to SRL as already reported in Chakrabarti et al. (1998), 
Taskar et al. (2001), Neville et al. (2003) and Jensen et al. (2004). In a social network, 
where nodes represent actors, the actor-actor links are used to boost the accuracy of local 
classifiers or even provide classification labels in the absence of local features (Zheleva 
et al., 2010). SRL techniques adopted to solve this problem assume that knowing the 
label of a particular object of the network can correctly guide the inference of the other 
nodes’ labels. Methods adopting a collective classification approach can significantly 
outperform classification methods that ignore the relationships between nodes in the 
network (Sen et al., 2008). An interesting study has been reported in Macskassy and 
Provost (2007) that introduces a network learning toolkit that enables in-depth studies of 
techniques for SRL and classification with networked data. 

Collective classification corresponds to a combined classification of interlinked 
objects using correlations between the label of an object and its observed attributes, the 
correlations between the label of an object and the observed attributes/labels of objects 
belonging to its neighbourhood, and the correlations between the label of an object and 
the unobserved labels of objects belonging to its neighbourhood. One commonly used 
method for collective classification is the iterative classification algorithm (ICA). 
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Assuming to have a local classifier, ICA predicts the best label for a node yi taking the 
values of all other nodes in its neighbourhood. Since, some values in the neighbourhood 
might be unknown, the label of yi is predicted by estimating all the values in the 
neighbourhood, and the process is iteratively repeated until the assignments to the labels 
get stable. 

Taskar et al. (2002) proposed the use of a joint probabilistic classification model for a 
collection of related entities introducing the framework of RMNs that compactly defines 
a Markov network over a relational dataset. They extended the previous work (Taskar  
et al., 2001) on PRMs for collective classification overcoming its limitation in some 
domains where cycles in the link graph lead to cycles in the corresponding Bayesian 
network. Experimental results on web page classification proved the validity of the 
proposed model for modelling relational dependencies among entities. Following Taskar 
et al. (2002), and Neville and Jensen (2007) presented relational dependency networks 
(RDNs) that are capable of expressing and reasoning with dependencies in a relational 
setting, trying to overcome the acyclicity requirement problem that prevents learning 
arbitrary dependencies and limits the applicability of directed PRMs, such as relational 
Bayes networks (RBNs) (Friedman et al., 1999). Similarly to RMNs, RDNs can represent 
and reason with arbitrary forms of autocorrelation, also structured in a cyclic manner. 
Furthermore, using a pseudolikelihood estimation technique, RDNs are not limited by 
efficiency concerns during learning as RMNs, for which the cost of inference is 
prohibitively expensive. 

Richardson and Domingos (2006) proposed MLNs as another extension of Markov 
networks for relational data, combining first-order logic and a probabilistic graphical 
model in a single representation. They showed how the proposed framework can easily 
and naturally solve collective classification tasks and that social networks are typically 
MLNs. Given an object o, its attributes can be represented in MLNs as predicates of the 
form A(o, v), where A is the name of an attribute and v is the corresponding value. The 
class label y of an object o can be represented as C(o, y). Classification thus corresponds 
to inferring the truth value of C(o, y) for all o’s and y’s given all known A(o, v). In this 
specific case of collective classification, the C(a, v) and C(b, v) are not independent for 
all a’s and b’s given the known attribute values. 

Bilgic et al. (2007) proposed a general approach interleaving object classification and 
link prediction in a collective algorithm. Experimental results proved that the proposed 
approach is preferable to running collective object classification or link prediction alone. 

Another issue in network analysis is related to the evolution of the network. Indeed, 
online affiliation networks contain information about groups that actors have formed over 
time. Most collective classification algorithms take advantage only of the statistical 
dependencies induced by the actor-actor links. Online groups provide a clustering of the 
actors that is more informative than inferring groups based on actor-actor links. Zheleva 
et al. (2010) provided a method for classification with higher-order Markov random field 
models combining information from both the social network and the affiliation network. 

4.2 Product recommendation 

Another interesting application of SRL in social network analysis is to study the network 
structure with the aim of obtaining a content-based recommendation system. 

Fouss et al. (2007) have proposed an approach for collaborative recommendation on 
the real world movie database MovieLens that naturally fits into the SRL framework. 
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Their work views a database as a collection of sets of elements connected by 
relationships. The graph structure of the database is exploited to compute, with a 
Markov-chain model, a similarity measure between elements. In particular, they compute 
quantities providing similarity measures between any pair of elements of a connected 
graph. These similarity measures are then used to compare items that are not necessarily 
directly connected. 

Xu et al. (2008, 2010) discussed how the infinite hidden relational models (IHRMs) 
approach can be used to model and analyse social networks. In the proposed IHRM-based 
social network model, each edge is associated with a random variable and the 
probabilistic dependencies among these variables are described by the relational 
structure. In a hidden relational model (HRM), a hidden variable (i.e., unknown 
attributes) is introduced for each node of the network. Attributes of a node only  
depend on its hidden variable, and a relationship only depends on the hidden variables of 
the nodes involved in the relationship. In case of known hidden variables, both attributes 
and relationships can be predicted. The experimental analysis performed on the 
MovieLens social network studied the cooperative effect in a recommendation 
framework where both user properties and item properties are taken into account. The 
results proved that the IHRM provides good prediction accuracy for user preference on 
movies. 

Rettinger et al. (2011) presented a method to implement and learn context-sensitive 
trust using SRL in the form of a Dirichlet process mixture model called infinite hidden 
relational trust model (IHRTM) empirically evaluated on user-ratings gathered from 
eBay. The main result of the proposed approach is the possibility for the truster to 
characterise the structure of a trust-situation providing meaningful trust assessments. 
IHRTM is based on IHRM (Xu et al., 2006; Kemp et al., 2006) and provides an elegant 
way to combine content-based predictions with collaborative-filtering predictions by 
exploiting regularities in the relations. The method has been tested on real world data 
from eBay modelled as a social trust network, proving its ability to characterise a  
trust-situation, its predictive performance concerning trust values, and its learning 
efficiency in the context of dynamic behaviour of non-stationary trustees. 

Taranto et al. (2012) propose to use a framework based on probabilistic graphs that 
fits in SRL, in order to deal with collaborative filtering problems. In this framework, 
relationships among users and items and their corresponding likelihood are encoded in a 
probabilistic graph that can then be used to infer the probability of existence of a link 
between a user and an item involved in the graph. In order to solve collaborative filtering 
tasks the framework uses an approximate inference method adopting a constrained simple 
path query language. The performance of the proposed approach is reported when applied 
to the real world MovieLens database. 

4.3 Entity resolution 

Entity resolution regards the problem of determining which references in the data refer to 
the same underlying real world entity. The problem is caused by the merging into a single 
database of data from multiple databases that gives duplicate records which are not 
always unique identifiers of the entities thus causing ambiguity. Entity resolution has 
been tackled in many research areas under names such as de-duplication, data integration, 
co-reference resolution, object consolidation, record linkage, etc. 
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Traditionally, entity resolution has been solved adopting attribute similarity measures, 
where the co-reference degree between two entities is computed using the similarity 
scores between their attributes. Recent approaches try to consider structural similarity, as 
reported in Dong et al. (2005), and Kalashnikov and Mehrotra (2006) where inter-entities 
relationships and associations between references are considered: The resolution of 
entities of one type is helped by resolution of entities of related types. Indeed, 
relationships among entity references may be represented as a graph, sometimes referred 
as reference graph (Bhattacharya and Getoor, 2007), where the nodes are the entity 
references and edges indicate references which co-occur. These collective entity 
matching techniques, that use the relational information to make all the matching 
decisions collectively, have been shown to significantly outperform conventional 
approaches in terms of accuracy. 

Pasula et al. (2003) studied the entity resolution problem proposing a generative 
relational approach based on the use of a relational probability model (RPMs) (Friedman 
et al., 1999) that explicitly captures the dependencies among multiple co-reference 
decisions. McCallum and Wellner (2004) solved the same collective problem proposing a 
discriminative approach that incorporates the transitive closure step into the statistical 
model. 

Singla and Domingos (2005) proposed a method, based on conditional random fields, 
to solve the entity resolution problem in a collective manner. Simultaneous inferences are 
made for all candidate match pairs, allowing information to propagate from one candidate 
match to another via the attributes they have in common. The proposed model can be 
viewed as a form of RMN (Taskar et al., 2007). 

The same authors (Singla and Domingos, 2006) presented a formulation of the entity 
resolution problem incorporating many non-independent and identically distributed 
approaches that takes advantage of SRL. They use MLNs to propose a unifying 
framework for entity resolution, and show, with experiments on two citation databases 
(Cora and BibServ), how MLNs can be used as a valuable framework to build entity 
resolution systems. 

Bhattacharya and Getoor (2007) considered the approach of collective entity 
resolution: if two references refer to the same entity, then one may make additional 
inferences about their related references. They motivated entity resolution as a clustering 
problem and proposed a relational clustering algorithm for collective relational entity 
resolution. Given a similarity measure between pairs of references, entity resolution is 
posed as a clustering problem where the aim is to cluster the references so that only those 
that correspond to the same entity are assigned to the same cluster. They adopted three 
real world datasets describing publications in several different scientific research areas 
(CiteSeer, arXiv and BioBase). The goal was to use co-author relationships in the papers 
to help at discovering the underlying author entities in the domain and mapping the 
author references to the discovered author entities. 

Rastogi et al. (2011) proposed a framework for scaling collective entity resolution 
algorithms using MLNs. The framework allows the modelling of entity resolution 
algorithms as black-boxes that take in a set of entities along with a collection of evidence, 
and output a set of matches. Running the entity resolution algorithm on the entire dataset 
is avoided and approximated by running multiple instances of the algorithm on several 
small subsets of the entities, and passing a message-set across the instances to exchange 
information between different runs of the matcher. 
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4.4 Link prediction 

As already surveyed in Getoor and Diehl (2005), link prediction is one of the main task 
naturally modelled and solved by many SRL frameworks. The conjugation of statistical 
techniques, typically suitable for handling large amounts of noisy data, with relational 
ones, that are sufficiently powerful to deal with complex descriptions directly extracted 
from relational databases, is the key to tackle both difficulties of the link prediction task: 
the statistical component deals with the huge quantity of data, noise and real-valued 
features; the relational one copes with their complex representation. Additionally, a 
feature generation technique performs the selection of discriminant features, usually 
carried out manually by an expert in statistical learning. 

Popescul et al. (2003) proposed to build link prediction models using structural 
logistic regression, an extension of logistic regression to modelling relational data that 
exploits aggregate operators. Logistic regression is a technique to learn discriminative 
models based on conditional class probabilities by tuning regression coefficients in order 
to maximise conditional likelihood (within a range of model complexity that avoids  
over-fitting). In particular, upgrading the basic logistic regression approach allows to 
dynamically select the relationships of interest, saving time and space. Specifically,  
the upgrading consists in feature generation from relational data, formulated as a  
top-down, breadth-first search in the space of relational database queries, represented as a 
directed acyclic graph ordered by some kind of generality relationship. Nodes are  
first-order expressions treated as database queries. Instead of simple Boolean values, they 
yield corresponding tables of all satisfying variable bindings, on which different 
aggregations can be performed using standard SQL operators, resulting in Boolean or 
real-valued features. A peculiar refinement operator is defined to expand search  
nodes to their most general specialisations. Statistical information criteria are used 
dynamically during the search to determine which features are to be included into the 
model. Clearly, this means that the features selected to build the model might not be 
present in future instances to be classified, differently from the classical attribute-value 
setting in which the set of features is pre-defined and fixed for all items (Popescul and 
Ungar, 2003). 

As reported in Richardson and Domingos (2006), the formulation of the link 
prediction problem in MLNs is identical to that of collective classification, with the only 
difference that the goal is to infer the value of the relations between objects instead of the 
class of the objects. 

A recent promising approach to model social networks and solve the problem of link 
prediction is the probabilistic logic ProbLog proposed by De Raedt et al. (2007). ProbLog 
attempts to plug probability handling directly into a logic reasoner, resulting in an 
extension of the Prolog language. In the new setting, the outcome of a query represents 
the probability of its success in a randomly sampled programme in which clauses are 
tagged with their probability of being true. This approach was inspired by biological 
networks, consisting of items (concepts) linked by edges labelled with mutually 
independent probabilities, and thus their application to social network analysis (and 
specifically to link prediction) is straightforward. Adopting the ProbLog language, 
Taranto et al. (2011a) proposed a link-based classifier that can improve the accuracy of a 
classical k-nearest neighbour approach when applied to image classification. From a set  
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of images, a probabilistic network is constructed by connecting any two images that share 
similar features. The probability of the edges denotes the strength of the similarity. The 
similarity between two images not directly connected is computed exploiting their 
probabilistic connections. 

Zheleva et al. (2008) studied the predictive power of overlaying friendship and family 
ties relationships among the participants in a social network bridging approaches based 
on structural equivalence and community detection. In particular, the proposed approach 
to link prediction in multi-relational social networks is based on the use of both attribute 
and structural features. The main focus was to study how group membership can 
significantly aid in accurate link prediction. 

Bilgic and Getoor (2009) proposed an active learning technique for network data 
while utilising links to select better examples to label. The authors extended the three 
classical tasks adopted in a typical utility-based active learning technique in order to 
utilise the links in the network. 

4.5 Community detection 

An interesting task in social network analysis is represented by the identification of 
subgroups or communities, as their discovery can be used for further analysis such as 
visualisation, viral marketing, determining the causal factors of group formation, 
detecting group evolution or stable clusters. 

A community is defined as a group of actors with frequent interactions occurring 
among each other. The simplest interaction that can be found is local interaction. 
However, more interesting interactions that one would like to discover are the non-local 
dependencies between actors in the network. In this direction, in Xu et al. (2008, 2010), 
the authors investigated the possibility of applying IHRM to model and analyse social 
networks. To this aim, in their model, each actor is associated with a random variable and 
the probabilistic dependencies between such variables are specified by the model based 
on the relational structure. In this way, the hidden variables, one for each actor, are able 
to bear information that can grasp the non-local dependencies in the network. The 
approach was tested on the Sampson’s monastery data obtaining communities that were 
quite close to the real groups. 

Social networks are generally large and dynamic networks, where new links and 
contents are created every day, and where relations between actors are not clearly 
defined. Some works face this problem by exploiting models that consider the different 
types of relations between entities as links in a network. Specifically, in Bhattacharya and 
Getoor (2004), a bottom-up agglomerative clustering algorithm is proposed to partition 
links in a network into clusters. Successively such links are exploited in a relational 
probabilistic model in order to group entities of the network connected by the discovered 
links in communities. Furthermore, in Kubica et al. (2002), in addition to link evidence 
even attributes on entities are simultaneously considered to discover groups. The group 
detection algorithm uses a Bayesian network to group entities from two datasets, 
demographic data describing the entities and link data. In Wang et al. (2005), attributes 
on entities, link evidence and attributes on link evidence are exploited in a relational 
structure of the network to detect communities. In details, the relational structure of the 
network is generated using a probabilistic generative model of entity relationships and 
textual attributes that simultaneously discover groups among the entities and topics 
among the corresponding texts. 
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4.6 Information diffusion and role analysis 

Understanding the mechanism governing how information diffuses through social 
networks has implications for marketing, sociology, journalism, and so on. Models of 
network diffusion may be used to study, for instance, product recommendation systems 
and viral marketing, as reported in Richardson and Domingos (2002), Domingos (2005), 
Leskovec et al. (2006a, 2006b) and Sharara et al. (2011). 

In Domingos and Richardson (2001), Richardson and Domingos (2002), and 
Domingos (2005), the authors proposed to model the customer’s network value. Instead 
of viewing a market as a set of independent entities, they view it as a social network and 
model it as a Markov random field. Experiments showed that the proposed model 
allowed to achieve much higher profits compared to ignoring interactions among 
customers and the corresponding network effects, as traditional marketing does. In 
particular, the authors try to model a customer network value where a customer value 
should represent the expected profit from sales to a customer. They model how likely 
each customer is to buy some product considering both the properties of the customer and 
product, and the influence (word of mouth) of his neighbours in the network. 

There are two issues to be considered in information diffusion: firstly, the spread of 
recommendations/opinions is not standard, because their effect changes according to the 
trust of the receiver with respect to the sender of the messages and to their having the 
same tastes and needs; then, partly because of this and partly because of the inherently 
evolving nature of the network elements (typically humans), the network tends to be 
dynamic, which might have a significant impact on the information spread. While most 
traditional works in the literature on diffusion modelling have underestimated either or 
both these questions, Sharara et al. (2011) specifically focused on them, and proposed the 
differential adaptive diffusion model as a solution. The network is represented, as usual, 
as a graph whose nodes are individuals and whose links, representing social relationships, 
are weighted with the confidence in the corresponding recommendations; additionally, a 
function determines the preference of a user for a product. Then, selected nodes are 
chosen to start the diffusion process considering as if they adopted the given product. 
These nodes may activate neighbour nodes according to any traditional diffusion model, 
and those neighbours that actually adopt the product according to such a model in turn 
may cause the spread of adoption. After the spread has come to an end, a kernel function 
is exploited on the network to re-weight link confidence according to the actual adoptions 
that took place. 

Another question in the same direction is how to identify the role of network elements 
with respect to diffusion. For instance, it might be interesting to identify opinion leaders 
having a significant influence on the adoption of a given product with their 
recommendations. Solving manually the problem using primary sources (surveys and 
interviews) is costly and difficult, hence the interest for automatic techniques that work 
on the data provided by observation of the network. Unfortunately, simple notions of 
centrality based on the number of connections of an element are not sufficiently 
predictive, requiring more sophisticated techniques. Sharara et al. (2010) proposed to 
solve the problem using an active learning framework, in which the learner autonomously 
gathers information (examples) for refining the model. In particular, the network 
elements on which applying primary sources are selected as the minimum set of 
respondents needed to classify a given percentage of opinion leaders in the network  
(a technique called active survey) based on secondary sources (i.e., information expressed 



   

 

   

   
 

   

   

 

   

   202 F. Esposito et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

by the networks in which the elements participate). Such sources consist of both node 
features and edge features, exploited in a probabilistic inference based on a likelihood 
function of a new candidate leader being nominated by a respondent to a primary source. 
The current set of leaders is updated according to this choice, and another loop is run, 
until the desired percentage of leaders has been found. The initial seed for this iterative 
procedure is selected by identifying communities in the network, and then selecting a 
representative from each community. 

Delaney et al. (2010) applied SRL algorithms to predict leadership roles of 
individuals in a group based on patterns of activity, communication, and individual 
attributes. The authors focused on data collection on criminal and terror networks whose 
straightforward use includes manual analysis of groups and individuals involved in 
nefarious activity to inform key decision makers tasked with preventing future bombings 
or other violent attacks. 

5 Conclusions 

In addition to their computational and data management capabilities, computers are 
nowadays mostly appreciated because of their being a means for communication and 
information sharing among people all over the world. The spread of the internet has 
allowed/caused several complex interactions to take place among people, which resulted 
in the birth of huge information networks based on these interactions. Social networks are 
determined by various kinds of social relationships that connect people, and potentially 
represent an invaluable source of information that can be exploited for scientific and 
commercial purposes. SNM is the corresponding research area, aimed at extracting 
information about the network objects and behaviour that cannot be obtained based on 
the explicit/implicit description of the objects alone, ignoring their explicit/implicit 
relationships. Differently from other kinds of data on which information extraction tasks 
have been carried out in the past, social networks are characterised by a huge size and by 
the inherently relational setting as distinguishing peculiarities. As a consequence, their 
mining requires new techniques to gather this information. 

SRL provides very promising approaches to deal with SNM, since it combines 
expressive representation formalisms, able to model complex relational networks, with 
statistical methods able to handle uncertainty about objects and relations. The capability 
of SRL models to naturally deal with relational representations, such as complex 
networks, represents its important characteristic in providing algorithms and methods 
able to outperform traditional propositional based techniques. This paper proposed a 
survey of some SRL formalisms and techniques adopted to solve some SNM tasks. 
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