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Abstract. In this chapter a relational framework able to model and analyse
the data observed by nodes involved in a sensor network is presented. In
particular, we propose a powerful and expressive description language able
to represent the spatio-temporal relations appearing in sensor network data
along with the environmental information. Furthermore, a general purpose
system able to elicit hidden frequent temporal correlations between sensor
nodes is presented. The framework has been extended in order to take into
account interval-based temporal data by introducing some operators based
on a temporal interval logic. A preliminary abstraction step with the aim of
segmenting and labelling the real-valued time series into similar subsequences
is performed exploiting a kernel density estimation approach. The prposed
framework has been evaluated on real world data collected from a wireless
sensor network.

1 Introduction

Sensor networks represent a powerful technology able to monitor many
situations in the physical world including health, agriculture, emergency man-
agement, micro-climate and habitat, or earthquake and building health [3]
4, [TT], 23]. The main objective of sensor networks is knowledge-gathering:
each component (sensor node) acts to maximize its contribution by adding
details and precision in order to completely outline the monitored situa-
tion and, by cooperating with the others, to understand phenomena in situ
and in real time. Sensor nodes are small electronic components made up
of a processing element, some measurement devices and a (wireless/wired)
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communication device. They are able to gather different types of information
from the environment, such as temperature, light, humidity, radiation, the
presence or nature of biological organisms, geological features and more. As
a consequence, a great amount of data is available that if analyzed in an
appropriate way might help to automatically and intelligently solve a variety
of tasks thus making the human life more safe and comfortable.

A sensor network is usually made up of a set of nodes spatially distributed
in the environment, i.e. each node ¢ is located in an environment at the po-
sition p;, and senses a set of properties P; at every time instance ¢. In other
words, each sensor produces a continuous time series describing its reading
over time, hence we have an observation at every instant of time. Further-
more, the data generated by sensor nodes involved in a sensor network are
type-related (the humidity depends on the temperature), time-related (the
temperature may change over time) and spatio-related (topological arrange-
ments of the sensors in the network). All these relations could be easily repre-
sented by using an interval-based relational language, such the one proposed
in this work, as opposed to the point-based approach, trying to shift the basic
time-series description language to a higher one.

Finally, a set of events on different dimensions (time, space, etc.) can take
place in the physical environment that could influence the sensor behaviour
and hence the observation, thus the contextual information could be taken
into account as well. Hence, temporal and context-based relations must be
combined into a heterogeneous language and mined with appropriate tech-
niques in order to obtain useful knowledge.

In the last decade, some approaches were proposed to face the problem
of extracting knowledge from sensor data. They focused either on the data
representation (e.g., sensors clustering, discretization) or knowledge extrac-
tion (association rules, sequential patterns). Nevertheless, they usually do not
consider contextual information or they generally consider events occurring
in one dimension only or in a time instant, while, in some applications, like
in sensor networks, data are environment related, high dimensional and may
occur in time intervals.

In this work the exploitation of a relational language to describe the
temporal evolution of a sensor network along with contextual information
is proposed. Furthermore, it is presented the use of relational learning tech-
niques to discover interesting and more human readable patterns relating
spatio-temporal correlations with the contextual ones.

As regards the relational language, it is based on the work described in [9]
where the authors proposed a framework for mining complex patterns, ex-
pressed in first-order language, in which events may occur along different
dimensions.

Here, that framework is extended in order to take into account
interval-based temporal data along with contextual information about events
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occurring in the environment. The extension concerns the introduction of
interval-based operators based on the Allen’s temporal interval logic [5] in the
sequences. Specifically, firstly an abstraction step with the aim of segment-
ing and labelling the real-valued time series into similar subsequences is per-
formed exploiting a kernel density estimation approach. Then the integration
of such a new knowledge along with the relative interval-based operators, able
to deal with it, in the relation pattern mining framework is carried out. Fi-
nally, in order to evaluate the validity of both the abstraction step and the
general framework, an experimental session on real world data collected from
a wireless sensor network deployed in the Intel Berkeley Research Lab [I5] is
presented.

2 Relational Pattern Mining

The framework we present in this chapter is based on the work described
in [6, @] where the authors proposed an algorithm for mining complex pat-
terns, expressed in first-order language, in which events may occur along
different dimensions. Specifically, multi-dimensional patterns were defined as
a set of atomic first-order formulae in which events are explicitly represented
by a variable and the relations between events were represented by a set of
dimensional predicates. The algorithm has been extended in order to take
into account interval-based temporal data. Finally, an automatic discretiza-
tion algorithm based on the concept of kernel density estimation has been
introduced and evaluated.

Datalog [28] is the language used as representation language for the domain
knowledge and patterns. Sequences and patterns are represented by a set of
logical atomd. Thus, a relational sequence may be defined as an ordered list
of atoms separated by the operator <: 1} <l < --- < [,, while a relational
pattern is defined as follows:

Definition 1 (Subsequence [16]). Given a sequence o = (ejez---€p,) of
m elements, a sequence o’ = (ejeh---e}) of length k is a subsequence (or a
pattern) of the sequence o if:

1.1<k<m
QVZ,ISZSk,E'j,lgjgme:QJ
3V%J»1§1<]Sk,ﬂh,l,l_h<l§me;:eh ande;:el.

RN

Ezample 1. Let us now introduce an example to better explain the repre-
sentation language and the operators introduced in the following. Suppose
to have a wireless sensor network deployed inside a building, for example a
conference building, to monitor people’s motion over space and time and,
accordingly, the temperature, light and voltage in the rooms.

! An atom p(t1,...,tn) is a predicate symbol p of arity n applied to n terms t;
(constants or variables).
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In this setting, a 1-dimensional sequence, specifically a time dimension
sequence, could be:

move (userl,room5) < in(userl,room5) < talk(userl,room5,machine_learning)
< leave(userl,room5) < move(userl,room4)

and a possible pattern could be move(X,Y) < talk(X,Y,Z).

As one can note, the exploitation of just one dimension is not sufficient to
describe the environment, indeed information about sensors or events occur-
ring in the environment cannot be easily represented. Hence, some modifica-
tions have to be introduced as reported in the following. (|

In order to make the framework more general, the concept of fluents has
been considered. Let a sequence be an ordered succession of events, a fluent is
used to indicate that an atom holds for a given event. In this way we are able
to distinguish in the sequence, and hence in the pattern, dimensional and
non-dimensional atoms. Specifically, the first ones refer to the dimensional
relations between events involved in the sequence while the non-dimensional
atoms introduce an event and the objects involved in it (fluent atoms) or the
properties and the relations of the objects already introduced by an event
(non-fluent atoms).

Ezxample 2. The introduction of such kind of atoms allows one to introduce
the events occurring in a situation, as reported in the following:

move (enteringl,userl,room5) (enteringl < entering2)
move (entering2,userl,room4) near (room5,room4)

It denotes a 1-dimensional relational sequence with three non-dimensional
atoms (i.e., move (enteringl,userl,room5), move(entering2,userl,room4) and
near (room5,roomd)) and one dimensional atom. Specifically,

e move(enteringl,userl,room5) denotes the fluent move(userl,room5) at the
event enteringl,

e move(entering2,userl,room4) denotes the fluent move(userl,room4) at the
event entering2,

e (enteringl < entering2) indicates that the event entering2 is the direct
successor of enteringl, and

e near(room5,room4) represents a generic relation between the objects room5
and room4.

The choice to add the event as an argument of the predicates is necessary for
the general case of n-dimensional sequences with n > 1. In this case, indeed,
the operator < is not sufficient to express multi-dimensional relations and
we must use its general version <;. Specifically, (e; <; e2) denotes that the
event es is the next successor of the event e; in the dimension ¢, where
i could be, for example, time or space. Hence, in our framework a multi-
dimensional sequence is supposed to be a set of events, and a sequence of
events corresponds to each dimension. (|
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However, the <; operator is not sufficient to represent the knowledge in the
patterns. Hence, a further generalization of the framework consisted in the
possibility to represent multi-dimensional relational patterns by introducing
some dimensional operators able to describe general event relationships: a)
<, next step on dimension i; b) <, after some steps on dimension i; and c)
O, ezxactly after m steps on dimension 1.

Now, the general definition of subsequence (Def. [[) can be cast in this
new framework by modelling the gaps represented by the third condition
of Definition [Il with the <; and (" operators as reported in the following
definition.

Definition 2 (Multi-dimensional relational pattern). A multi-
dimensional relational pattern is a set of atoms, involving k events and re-
garding n dimensions, in which there are non-dimensional atoms and each
event may be related to another event by means of the operators <;, <I; and
Om1<i<n.

Ezxample 3. With such extensions concerning both the representation lan-
guage and the operators, it is possible to better represent the environment
as reported by the following example.

location(sensorl,room5) <topology_r5 location(sensor2,room5) <topology_r5

location(sensor3,room5) ... location(sensorl,roomd) <iopology_rd

location(sensor2,room4) <itopology_r4 location(sensor3,roomd) ...

move (enteringl,userl,room5) activity(talking,userl,room5)

move (leaving,userl,room5) (enteringl <4, leaving)

(enteringl <¢;me talking) (enteringl <spqtiqi entering2)

(talking <¢;me leaving) move(entering2,userl,room4)

(talking <¢;me entering2) activity(coffee_break,userl,room4)

(leaving <spatiql entering2) (entering2 <gpatial coffee break)
and the corresponding temporal patterns that may be true when applied to
it could be:

e move(enteringl,userl,room5) (enteringl <¢;m,. talking)
activity(talking,userl,room5)

e move(enteringl,userl,room5) (enteringl <l¢;;,. leaving)
move (leaving,userl,room5)

e move(enteringl,userl,room5) (enteringl Ofime entering2)
move(entering2,userl,room4) if we consider 2 as hours

Note that the <; will describe the dimensional characteristics in the se-
quences, while all the three dimensional operators <; , <i;, O}", will be used
to represent the discovered patterns. (|

In particular, we are interested in mining maximal frequent patterns. Thus,
let o a sequence and p a pattern of o. The frequency of p in ¢ is the number
of different mappings from elements of p into the elements of o such that
the conditions reported in Definition [Il hold, and, p is mazimal if there is no
pattern p’ of o more frequent than p and such that p is a subsequence of p’.
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Since the sequences and patterns are represented as a set of logical atoms,
the frequency of a pattern over a sequence can be calculated as the number
of subtitutions #; such that p subsumes o, i.e. pf; C o where subsumption
and substitution are defined as follows.

Definition 3 (Subsumption). A a set of logical atoms c¢; f-subsumes a
set of logical atoms ¢y if and only if there exists a substitution € such that
019 Q Co.

A substitution 0 is defined as a set of bindings {X1 «— a1,..., X, «— an}
where X;,1 < i <n is a variable and a;,1 <1i < n is a term. A substitution
0 is applicable to an expression e, obtaining the expression e, by replacing
all variables X; with their corresponding terms a;.

Ezample 4. Given the following sequence:
S =p(el,a) q(a,t) qa,s) (el < e2) p(e2,b) q(b,a)
and the pattern
P =p(E,X) qX,Y)
there are 3 way to instantiate P from S in such a way that to different terms
correspond different objects, i.e. :

1.0, = {E/el, X/a, Y/t},
2. 0 = {E/el, X/a, Y/s},
3. 03 = {E/e2, X/b, Y/a}.

However, since 6; and 63 map the same constants to the variables of p(E,X)
(the first literal of the pattern), the frequency of P on S is equal to 2. |

2.1 The Algorithm

The algorithm for frequent multi-dimensional relational pattern mining is
based on the same idea of the generic level-wise search method, known in
data mining from the APRIORI algorithm [2]. The generation of the frequent
patterns is based on a top-down approach. Specifically, it starts with the most
general patterns of length 1 generated by adding to the empty pattern a non-
dimensional atom. Then, at each step it specializes all the frequent patterns,
discarding the non-frequent patterns and storing the ones whose length is
lesser than a user specified parameter mazsize. Furthermore, for each new
refined pattern, semantically equivalent patterns are detected, by using the
for-subsumption relation, and discarded.

In the specialization phase, the refinement of patterns is obtained by using
a refinement operator p that maps each pattern to a set of specializations of
the pattern, i.e. p(p) C {p'|p = p'} where p < p’ means that p is more general
of p’ or that p subsumes p’.

The algorithm uses a background knowledge B (a set of Datalog clauses)
containing the sequence and a set of constraints that must be satisfied by the
generated patterns. In particular B contains the following predicates:
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e maxsize(M): maximal pattern length (i.e., the maximum number of non-
dimensional predicates that may appear in the pattern);

e minfreq(m): this constraint indicates that the frequency of the patterns
must be larger than m;

e dimension(next_i): this kind of atom indicates that the sequence contains
events on the dimension ¢. One can have more that one of such atoms,
each of which denoting a different dimension. In particular, the number of
these atoms represents the number of the dimensions.

2.1.1 Constraints

Furthermore the background knowledge contains some constraints that are
useful to avoid the generation of unwanted patterns. Specifically they are:

e negconstraint([pi,pe,...,pn]): specifies a constraint that the patterns
must not fulfill, i.e. if the clause {p1,ps,...,pn} subsumes the pattern
then it must be discarded. For instance, negconstraint([p(X,Y),q(¥Y)])
discards all the patterns subsumed by the clause {p(X,Y),q(¥)};

e posconstraint([pi,ps,...,pn]1): specifies a constraint that the patterns
must fulfill. Tt discards all the patterns that are not subsumed by the
clause {p1,p2,...,pn};

e atmostone([pi,p2,...,pn]): this constraint discards all the patterns that
make true more than one predicate among pi,ps,...,p.. For instance,
atmostone([red(X),blue(X),green(X)]) indicates that each constant in the
pattern can assume at most one of red, blue or green value.

Hence, the solution space is pruned by using some positive and negative
constraints specified by the negconstraint and posconstraint literals. The last
pruning choice is defined by the atmostone literals. This last constraint is
able to describe that some predicates are of the same type.

2.1.2 Improving Efficiency

In order to avoid the generation of patterns containing not linked variables
we used the classical types and modes declaration:

e type(p): denotes the type of the predicate’s arguments p;
e mode(p): denotes the input output mode of the predicate’s arguments p.

In this way we improve the efficiency of the algorithm, since it does not
generate patterns containing unrelated atoms. These classical mode and type
declarations specify a language bias indicating which predicates can be used
in the patterns and to formulate constraints on the binding of variables.
Finally, the background knowledge contains the predicate key([i1,l2,...,
1,1) specifying that each pattern must have one of the predicates l1,l2,...1,
as a starting literal. Since each pattern a) must start with a non-dimensional
predicate, or with a predefined key, and b) its frequency must be less than
the sequence length, the frequency of a pattern can be defined as follows.
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Definition 4 (Pattern Frequency and Support). Given a relational pat-
tern P = (p1,p2,...,pn) and S a relational sequence, the frequency of the
pattern P is equal to the number of different ground literals used in all the
possible SLDor-deductions of P from S that make true the literal p;. The
support of P on S is equal to the frequency of the pattern {p;} over the
frequency of the pattern P.

Mining from more than one sequence the support is calculated as the number
of covered sequences over the total number of sequences.

In order to improve the efficiency of the algorithm, for each pattern P =
(p1,p2,---,Pn) the set O of the substitutions defined over the variables in
p1 that make true the pattern P is recorded. In this way, the support of a
specialization P’ of P is computed by firstly applying a substitution # € ©
to P’. It is like to remember all the keys of a table that make true a query.

3 Interval-Based Relational Sequences

In this section we present the extension of the framework to the case of re-
lational sequences including interval-based dependencies. Furthermore, since
we are working on real-valued time series, an approach to subdivide/discretize
the series into similar subsequences is presented. In particular, the aim is
to segment a signal (assigning data to discrete categories) by looking for a
sequence of measurements over which a property holds and to label this seg-
ment. After this discretization process, some interval relationships may be
introduced in order to better describe the evolution of the data along the
time.

3.1 Abstracting Using Kernel Density Estimation

A method to segment a sequence is to iteratively merge two similar segments
based on the squared error minimization criteria. Another approach is using
clustering, by firstly finding the set of subsequences with length w, by sliding
a window of width w, and then clustering the set of all subsequences. A
different symbol is associated with each cluster. Other approaches are based
on using self-organizing maps.

The segmentation process has been obtained by adopting an unsuper-
vised discretization method that uses non-parametric density estimators, as
proposed in [7]. The algorithm searches for the next two sub-intervals to pro-
duce, evaluating the best cut-point on the basis of the density induced in the
sub-intervals by the current cut and the density given by a kernel density
estimator for each sub-interval. It uses cross-validated log-likelihood to select
the maximal number of intervals.

Two classical techniques for unsupervised discretization are equal-width
and equal-frequency binning, where continuous intervals are split into
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sub-intervals providing them the width or the frequency parameter. How-
ever, they require that the values follow a uniform distribution, with low
accuracy in case of skew data. The method used here exploits density esti-
mation methods to select the cut-points and their number is computed by
cross-validating the log-likelihood.

3.1.1 Simple Binning and the Naive Estimator

The histogram, or simple binning, is the oldest and most popular density
estimator. Given a set of training instances zi,...,xy, let ¢ be an origin
and w be the bin (class) width. The intervals (or bins) may be defined as
follows

Ij = [zo + jw,z0 + (j + Dw),j = 0,1,...

for which the histogram counts the number of instances z; falling into each I},
as reported in Figure[Il This procedure replaces the training data x1,...,zn5
with the smaller set ci, ..., cq, where ¢; is the corresponding class (label) of
the interval I;.

30 40
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o -

il ! ||| I\ I 'H!\ LHIHH\'JMILf. ULIJ_Ll‘

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 1 Histogram for eruptions of the Old Faithful geyser in Yellowstone National
Park, Wyoming, USA

In particular, let & be the number of intervals (bins) and 1;, be the indi-
cator functiorE, the density function f (z) is computed by

) M N
f(x) = lei(x)zlli(iﬂj) (Nw)~".

? 1z, (z) is equal to 1 when z € I;, 0 otherwise.
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From the definition of a probability density, for any given h, it is possible
to estimate the probability P(z — h < X < x + h) by the proportion of the
observations falling in the interval (z — h, z + h]. The naive estimator is given
by choosing a small number h and setting

1
flz) = %[no. of X; falling in (z — h,x + h)].

3.1.2 The Kernel Density Estimator

The naive estimator is not a continuous function and hence it is interesting
to consider its generalization. In particular, it is useful to consider the kernel
estimator, using a smooth kernel function K (-), defined as

f@)%éK(“ﬁ),

K(z) >0, K(z)dr =1,K(x) = K(—x).

— 00

The kernel function used in this paper is the Epanechnikov kernel func-
tion [22], see Figure 2l defined as

K(w) = 50 =)z,
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Fig. 2 Epanechnikov kernel (bandwidth = 0.2) for eruptions of the Old Faithful
geyser in Yellowstone National Park, Wyoming, USA



A Relational Approach to Sensor Network Data Mining 173

3.1.3 The Scoring Function

The goal of discretization is to produce sub-intervals whose induced density
over the instances best fits the available data. The cut points are the middle
points between the instance values. On the other hand, the choice of the
interval that should be split next, among those produced at a given step, is
driven by an objective function capturing the significant changes of density
in different separated bins.

All the possible cut-points are considered, and a score to each sub-interval
is assigned. Given a single interval to split, any of its cut-points produces two
bins and thus induces, upon the initial interval, two densities, computed using
the simple binning density estimation formula. Every sub-interval produced
has an averaged binned density that is different from the density estimated
with the kernel function. The less this difference is, the more the sub-interval
fits the data well, i.e. the better this binning is, and hence there is no reason
to split it.

Hence, at each step of the discretization process, we must choose from
different sub-intervals to split. In every sub-interval we identify as candi-
date cut-points all the middle points between the instances. For each of the
candidate cut-points ¢; we compute a score as follows:

score(T) = Y (pla:i) = fzi)) + Y (p(xi) — f(:)).

xr;<c; xTi>cCq

The density functions p and f are respectively the kernel density function
and the simple binning density function, computed as

m;

f(wl) = wN'’

where m; is the number of instances that fall in the bin (left or right) con-
taining x;; and

1 - xr — Xi
= — K
p(@) nw ; ( h ) ’
where we set the bandwidth A to the value of the binwidth w.

3.1.4 The Stopping Criterion

In order to avoid overfitting and to define a stopping criterion, the log-
likelihood has been used to evaluate the density estimators. Given a den-
sity estimator g and a set of test instances y1,...,y, the log-likelihood is
computed as

LL(glyr, -, yn) = Y _ log g(us)-
=1
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In order to have an unbiased estimation of how the model fits the real dis-
tribution, a cross-validation has been used. In particular, for a histogram
having n;,, ., training instances in the I; interval, let n;, , be the number
of testing instances falling into the same interval, w the bin width, and N be
the total number of training instances. Then, the log-likelihood on the test
data is computed by

n‘rain
LL = antest IOg ZL—N
J

3.1.5 Abstraction Rules

After having presented a method to discretize the data, that translates the
initial sequence (with real-valued elements) to a segmented sequence made up
of symbols taken from a given alphabet, now we can formalize the abstraction
rules.

Given a real-valued time series (t;,;)1<i<n, ; € R, the goal is to trans-
form it into a discrete series (t;,¢;)1<i<n, ¢i € {1,...,C}. In the case of a
sensor network, made up of n nodes, each node i, located in the environment
at the position p;, senses a set of properties P at every time instance ¢. Our
approach is to define some abstraction rules useful to shift the basic sensor
description language into a more general one. In particular each sensor pro-
duces a time series, describing its reading over time, that is then divided into
intervals.

Let C denotes the set of possible properties or descriptive labels, such as
“temperature is high”. Having a time series (¢;, %;)1<i<n, denoted by (¢, ©)1_n,
an abstraction rule is a function ¢, ((¢, x)1_,) returning a set of m consecutive
intervals of the time series. In particular,

¢a((t,$)1_n) = {5a(lvti7ti+hvck)|tj € I]lglvi < ] <i+ h A Ck € C}lglgm

where 6(k, t;, t;1n, ci) denotes an interval starting from ¢; and ending to t; 4,
and I represents the domain of values for the function ¢, associated to
the label ¢, € C extracted using the discretization process presented below.
For instance, for the temperature time series in the wireless sensor network
domain we firstly compute its discretization obtaining the following intervals

= {z|r < 13}, II ={z]13<z <22}, " = {222 < z < 31}
I = {31 <z < 40}, I}" = {z|z > 40}.

Then we define the abstraction function as
G ((t,2)1.n) = {0¢(Li tis tin, ci)|tj € Dy cx, € Ci},

with labels set to C; = { very_low, low, medium, high, very_high }.



A Relational Approach to Sensor Network Data Mining 175

3.2 Relational Interval Sequences

Now that we have discretized the time series into intervals, we can extend
the definitions of both sequences and patterns to the case of interval-based
relational sequences.

Definition 5 (Relational Interval Sequence). Given a set 7 of time se-
ries and the sets Ci,...,Cj7| of descriptive labels, a relational interval se-
quence is a sequence of relational atoms

6(11 (idlv b1,€1,’l}1), 6(12 (id2a an 62,1)2)., .. 76an (Zdnv bna envvn)

where v; € C; is a descriptive label, b; and e; represent, respectively, the start-
ing and ending time, id; € N represents the interval identifier, and é,; is the
corresponding name of the time series a; € 7. (The interval §(id, b, e, v) can
be written also by means of three literals as §(id, v), begin(id,b), end(id,e)).

In particular, a relational interval sequence can describe several labeled in-
terval sequences into a single one, enabling one to take into account the
multivariate analysis in case of different time series. Relations between time
intervals are described adopting the Allen’s temporal interval logic [5], as
reported in Figure [3l

before(i,j)
|

meets(i,])

overlaps(i,j)

|

starts(i,j)

|

during(i,j)

|

finishes(i,j)

|

Fig. 3 Allen’s temporal intervals [5]

Definition 6 (Relational Interval Pattern). Given S, the set of interval
relation symbols, a relational temporal pattern is a set of relational atoms
P=1UR= {(51(2(11, bi,ei,vi)}izl___n U {relj(id;,idi)}jzlmm

where rel; € S, and Vrelj(id},idi) € R 3, (idp, bn, en,vp), 0 (idg, b, e, Vi)
€ I such that id} = idj, and id} = idj.
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4 Related Work

The extraction of useful knowledge from raw sensor data is a difficult task
and conventional tools might not be able to handle the massive quantity,
the high dimensionality and the distributed nature of the data. For such
reasons, in recent years a great interest emerged in the research community
in applying data mining techniques to the large volumes of sensor data [IJ.
Specifically, the exploitation of data mining approaches could be a key issue
for summarizing the data into events and for elaborating further adaptive
tactical decisions or strategic policy.

Many works are presented in literature concerning the topic of distributed
data mining [26], spatial data mining [10], and temporal data mining [27]. In
a more general context, there is a growing interest in applying data mining
techniques to sensor data [I3] that operate mainly on a centralized data set,
as we proposed, rather than providing mechanisms for in-network mining.

However, most of the existing techniques operate on an attribute-value
descriptions of the (spatio, temporal and spatio-temporal) data and sensors
involved in the network adopting a point-based event approach in order to
discover useful patterns. On the other hand, very few works face the chal-
lenge of discovery temporal patterns using an interval-based approach but
in some cases they do not use a relational language [17, [14] 21] and hence
they cannot represent interval-based relations, and in other cases, even con-
sidering some kind of relations among temporal intervals [25] they are able
to represent both intervals and their relations but they cannot completely
describe the network, the sensors involved in it and the data (spatio, tem-
poral and spatio-temporal) gathered from the sensors. Furthermore, spatial
data mining and similarity-based approaches were designed to tackle into ac-
count complex representations with a relational language, however without
considering temporal-based relations [8], 18] [12].

The work presented in this chapter can be related to that proposed in [19],
optimized in [20]. In these works [19, 20], the authors represent a single
sequence as a set of predicates and temporal relations. Each predicate is
assumed to be hold in a given temporal interval, while the temporal rela-
tions are predicates expressing the Allen’s temporal correlation between two
predicates. Furthermore, each predicate is associated to a unique symbolic
identifier indicating a specific temporal interval, and temporal relations are
expressed between those identifiers. Hence, every time a predicate is used in a
sequence, it is implicitly assumed that it corresponds to a fluent predicate. In
this way, it is not possible to introduce predicates that only express a struc-
tural relation between objects, i.e. between sensors or (temporal, spatial)
events involved in the network.

Furthermore, as reported in [19], the algorithm they presented is not appli-
cable to real world problems due to its high complexity. Indeed, they special-
ize a pattern by adding a literal, or by variable unification, or by introducing
k™ (where k is the number of different Allen’s relation and n corresponds to
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the number of possible predicate pairs) temporal restrictions between predi-
cate pairs leading to an exponential time complexity.

On the contrary, the framework we presented in this chapter can be used to
solve complex temporal data mining tasks by using a relational interval-based
description as shown by the outcome obtained by the application of the pro-
posed framework to a real world wireless sensor network data (see Section [H]).
Furthermore, it is based on a powerful and general purpose multi-dimensional
relational pattern mining system [9] and extends it with new dimensional op-
erators thus allowing one to be able to represent and handle spatial (or other
dimensional) information gathered form the network. Finally, the framework
was extended to automatically provide an interval-based description of the
temporal data.

As regards the language used to describe both sequences and patterns, it
has some similarities with the Planning Domain Definition Language (PDDL)
proposed in [24]. Adopting PDDL as a representation language could make
our approach directly applicable to specific planning real world domains.

5 Experiments

In order to evaluate our approach, we used the data, freely available from [I5],
collected from a wireless sensor network made up of 54 Mica2Dot sensors
deployed in the Intel Berkeley Research Lab and arranged in the laboratory
as shown in Figure [l

A sensor network node is a small autonomous unit, often running on bat-
teries, with hardware to sense environmental characteristics, such as temper-
ature, humidity and light. Such nodes usually communicate using a wireless
network. A sensor network is composed of a large number of sensors deployed
in a natural environment. The sensors gather environmental data and trans-
fer the information to the central base station with external power supply.

RIS

@F#ﬁ%ﬁr@ @@@m Sene

Fig. 4 Sensors in the Intel Berkeley Research lab
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The 54 sensors have been monitored from February 28th to April 5th 2004,
and the data, about 2.3 million readings, were collected using the TinyDB in-
network query processing system, built on the TinyOS platform. Each sensor
collected topology information, along with humidity, temperature, light and
voltage values once every 31 seconds.

We selected the measurements (temperature, humidity, light and voltage)
from the sensors 31, 32, and 34, for the time period from 2004-03-10 to
2004-03-13 corresponding to 16253 log rows. The aim is to discover some cor-
relations between sensors and/or measurements useful for anomaly detection.
For instance, there is a strong correlation between the temperature and hu-
midity, as we can see from the Figure[Blthat reports the corresponding graphs
for the sensor 41. The first task is to discretize the time series corresponding
to each information in order to obtain an interval-based temporal sequence,
where each interval is labeled with a specific name.

The discretization step has been executed exploiting the functions ¢¢, ¢n,
é1, and ¢, with the corresponding domains Z7, obtained with the algorithm
presented in Section Bl where i is the time series name (temperature, hu-
midity, light and voltage) and j is the descriptive label associated to the
interval:

It = {z|r < 18.9}, Ii? = {218.9 < x < 21.3}, I* = {=|21.3 < x < 25.8},
T = {z|25.8 < < 30.6}, TP = {2]30.6 <z < 31.1}, Z{% = {x|z > 31.1}

It = {z|x < 32.6}, I5? = {2]32.6 < = < 38.2}, 7/ = {2[38.2 < z < 42.9},
It = {z42.9 < 2 < 43.8}, I;° = {z|43.8 < z < 46.3}, 7;'° = {z|z > 46.3},

It = {z|z < 2.7}, 72 = {227 <x <16}, I}® = {2]16 < = < 84.6},
T = {2/84.6 < = < 176.6}, Z{° = {x|z > 176.6},

T2 = {z|r < 2.5}, T2 = {z25 <z <26}, IU°={z|z>26)}

Adopting these functions we obtained a temporal sequence made up of 1249
intervals (138 for temperature, 427 for humidity, 117 for light and 612 for
voltage). Then we added all the Allen’s temporal relations between the in-
tervals (836729 before, 1558 meets, 13714 overlaps, 122 starts, 11945 during,
134 finishes and 60 matches atoms) obtaining a relational sequence of about
868000 literals. The following literals represent a fragment of a sequence de-
scribing the relational representation of some time series, where each interval
is described by three predicates

a(sensor, interval, label), begin(interval, s), end(interval, e)
where « €{temperature, humidity, light, voltage}.

temperature(31,i1,it3). begin(il,®). end(il,22).
humidity(31,i2,ih5). begin(i2,®). end(i2,30).

starts(il,i2). before(i2,i3).

Table [ reports the results of the algorithm when applied on the sequence
previously described and using two different values for the minimum support.
The fourth column reports the number of patters belonging to all the possible
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= Temperature

== Humidity

N————

Fig. 5 Correlation between temperature (bottom) and humidity (top) time series

Table 1 Detailed results of the experiments

[MinSupport| Level| Specializations| Candidates| Maximals| Time (secs)|

1 17 10
2 166 40
3 666 170
10% 4 2340 344 307 319.3
5 3864 200
6 1806 0
1 17 9
2 150 34
3 568 141
15% 4 1882 254 246 277.8
5 2784 141
6 1272 0
1 17 9
2 150 33
3 555 122
20% 4 1618 206 194 234.7
5 2293 55
6 494 0

specializations whose support is greater than MinSupport. The fifth column
reports the number of maximal patterns fulfilling all the constraints obtained

by the algorithm.

Some interval-based patterns discovered by the algorithm and expressing
the time correlation and the information correlation are:

temperature(_,A,B), before(A,C), temperature(D,C,E),
18.95 < B < 21.35, 21.35 < B < 25.85, mote31(D) [s = 28.4%],
temperature(A,B,C), meets(B,D), temperature(A,D,E),
18.95 < C < 21.35, 21.35 < E < 25.85 [s = 24.8%)],
temperature(A,B,C), meets(B,D), temperature(A,D,E),
21.35 < C < 25.85, 18.95 < E < 21.35 [s = 26.2%].
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6 Conclusion

In this chapter a relational language useful to describe the temporal nature of
a sensor network has been proposed, and a relational learning technique able
to discover interesting and more human readable patterns relating spatio-
temporal correlations has been implemented.

The framework, already presented in [J] has been extended in order to
take into account interval-based temporal data along with contextual infor-
mation about events occurring in the environment. The extension concerns
the introduction of interval-based operators, based on the Allen’s temporal
interval logic [5], in the sequences. Firstly, an abstraction step with the aim of
segmenting and labelling the real-valued time series into similar subsequences
is performed exploiting a kernel density estimator approach. The knowledge
is enriched by adding interval-based operators between the subsequences ob-
tained in the discretization step, and the relation pattern mining algorithm
has been extended in order to deal with these new operators.

In order to evaluate the validity of both the abstraction step and the gen-
eral extended framework, an experimental session on real world data collected
from a wireless sensor network has been presented.
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