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Abstract. The issue addressed in this paper concerns the discovery of frequent multi-dimensional
patterns from relational sequences. The great variety of applications of sequential pattern mining,
such as user profiling, medicine, local weather forecast and bioinformatics, makes this problem
one of the central topics in data mining. Nevertheless, sequential information may concern data on
multiple dimensions and, hence, the mining of sequential patterns from multi-dimensional informa-
tion results very important. In a multi-dimensional sequence each event depends on more than one
dimension, such as in spatio-temporal sequences where an event may be spatially or temporally re-
lated to other events. In literature, the multi-relational data mining approach has been successfully
applied to knowledge discovery from complex data. However, there exists no contribution to manage
the general case of multi-dimensional data in which, for example, spatial and temporal information
may co-exist. This work takes into account the possibility to mine complex patterns, expressed in
a first-order language, in which events may occur along different dimensions. Specifically, multi-
dimensional patterns are defined as a set of atomic first-order formulae in which events are explicitly
represented by a variable and the relations between events are represented by a set of dimensional
predicates. A complete framework and an Inductive Logic Programming algorithm to tackle this
problem are presented along with some experiments on artificial and real multi-dimensional se-
quences proving its effectiveness.
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1. Introduction

The rapid growth of the amount of data stored in large databases has lead to an increasing interest in the
data mining research area and, in particular, towards methods to discover hidden structured patterns in
large databases. The sequences are the simplest form of structured patterns and different methodologies
have been proposed to face the problem of sequential pattern mining, firstly introduced by R. Agrawal
and R. Srikant in [2], with the aim of capturing the existent maximal frequent sequences in a given
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database. The issue of discovering all frequent sequences of itemsets in a dataset is crucial when the data
to be mined have some sequential nature like events in the case of temporal information. Furthermore,
some real world domains such as user profiling, medicine, local weather forecast and bioinformatics
show an inherent propension to be modelled by means of sequences of events/objects related to each
other. This great variety of applications of sequential pattern mining makes this problem one of the
central topics in data mining as showed by the research efforts produced in recent years [1, 44, 15, 34, 35]

However, some environments involve very complex components and features. Thus, the classical
existing data mining approaches, that look for patterns in a single data table, have been extended to
the multi-relational data mining approaches that look for patterns involving multiple tables (relations)
from a relational database. This has led to the exploitation of a more powerful knowledge representation
formalism as first-order logic. Some works facing the problem of knowledge discovery from spatial and
temporal data in multi-relational data mining research area are present in literature [31, 36, 11, 38, 28].
Nevertheless, there exists no contribution presenting a framework to manage the general case of multi
relational data in which, for example, spatial and temporal information may co-exist.

On the other hand, it is worth to note that sequential information might concern data on multiple
dimensions and, hence, the mining of sequential patterns from multi-dimensional information turns out
to be very important. An attempt to propose a (two-dimensional) knowledge representation formalism to
represent spatio-temporal information based on multi-dimensional modal logics is proposed in [6], while
the first work presenting algorithms to mine multi-dimensional patterns has been presented in 2001 by
Pinto et al. [35]. However, all the works in multi-dimensional data mining have been restricted to the
propositional case, not involving a first-order representation formalism.

In this paper we provide an Inductive Logic Programming (ILP) [32] algorithm for discovering
first-order (DATALOG) maximal frequent patterns in multi-dimensional relational sequences. Multi-
dimensional patterns are defined as a set of atomic first-order formulae in which events are explicitly
represented by a variable and the relations between events are represented by a set of dimensional predi-
cates.

Although encoding temporal predicates in ILP is very simple, making a system able to understand
and use their semantic is crucial for efficiency. Some recent works on mining logical patterns [18, 25,
29, 4] take into account temporal sequences (i.e., 1-dimensional sequences) by using a purposely defined
logical temporal formalism. Instead, this work proposes a dedicated framework which incorporates a
specific language bias for multi-dimensional data, expressed in a first-order logic, in order to rise a
faster execution and a smaller search space. The first-order logic representation gives us the possibility
to encode temporal, spatial and other dimensional features without requiring to discriminate between
them. Furthermore, it is possible to represent any other domain relations and let them co-exist with other
dimensional ones.

An interesting application of multi-dimensional logical pattern mining is modelling. In particular,
considering the user profiling domain and more specifically the user modelling task, an intelligent frame-
work should take into account non only a person’s attitude and preferences but also its behaviour and
regularities when moving in a prespecified context. This might be very useful in improving the interaction
between the user and the context itself, in order for the latter to adapt more easily and straightforwardly
the functionality that it implements to the former. Indeed, some domains have a stronger need for user
models to tune the interface characteristics and behaviours: among the most classical ones, Computer
Aided Instruction and Dialog Systems.
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A user model can describe the user at different levels of granularity and complexity, depending on the
amount of resources available and on the specific task it is intended for. Building user models, however, is
a very difficult task, because very often a person’s behaviour and preferences vary in time and according
to different environments, situations and objectives [20, 41]. Furthermore, the task is made harder when
context parameters are taken into account. The classical approaches to context modelling consider low
level informations coming from sensors. Some of these works are Synapse [39] system, that, by using
Hidden Markov Model, learns user habits exploiting a chronological order of the contexts in order to
predict and provide the more relevant functionalities in a given context. SenSay [40] exploits Bayesan
Networks to model a context-aware cellular phone that adapts its functionalities (e.g., changing ring or
type tone, turning down an incoming call). In [37] a neural network is trained with information provided
by sensors concerning the speed of moving of the user and the environment in which the user is, to
learn models for an intelligent tourists’ guide that, for example, is quiet when the user runs, presents a
graphical interface when the user is still or is sitting. Similarly, in [27] an intelligent guide of a museum
is modelled on the user interests and context behaviours exploiting Hierarchical Markov Models.

Nevertheless, first-order knowledge representation formalism is crucial to take into account more
structured and complex features and relations involved in environment descriptions. A logical formalism
for mining temporal patterns in a task of user modelling has been proposed in [17] in which the user
behaviour is described according to the temporal sequences of his actions. The approach proposed in
this paper allows us to tackle many complex scenarios such as context modelling, in which a situation
and the actors involved in it evolve both in time and space. Some researchers proposed to model the user
context with a n-dimensional space [26] and in particular they consider that 12 dimensions are sufficient
to model the more relevant aspects in a context. Some of the dimensions they consider are: Absolute
Time: a particular time interval in which events occur, Type Of Time: a non-absolute type of time period,
such as “just after eating”, Absolute Place: a particular location where events occur, such as “Paris”, Type
Of Place: a non-absolute type of place, such as “in bed”. Starting from this type of information about the
context, we should think to profile, for example, a user accessing to a room (home, office, museum, etc.)
by describing contextual information (such as position in the room described by two spatial dimensions)
and temporal information with the aim for the context to provide dynamics and adaptive functionalities
in environments according to user habits.

2. Mining Multi-Dimensional Patterns

We used Datalog [42] as representation language for the domain knowledge and patterns, that here is
briefly reviewed. For a more comprehensive introduction to logic programming and inductive logic
programming we refer the reader to [10, 32, 24].

Definition 2.1. (Alphabet)

A first-order alphabet consists of a set of constants, a set of variables, a set of function symbols, and
a non-empty set of predicate symbols. Each function symbol and each predicate symbol has a natural
number (its arity) assigned to it.

The arity assigned to a function symbol represents the number of arguments the function has. Even
if constants are defined as a separate class of symbols, it is convenient to view constants as function
symbols of arity 0, and hence as a subclass of the set of function symbols.
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Definition 2.2. (Terms)
A term is a constant symbol, a variable symbols, or an n-ary function symbol f applied to n terms
t,ta, ...t

An atom p(tq, ..., fn) (or atomic formula) is a predicate symbol p of arity n applied to n terms ¢;.
Both [ and its negation [ are said to be literals (resp. positive and negative literal) whenever [ is an atomic
formula.

Definition 2.3. (Clause)
A clause is a formula of the form VX1V X5 ... VX, (L1 V Lo V...V L;V Li11V ...V L) where each
L; is a literal and X1, Xo,... X, are all the variables occurring in Ly V La V .. .L; V ...L,,. Most

commonly the same clause is written as Ly, Lo, ... < L;, Ly 1, ... Lyp,.

Clauses, literals and terms are said to be ground whenever they do not contain variables. A Horn
clause is a clause which contains at most one positive literal. A Datalog clause is a clause with no
function symbols of non-zero arity; only variables and constants can be used as predicate arguments.

Definition 2.4. (Subsumption)

A substitution 0 is defined as a set of bindings {X; «— a1,...,X,, < a,} where X;,1 <i < nisa
variable and a;,1 < ¢ < nis a term. A substitution 6 is applicable to an expression e, obtaining the
expression ef, by replacing all variables X; with their corresponding terms a;.

2.1. Multi-dimensional Relational Sequences

Now we introduce the definitions of multi-dimensional relational sequences.

Definition 2.5. (1-dimensional relational sequence)
A I-dimensional relational sequence may be defined as an ordered list of Datalog atoms separated by
the operator <: ] <ly < -+ < .

Example 2.1. The following list of ground Datalog atoms
p(a,b) < p(b,c) < p(c,a) < p(b,b)
represents a 1-dimensional relational sequence. In general, for this kind of sequences, referring to one
dimension only, the operator < may be omitted as follows
p(a,b) p(b,c) p(c,a) p(b,b)
where it is implicit, for instance, that the atom p (b, c) follows the atom p(a,b).

However, in order to make the proposed framework more general, the concept of fluents introduced
by J. McCarthy in [30] should be considered: “After having defined a situation, s;, as the complete state
of the universe at an instant of time ¢, then a fluent is defined as a function whose domain is the space of
situations. In particular, a propositional fluent ranges in (true,false). For example, raining(zx, s;) is true
if and only if it is raining at the place x in the situation s;.”

If we consider a sequence as an ordered succession of events for each dimension, a fluent may be
used to indicate that an atom is true for a given event. In particular, in our description language we can
distinguish two kinds of Datalog atoms: dimensional and non-dimensional atoms. Specifically:

e non-dimensional atoms, that may be divided into



F. Esposito et al./ Multi-Dimensional Relational Sequence Mining 27

— fluent atoms: explicitly referring to a given event (i.e., in which one of its argument denotes
an event);

— non-fluent atoms: denoting relations between objects (with arity greater than 1), or charac-
terizing an object (with arity 1) involved in the sequence;

e dimensional atoms: referring to dimensional relations between events involved in the sequence.

Example 2.2. The following set of Datalog atoms
plei,a,b) (e; <ez) plez,b,c) q(b,c)
denotes a 1-dimensional relational sequence with three non-dimensional atoms (p(e;,a,b) p(ez,b,c)
q(b,c)) and one dimensional atom (e; < e2). Specifically, p(e;,a,b) denotes the fluent p(a,b) at the
event e1, p(ea,b,c) denotes the fluent p(b,c) at the event e, (1 < eg) indicates that the event e is
the direct successor of e; and q (b, c) represents a generic relation between the objects b and c.
Another way to read the previous example is the following: “ p(a,b) is true in the event ey, the
event e gives rise to the event es where p (b, c) is true, and there is a relation q between b and c”.

The choice to add the event as an argument of the predicates is necessary for the general case of
n-dimensional sequences with n > 1. In this case, indeed, the operator < is not sufficient to express
multi-dimensional relations and we must use its general version <;, 1 < ¢ < n. Specifically, (e; <; e2)
denotes that the event e gives rise to the event es in the dimension <. Hence, in our framework a multi-
dimensional data is supposed to be a set of events, and to each dimension corresponds a sequence of
events.

Definition 2.6. (Multi-dimensional relational sequence)

A multi-dimensional relational sequence is a set of Datalog atoms, involving k events and concerning n
dimensions, in which there are non-dimensional atoms (fluents and non-fluents) and each event may be
related to another event by means of the <; operators, 1 < i < n.

After having defined what is a logical multi-dimensional sequence, in the following we give a detailed
description of the dimensional operators used to describe multi-dimensional patterns.

2.1.1. Running Example: Cellular automaton data

To better explain the concepts, we will use as a running example the best-known example of a cellular
automaton, named The Game of Life, devised by J.H. Conway in 1970 [12]. This simulation game
resembles the processes of a society of living organisms.

The universe of the game involves a plan, assumed to be infinite, divided into cells, each of which
is in one of two possible states, /ive — meaning that there is an organism — or dead . The idea is to start
with a simple configuration of organisms and then observe how it changes as one applies the “genetic
laws” for births, deaths, and survivals. Note that each cell of the plane has eight neighboring cells, four
adjacent orthogonally and four adjacent diagonally. The rules are:

e Births: each empty cell adjacent to exactly three neighbours is a birth cell. An organism is placed
on it in the next population;

e Survivals: every organism with two or three neighboring organisms survives for the next genera-
tion;
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1st 2nd 3th 4th

EEEE =
y — N
[

Figure 1. A sequence of evolving populations

e Deaths: each organism with four or more neighbours dies (is removed) for overpopulation. Every
organism with one neighbour or none dies for isolation.

Note that all births and deaths occur simultaneously.

This example may be viewed as a case of a 3-dimensional sequence that combines spatial and tempo-
ral data. Indeed, we have a) the evolving process of each organism along the time (the first dimension), b)
the adjacency’s relation between organisms in horizontal sense and c) in vertical sense. Here the events
are represented by the organisms that may be dimensionally related in three ways.

One can model the plane by using two dimensions (say x and y), while the time may be modeled by
another dimension (say t). The plane containing the organisms has been viewed as a two-dimensional
array. However, since in principle the plane is infinite, its left and right edges are considered to be stitched
together, like the top and bottom edges, thus yielding a toroidal array. In particular, at time ¢ an organism
contained in the cell (4, j) of the (¢)-th plane may be considered as an event that is spatially related with
the cells (i + 1,7), (4,7 + 1), (¢ — 1,7), (4, — 1) of the (£)-th plane, and femporally related to the cells
(i,7) of the (¢ 4+ 1)-th plane and (4, j) of the (¢ — 1)-th plane.

In Figure 1 is reported a sequence of evolving populations, starting from an initial population of
15 organisms, that evolves along the time, based on the previously defined rules, in next populations.
The following predicates may be used to describe this sequence: given a generic plane live (X) (resp.
dead (X)) indicates that the organism X is live (resp. is dead); A <, B (resp. A <, B) indicates
that B is the next organism with respect to A in horizontal sense (resp. in vertical sense); and, A <; B
indicates that A is the organism in the cell (¢, j) of the generic (¢)-th plane and B is the same organism in
the cell (¢, j) of the next (¢ + 1)-th plane. In particular, the operators <, and <, indicate that an event is
a direct successor, respectively, in horizontal and in vertical direction. While, the operator <, represents
the direct successor of an event along the time dimension. The sequence reported in Figure 1 can be
described, using this domain language, as follows:

/* 1st population */

live(f1) (fi <z f2) live(f2)
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(f1 <y fe) live(fg) (fo <o f7) (fa <y f7) dead(f7)

(fo <y f11) live(f11) (f11 <¢ f12) (f7 <y f12) dead(f12)
/* 2nd population */

live(sy) (s1 <z s2) dead(ss)

(s1 <y s6) live(sg) (sg <z s7) (s2 <y s7) dead(s7)

(s6 <y s11) live(s11) (s11 <z s12) (57 <y s12) dead(sq2)
/* 3th population */

/* 4th population */

/* temporal relations */
(fl <t 81) (f2 <t 89) (f3 <; 83) (f4 <t S4) (f5 <t S5) ...

2.2. Multi-Dimensional Relational Patterns

In order to represent multi-dimensional relational patterns, some dimensional operators must be in-
troduced. The following symbols for describing general event relationships along many dimensions
have been adopted. In particular, given a set D of dimensions, in the following are reported the multi-
dimensional operators:

e <;: next step on dimension i, Vi € D. This operator indicates the direct successor on the dimension
i. For instance, (z <time y) denotes that the event y is the direct successor of the event = on the
dimension time. next_i/2 is the corresponding Datalog predicate used to denote the successor
operator;

e <;: after some steps on dimension i,¥i € D. This operator encodes the transitive closure of <.
For example, (y <lspatialz 2) states that the event z occurs somewhere after the event y on the
dimension spatialx. follow_i/2 is the corresponding Datalog representation;

o O exactly after n steps on dimension i,Yi € D. In particular it calculates the n-th direct
successor. For instance, (x O?pati .1 W) states that the event w is the n-th direct successor of the
event z on the dimension spatialz. The followat_1/3 Datalog predicate is used to represent such
a situation.

Note that, the dimensional characteristics in the sequences will be described by using the <; operator,
while the two dimensional operators <I; and ()7, will be used, in combination with the <; operator, to
represent the frequent discovered patterns.

Example 2.3. With the above defined dimensional operators, an example of a simple temporal sequence
could be:

plei,a,b) (e1 <time €2) qlea,b,c) (e2 <time €3) ples,e,f) (e3 <time €4) qleq,f,g)
and the relative temporal patterns that may be true when applied to it are

p(E1 ,X,Y) (El <time Ez) C]_(EQ ,Y,Z)

p(E1,X,Y) (E1 <gime E2) q(E2,Z,W)

p(E1,X,Y) (B Ofype E2) p(E2,Z,W)
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block boat blinker

Figure 2. Some patterns occurring in the Game of Life

Definition 2.7. (Subsequence [18])
Given a sequence o = (ejez---ey) of m elements, a sequence o’ = (efe5---e)) of length k is a
subsequence (or pattern) of the sequence o if

1.1<k<m
2 Vi, 1<i<k I l<j<m:e =e
3. Vi,j,1<i<j<k3nl1<h<l<m:e=epande}=e.

The frequency of a subsequence in a sequence is the number of different mappings from elements of o’
into the elements of o such that the previous conditions hold.

Note that this is a general definition of subsequence, in our case the gaps represented by the third condi-
tion are modelled by the <1; and ()} operators as reported in the following definition.

Definition 2.8. (Multi-dimensional relational pattern)

A multi-dimensional relational pattern is a set of Datalog atoms, involving &k events and regarding n
dimensions, in which there are non-dimensional atoms and each event may be related to another event
by means of the operators <;, <; and (O} operators, 1 <7 < n.

Coming back to the cellular automaton data example, multi-dimensional patterns that may be dis-
covered from some artificial populations include still lifes and oscillators, as those reported in Figure 2.
In cellular automata, a still life is a pattern that does not change from one generation to the next, while,
an oscillator is a pattern that returns to its original state, in the same orientation and position, after a
finite number of generations. The block and boat patterns, reported in Figure 2, are still lifes, while the
blinker is a two-phase oscillator (i.e., it returns to its original state after 2 generations). As reported in
the following clausal descriptions of the patterns depicted in Figure 2, it is not necessary to express the
temporal relations <; between all the possible organisms.

block still life
live(A) (A <; B) live(B) (A <, O) live(C) (C <; D) (B <y D) live(D)
(A <y A live(A) (A'<,;B") live(B') (A'<,C") live(C’) (C'<,;D"
(B'<y D) 1live(D")

boat still life
live(A) (A <, B) live(B) (4 <, O) live(C) (C O D) live(D) (B O E)
live(E) (A <; A) live(A) (A <, B live(B) (A <, O") live(C) (C' O3
D) 1live(D") (B'OZE") live(E))
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blinker oscillator
live(A) (A <, B) live(B) (B <, (C) 1live((C)
dead(D) (D <, B) dead(E) (B <y, E) (B < B") dead(A4A’) (A’ <, B") 1live(B")
(B' <; C") dead(C") live(D') (D' <, B') live(E') (B' <, E")

We are interested in finding maximal frequent patterns with a high frequency in long sequences.

Definition 2.9. (Maximal pattern)

A pattern ¢’ of a sequence o is maximal if there is no pattern o” of o more frequent than ¢’ and such that
o’ is a subsequence of o”.

If we indicate the operator <; with the Datalog predicate next_i (X, Y), the Datalog definition of the
operators Of and <; can be formulated as follows:

followat_i(1,X,Y) «—
next_i(X,Y), !.
followat_i(K,X,Y) «—
next_i(X,Z),
K1 is K - 1,
followat_i(K1,Z,Y).

follow_i(X,Y) «
next_i(X,Y).

follow_ i(X,Y) «
next_i(X,Z),
follow i(Z,Y).

These definitions are added to the background knowledge B and used to prove the dimensional oper-
ators appearing in the patterns using the following definition of subsumption.

Given S a multi-dimensional relational sequence, in the following we will indicate by X the set of
Datalog clauses B U U, where U is the set of ground atoms in S.

In particular given a sequence S = (s1, S2, . . ., Sp) the set X is made up of the following clauses:

/* definition of dimensional predicates */
followat_i(1,X,Y) «— ...

follow i(X,Y) «— ...

/* atoms of the sequence */

S1 —

S9 —

Sp —
In order to calculate the frequency of a pattern over a sequence it is important to define the concept
of sequence subsumption.

Definition 2.10. (Pattern Subsumption)
Given P a multi-dimensional relational pattern and S a multi-dimensional relational sequence, let X =
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B U U. The pattern P subsumes the sequence S, written as P C S, iff there exists an SLDor-deduction
of P from X..

An SLDgg-deduction is an SLD-deduction under Object Identity. In the Object Identity framework,
within a clause, terms that are denoted with different symbols must be distinct, i.e. they must represent
different objects of the domain.

2.3. The algorithm

After having defined the formalism for representing sequences and patterns, here we describe the al-
gorithm for frequent multi-dimensional relational pattern mining based on the same idea of the generic
level-wise search method, known in data mining from the APRIORI algorithm [1]. The level-wise al-
gorithm makes a breadth-first search in the lattice of patterns ordered by a specialization relation <.
The search starts from the most general patterns, and at each level of the lattice the algorithm generates
candidates by using the lattice structure and then evaluates the frequencies of the candidates. In the gen-
eration phase, some patterns are taken out using the monotonicity of pattern frequency (if a pattern is not
frequent then none of its specializations is frequent).

The mining method is outlined in Algorithm 1. The generation of the frequent patterns is based on
a top-down approach. The algorithm starts with the most general patterns. These initial patterns are all
of length 1 and are generated by adding to the empty pattern a non-dimensional atom. Successively, at
each step it tries to specialize all the potential frequent patterns, discarding the non-frequent patterns and
storing the ones whose length is equal to the user specified input parameter maxsize. Furthermore, for
each new refined pattern, semantically equivalent patterns are detected, by using the for-subsumption
relation, and discarded. Note that the length of a pattern is defined as the number of non-dimensional
atoms. In the specialization phase, the specialization operator under fpr-subsumption is used. Basically,
the operator adds atoms to the pattern.

2.4. The background knowledge

The algorithm uses a background knowledge B (a set of Datalog clauses) containing the sequence and a
set of constraints that must be satisfied by the generated patterns. In particular B contains:

e maxsize(M): maximal pattern length (i.e., the maximum number of non-dimensional predicates
that may appear in the pattern);

e minfreq(m): this constraint indicates that the frequency of the patterns must be larger than m;

e dimension(next_i): this kind of atom indicates that the sequence contains events on the dimension
i. One can have more that one of such atoms, each of which denoting a different dimension. In
particular, the number of these atoms represents the number of the dimensions.

e fype(p): denotes the type of the predicate’s arguments p;
e mode(p): denotes the input output mode of the predicate’s arguments p;

e negconstraint([p1,p2,...,Pnl): specifies a constraint that the patterns must not fulfill, i.e. if the
clause (p1,p2,...,pn) subsumes the pattern then it must be discarded. For instance, negcon-
straint([p(X,Y),q(Y)]) discards all the patterns subsumed by the clause (p(X,Y),q(Y));
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Algorithm 1 MDLS
Require: > = B U U, where B is the background knowledge and U is the set of ground atoms in the
sequence .S.
Ensure: P,,..: the set of maximal frequent patterns
1: P < { initial patterns }

2: Pmtw — @
3. while P # () do
4: P, (Z)
5: for allp € Pdo
6: /* generation step */
7 Ps — P,U {all the specializations of p that satisfy all the constraints posconstraints, negcon-
straints or atmostone }
P10
for allp € Ps; do
10: /* evaluation step */
11: if freq(p) > minfreq then
12: if length(p) = maxsize then
13: Pz — PrazU {p}
14: else
15: P — PU{p}
e posconstraint([p1,pa, . .., pnl): specifies a constraint that the patterns must fulfill. It discards all

the patterns that are not subsumed by the clause (p1, p2, ..., Pn);

e atmostone([p1,p2,...,DPn]): this constraint discards all the patterns that make true more than one
predicate among p1, p2, . . . , Pn. For instance, atmostone([red(X),blue(X),green(X)]) indicates that
each constant in the pattern can assume at most one of red, blue or green value;

o key([p1,p2,...,pn]): it is optional and specifies that each pattern must have one of the non-
dimensional predicates p1, p2, . . . P, as a starting literal.

The use of the dimension(next_i) literals, that specify the number of dimensions the sequence is
based on, allows to the corresponding definitions of the predicates followat_i/3 and follow_i/2 to
be automatically generated and added to the background knowledge 5.

Classical mode and type declarations are used to specify a language bias indicating which predi-
cates can be used in the patterns and to formulate constraints on the binding of variables. The solution
space is further pruned by using some positive and negative constraints specified by the negconstraint
and posconstraint literals. The last pruning choice is defined by the atmostone literals. This last
constraint is able to describe that some predicates are of the same type.

Since each pattern a) must start with a non-dimensional predicate, or with a predefined key, and b)
its frequency must be less than the sequence length, the frequency of a pattern can be defined as follows.

Definition 2.11. (Pattern Frequency)
Given a multi-dimensional relational pattern P = (p1, p2, ..., p,) and S a multi-dimensional relational
sequence, the frequency of pattern P is equal to the number of different ground literals used in all the
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possible SLDo1-deductions of P from > = B U U that make true the literal p;.

Example 2.4. Given the following sequence S = p(e1,a),q(a,t),q(a,s),(e1 < e2),p(e2,b),q(b,a)
and the pattern P = p(E, X)), q(X,Y) there are 3 SLD-deductions of P from ¥ with the OI substitu-
tions 6y = {E/e1, X/a,Y/t}, 02 = {E/e1,X/a,Y/s} and 5 = {E/es, X/b,Y/a}. However, since
61 and 0 map the same constants to the variables of p(F, X ), the frequency of P on S is equal to 2.

2.5. The refinement step

The refinement of patterns is obtained by using a refinement operator p that maps each pattern to a set of
specializations of the pattern, i.e. p(p) C {p'|p < p’} where p < p’ means that p is more general of p’ or
that p subsumes p’. In particular, given the set D of dimensions, the set F of fluent atoms, the set P of
non-fluent atoms, the refinement operator for specialazing the patterns is defined as follows:

adding a non-dimensional atom

e the pattern S is specialized by adding a non-dimensional atom F' € F (a fluent) referring to
an event already introduced in S;

e the pattern S is specialized by adding a non-dimensional atom P € P;
adding a dimensional atom

e the pattern S is specialized by adding the dimensional atom (x <; y) i € D, relating the
events x and y, iff 3 a fluent F' € F in S which event argument is x and there not exist the
atoms (z <; y) and (x O y) in S;

e the pattern S is specialized by adding the dimensional atom (z <; y) @ € D, relating the
events x and y, iff 3 a fluent F' € F in S which event argument is x and there not exist the
atoms (z <; y) and (x O y) in S;

e the pattern S is specialized by adding the dimensional atom (z O} y) i € D, relating the

events x and y, iff 3 a fluent F' € F in S which event argument is x and there not exist the
atoms (z <; y) and (z <; y) in S.

The dimensional atoms are added iff there exists a fluent atom referring to its starting event. This is to
avoid unuseful chains of dimensional predicates like this p(e;,a) (e1 <; e3) (eax <; e3) (es <; eq),
that is naturally subsumed by p(e1,a) (e1 OF eq).

We recall that the length of a pattern P is equal to the number of non-dimensional atoms in P.

3. [Experiments

MDSL has been implemented in Yap Prolog and evaluated by making some experiments on an artificial
dataset and on trace files collected from different users of Unix csh [14, 18].
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Table 1. Warmr and MDLS performances (time in secs.).

P1 P2 p3 yz b5
Warmr MDLS | Warmr MDLS | Warmr MDLS | Warmr MDLS ’ Warmr MDLS
1D 5,17 1,46 532 2,33 5,0 2,66 5,85 3,92 6,44 552
P1 2D 3,75 1,37 4,23 1,97 422 284 3,68 3,38 436 4,59
3D 398 1,32 346 1,80 4,00 2,72 4,08 347 4,02 4,04
1D 582 1,53 12,22 3,14 26,52 5,83 45,84 9,3 63,79 13,59
P2 2D 446 143 8,61 2,77 19,62 5,07 37,41 8,52 62,23 14,47
3D 3,78 1,16 10,30 2,84 18,68 5,13 38,52 9,06 66,67 14,57

3.1. Artificial relational data

In order to generate synthetic data, a random problem generator has been implemented and used to gen-
erate multi-dimensional relational sequences. In particular, it randomly generates a sequence containing
a frequent pattern taking as input the following parameters. The domain language is defined by a set D
of d dimensions, a set R of r binary predicates, and a set F of f fluent predicates with arity 3. By using
these predicates, a sequence, made up of E's events and Os objects, is generated by randomly selecting
Rs relational literals and F's fluent literals per event. A relational literal is generated by randomly select-
ing its predicate from R and randomly selecting its arguments from the set of Os objects. For each event,
F's fluent literals are generated by randomly selecting their predicates from F and randomly selecting
its two relational arguments from the set of Os objects. The sequence contains freq patterns with the
same logical structure, made up of E'p events and Op objects. Each pattern contains F'p fluents literals
per event and Rp relational literals randomly generated by using the above method.

Two problems, P; and P», have been generated, with r and f set to 3, F's and F'p set to 1. In the
former we fixed the length of the pattern, while in the latter we fixed the length of the sequence. In
particular, the problem P; has been divided into 5 sub-problems, where the number of events E's of the
sequence has been set, respectively, to 100, 200, 300, 400 and 500, while the number of events E'p of the
pattern has been fixed to 4. The problem P> has been divided into 5 sub-problems, where the number of
events Ep of the pattern has been set, respectively, to 4, 5, 6, 7 and 8, fixing the number of events E's of
the sequence to 100. For each sub-problem 10 sequences have been generated.

Our system has been compared to Warmr [11], using the package ACE-ilProlog [8] kindly made
available by Hendrik Blockeel. Table 1 reports the mean time, over the 10 sequences for each sub-
problem (p;, 1 < ¢ < 5), by executing both Warmr and MDLS. For each sub-problem of P; we fixed
Ep =4, Op = 3 and Rp = 2, while the others parameter have been set, respectively, as follows E's =
100, 200, 300, 400, 500, Os = 10, 20, 30,40, 50, Rs = 40, 60, 80, 100, 120, freq = 10,20, 30,40, 50.
While, for the problem Py we fixed Es = 100, Os = 10 and Rs = 40, Ep = 4,5,6,7,8, Op = 3,
Rp =2, freq = 10.

The first column of Table 1 indicates the kind of sequence (1D, 2D, 3D) for each problem, while
the others the mean time in seconds for each corresponding sub-problem. As one can see, MDLS shows
significant runtime improvements with respect to Warmr that is limited with respect to the length of the
pattern. Indeed, the time increases as the length of the pattern grows, as reported for the problem Ps.
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3.2. Unix csh commands

The analysis of the use of Unix command shell represents one of the classic applications in the domain
of adaptive user interfaces and user modelling. Greenberg [14] collected logs from 168 users of the unix
csh, divided into 4 target groups: 55 novice programmers, 36 experienced programmers, 52 computer
scientists and 25 non-programmers. Table 2 reports statistics of finding frequent patterns for 3 users logs
from the Greenberg dataset.

Each Greenberg’s log file corresponding to a user is divided into login sessions denoted by a starting
and an ending time record. Each command entered in each session has been annotated with the current
working directory, alias substitution, history use and error status. Furthermore, each command name may
be followed by some options and some parameters. For instance the command 1s -a *.c has name 1s,
option —a and parameter *. c.

As pointed out in [18], this problem is a relational problem, since commands are interrelated by
their execution order (or time), and each command can be eventually related to one or more parameters.
A shell log may be viewed as a 2-dimensional sequence, since each command is followed by another
command (the first dimension) and each command line is composed by an ordered sequence of tokens
(i.e., command name, options and parameters). Each shell log has been represented as a set of logical
ground atoms as follows.

command (e) is the predicate used to indicate that e is a command. The command name has been used
as a predicate symbol applied to e;

parameter (e,p) has been used to indicate that p is the parameter of e. The parameter name has been
used as a predicate symbol applied to p;

current_directory(c,d) indicates that d is the current directory of the command c;

next_c(cl,c2) (<.) indicates that the command c2 is the direct command successor of c1;

next_p(pl,p2) (<,) indicates that the parameter p2 is the direct parameter successor of p1.
For instance the following shell log

Cp paper.tex newpaper.tex
latex newpaper
xdvi newpaper

should be translated as

command(c1), ‘$cp’(cl),

next_p(cl,clpl), parameter(clpl, ‘paper.tex’),

next_p(clpl,clp2), parameter(clp2, ‘newpaper.tex’),
next_c(cl,c2), ‘$latex’(c2),

next_p(c2,c2pl), parameter(c2pl, ‘newpaper’),
next_c(c2,c3), ‘$xdvi’(c3),

next_p(c3,c3pl), parameter(c3pl, ‘newpaper’)

In this way it is possible to describe patterns such as
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command (L), ‘$latex’ (L),
next_p(L,LP), parameter(LP,P),

next_c(L,X), ‘$xdvi’(X),
next_p(X,XP), parameter (XP,P)

Table 2 reports statistics on MDLS performance on the Greenberg dataset. The first four columns
denote, respectively, the user name, the number of literals of the sequence, the number of sessions for
each user log file and the total number of commands in the log file. For each user some experiments has
been made. The kind of experiment carried out is denoted in the fifth column that reports the operators
used in the experiment. For instance <¢ and < p indicate that only these two operators have been used in
the experiment. We see that, as the number of commands and dimensional operators grows, the execution
time increases. Note that each session represents a sequence and a log file is a collection of sequences.
There is no correlation between two sessions in a log file.

Table 2. MDLS performances (time in secs.). [S|: n. of literals in the sequence; |Ses|: n. of sessions for user log
file; |C|: total number of commands in the log file; Op: dimensional operators used; L: max length of the patterns;
F: min freq of the patterns; |[MP|: n. of found maximal patterns; Sp: required specializations.

User S| |Ses| |C| Op L F Time |IMP| Sp
<c 5 5 1.17 45 3597
<c<p 5 5 2.68 45 9513
n9 2654 73 357 <c O 5 5 2.58 91 8495
<c <o O 5 5 28.94 149 29081
<cp <cp Obp | S 5 99.06 218 76299
<c 5 10 2.36 38 4512
<c<p 5 10 3.58 18 6434
nl7 5366 61 848 <c O 5 10 7.95 47 10808
<c <c O 5 10 37.06 39 19198
<c,p <c,p O&p 5 10 144.38 25 25142
<c 5 15 6.10 64 7716
<c<p 5 15 19.33 77 24046
<c O¢ 5 15 16.30 139 20744
<c <dc O 5 15 138.06 162 51363
n7 12355 80 1231 <c 5 80 1.78 9 953
<c<p 5 80 4.06 11 2493
<c O¢ 5 80 4.14 16 2479
<¢ <o O 5 80 42.55 29 6745
<cp<epObp | 5 80 16499 49 17505

4. Related Work

As already pointed out, the problem of sequential pattern mining is a central one in a lot of data mining
applications and many efforts have been done in order to propose purposely designed methods to face it.
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Most of the works have been restricted to propositional patterns, that is, patterns not involving first order
predicates. One of the early domains that highlights the need to describe with structural information the
sequences was the bioinformatics. Thus, the need to represent many real world domains with structured
data sequences became more unceasing, and consequently many efforts have been done to extend existing
or propose new methods to manage sequential patterns in which first order predicates are involved. On
the other hand, for a fair description of some application domains, the sequences must involve not only
relational objects but also the evolution of each object in more than one dimension. Unfortunately, to our
knowledge, there are no methods able to manage sequences whose description involves both relations
and more than one dimension. In the following a brief survey of the techniques proposed to deal with
relational or multi-dimensional sequences is presented along with the modelled application domain.

In [18] is presented a work, in the domain of user modelling, that helps shell users by creating scripts
(a sequence of commands) from shell logs, that automate frequent performed tasks. The authors see this
task as a relational learning problem, indeed commands may be interrelated by their execution order, and
each command is possibly related to one or more parameters, giving out a representation of a shell log
as a set of logical ground atoms. After having transformed shell logs in a relational representation, they
applied the Warmr [11] system, an upgrade of the propositional Apriori algorithm that can detect first
order logic association rules, for generating scripts. They used a specific predicate to specify that two
commands are considered next to each other in a sequence.

Warmr [11] is based on the level-wise search of conventional association rule learning systems of the
Apriori-family [1]. It extends these systems by looking for frequent patterns that may be expressed as
conjunction of first-order literals. In Warmr a pattern is defined as a conjunction of first order literals. It
performs a top-down level-wise search, starting with the key and refining patterns by adding literals to
them. Infrequent patterns (i.e. patterns whose frequency is below a predefined threshold) are pruned as
are their refinements. With Warmr it is possible to generate patterns that are syntactically different but
semantically equivalent. This is due to the redundant conditions that may be added to a pattern or to the
fact that the same pattern may be expressed in different ways.

As already described in [9], this problem may be avoided by using the Warmr’s configurable language
bias or by its constraint specification language. However, this solution does not solve the problem at all.
Indeed, the constraints that may be defined in Warmr, by using its constraint specification language,
are only syntax based, and they are not sufficient to handle semantic dependencies. For this and other
limitations already described in [18, 17], in some cases Warmr system is not able to calculate frequent
subsequences and it is difficult to correctly represent the specific sequence mining task.

In [25] are presented a logic language, SeqLog, for mining sequences of logical atoms, and the
inductive mining system MineSeqLog, that combines principles of the level-wise search algorithm with
the version space in order to find all patterns that satisfy a constraint by using an optimal refinement
operator for SeqLog. Seqlog is a logic representational framework that adopts two operators to represent
the sequences: one to indicate that an atom is the direct successor of another and the other to say that an
atom occurs somewhere after another. Furthermore, based on this language, the notion of subsumption,
entailment and a fix point semantic are given. However, with SeqLog one can represent unidimensional
sequences only.

In this framework, however, the representation of the temporal dimension is represented by points
in a straight line. Spirit-Log [29], an algorithm designed to mine first order temporal patterns, extends
SeqLog by pushing regular expression constraints in the mining process. A further step aiming at facing
with sequential patterns in which time is measured in terms of intervals instead of points is proposed
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in [5]. In this case, temporal pattern is defined as a set of atomic first order formulae where time is
explicitly represented by an interval variable, together with a set of interval relationships (before, during,
overlaps, start, finish, meet) described in terms of Allens’ First Order Interval Logic [3]. Here, the
temporal interval patterns aim at capturing how events taking place in time intervals and how they are
related to each other. The process is performed by means of MILPRIT (Mining Interval Logic Patterns
with Regular expresslons consTraints) algorithm which generalizes the idea of the SPIRIT algorithm
introduced in [13] in the context of classical sequence patterns. In a high level, it follows the general
Apriori strategy, working in steps, and each step producing patterns more specific than those produced
in the previous step.

In [21] it is proposed an extension of classical Fisher kernels, working on sequences over flat alpha-
bets, in order to make them able to model logical sequences, i.e., sequences over an alphabet of logical
atoms. Fisher kernels were developed to combine generative models with kernel methods, and have
shown promising results for the combinations of support vector machines with (logical) hidden Markov
models and Bayesian networks. Successively, in [22] the same authors proposed an algorithm for se-
lecting logical hidden Markov models from data. Hidden Markov models are one of the most popular
methods for analyzing sequential data, but they can be exploited to handle sequence of flat/unstructured
symbols. The proposed logical extension [23] overcomes such weakness by handling sequences of struc-
tured symbols by means of a probabilistic ILP framework.

The work above reported extend/propose techniques to mine sequences involving relational objects.
However, these methods, both logical and propositional, do not mention the possibility to manage pat-
terns in which more than one dimension is taken into account. On the other hand, it is not wrong to
affirm that for most of the applications of real world domain generally the pattern sequences deal with
different events each of which should be associated with different dimensions.

To this concern, the first work on mining multidimensional pattern sequence on unordered data is
[19] followed by the work reported in [35], to mine both ordered and unordered data. In both these
works, however, the concept of multi-dimensions only concerns the presence of (different) multiple
attributes in the (single) data (table), e.g. the addition of different attributes to a transaction formes a
multi-dimensional sequential dataset. Indeed, in [19] the authors investigate the possibility to discover
association rules involving relationships among multiple attributes, that they call dimensions, using a
data cube structure [16]. At the same way, Pinto et al in [35] consider multi-dimensional sequential
pattern mining as the process of mining one or more dimensions of information, i.e. attributes, in which
the order of the dimension values is not important. Here two multi-dimensional sequential pattern mining
algorithms HYBRID and PSFP are proposed. HYBRID uses the BUC [7] traversal system to find the next
dimension value combination to process. Then the subsets of data records that contain this dimension
value combination are found, and finally a sequential pattern miner algorithm PrefixSpan [33] is run to
find the sequential patterns in this dataset. On the contrary, PSFP (PrefixSpan with Frequent Pattern
growth) finds all the sequential patterns in the full dataset once, but grows, and subsequently mines an
FP-tree alongside each pattern.

A more recent attempt to deal with multi-dimensional sequences is proposed in [45] and [43]. In
the former, the problem of finding multi-dimensional sequential patterns is partitioned into two sub-
problems: mining multi-dimensional patterns and mining sequential patterns. The BUC-like algorithm
[7] is used to mine multi-dimensional patterns and discover the frequent dimensional items that succes-
sively will be used to find the frequent dimensional two-itemsets pattern and so on until there is not
further longer dimensional frequent patterns. The process is carried out for each dimensional item un-
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til all the frequent dimensional itemsets patterns are discovered. Successively, the original sequence
database is projected to construct a new sequential database with those tuples that contain those frequent
dimensional itemsets. The sequential pattern miner algorithm PrefixSpan [33] is used to mine sequential
patterns on the projected database. In [43], two algorithms, AprioriMD and PrefixMDSpan, extending
respectively the Apriori and PrefixSpan algorithms to the case of multi-dimensional data, are presented.
In this work the sequences are grouped according to the dimension they belong to. Successively, for each
dimension, the sequence mining algorithms are executed and finally the resulting frequent patterns for
each dimension are “merged” into a unique multi-dimensional pattern.

However, all the works in multi-dimensional data mining have been restricted to the propositional
case, not involving a first-order representation formalism and considering the concept of multi-dimensions
as the presence of more attributes in the sequential pattern.

5. Conclusions

The issue of discovering sequential patterns from sequence data have drawn a lot of research efforts both
in single data table and in multiple data table, known as multi-relational data. Although much work has
been done in the area, no previous research revealed ways to find sequential patterns from multidimen-
sional sequence data and in particular sequential patterns from multi-dimensional sequence expressed in
first-order logic. Indeed, some works faces the problem of knowledge discovery from spatial and tem-
poral data in the multi-relational data mining research area but there exists no contributions to manage
the general case of multi-dimensional data in which, for example, spatial and temporal information may
co-exist. Other works on multi-dimensional data mining, in some cases thinking to the concept of multi-
dimension of a sequence as the presence of multiple attributes in data descriptions, have been restricted
to the propositional case, not involving a first-order representation formalism. Finally, other works pro-
pose a (two-dimensional) knowledge representation formalism to represent spatio-temporal information
based on multi-dimensional modal logics.

In this paper we proposed a logical framework for mining multi-dimensional patterns in which many
dimensions can be specified. What we can obtain are maximal frequent multi-dimensional patterns
described in a first order language. One of the most important characteristic of using logical framework
for sequences is that we can incorporate additional information by using a background knowledge, and
that any relation between atoms can be expressed or learned. The result is a dedicated system in which
are incorporated specific language bias for multi-dimensional data in order to rise a faster execution and
a smaller search space.
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