Know! Inf Syst (2007) 11(2): 217-242 Knowledge and
DOI 10.1007/s10115-006-0019-5 Information Systems

REGULAR PAPER

F. Esposito - S. Ferilli - T. M. A. Basile -
N. Di Mauro

Inference of abduction theories for handling
incompleteness in first-order learning

Received: 9 May 2005 / Revised: 1 November 2005 / Accepted: 14 January 2006 /
Published online: 23 March 2006
© Springer-Verlag London Limited 2006

Abstract In real-life domains, learning systems often have to deal with various
kinds of imperfections in data such as noise, incompleteness and inexactness.
This problem seriously affects the knowledge discovery process, specifically in
the case of traditional Machine Learning approaches that exploit simple or con-
strained knowledge representations and are based on single inference mechanisms.
Indeed, this limits their capability of discovering fundamental knowledge in those
situations. In order to broaden the investigation and the applicability of machine
learning schemes in such particular situations, it is necessary to move on to more
expressive representations which require more complex inference mechanisms.
However, the applicability of such new and complex inference mechanisms, such
as abductive reasoning, strongly relies on a deep background knowledge about
the specific application domain. This work aims at automatically discovering the
meta-knowledge needed to abduction inference strategy to complete the incoming
information in order to handle cases of missing knowledge.

Keywords Incomplete knowledge - Inductive Logic Programming - Abduction
1 Introduction

Various kinds of imperfections in data such as noise, incompleteness and inexact-
ness, typical of real-life domains, often affect the learning systems effectiveness.
Specifically, noise takes the form of random errors in both the training examples
and the background knowledge; incomplete data consist of too sparse training ex-
amples from which it is difficult to reliably detect correlations; inexactness refers
to the description language being inappropriate because it does not allow/facilitate
an exact representation of the target concept. Usually learning systems exploit a

F. Esposito (B<) - S. Ferilli - T. M. A. Basile - N. Di Mauro
Department of Computer Science, University of Bari, Bari, Italy
E-mail: {esposito, ferilli, basile, ndm}@di.uniba.it

218 F. Esposito et al.

single mechanism, often called noise-handling mechanism, for dealing with such
kinds of imperfect data. Even more difficult to deal with are missing values, that
are usually handled by a separate mechanism. Many noise-handling mechanisms
have been proposed while not many learning systems are able to handle missing
data, thus a knowledge engineer is usually called to solve this problem before
running a learning system. Furthermore, most of the learners dealing with incom-
plete information are attribute-value learners that are unable to handle relational
domains. To this purpose Inductive Logic Programming (ILP) systems were de-
veloped [22] that are based on a first-order logic representation. A further step in
dealing with relational domains is represented by the work of [15] in which the
authors present an induction technique that discovers classification rules from ex-
amples using second-order relations as a representational model. First-order logic
is an expressive representation but it is computationally expensive, so it is natural
to consider improving the performance of inductive logic data mining. In [28] the
authors proposed the exploitation of a parallelization technique for inductive logic,
and implemented a parallel version of a core inductive logic programming system.
However, no noise handling mechanism was proposed for such a parallelization.

The methods proposed in literature to face the missing values problem act in
different ways. The most frequent is to replace a missing value in an example by
the majority value of the attribute/argument within the class the example belongs
to (LINUS [22]). Others exploit a Kernel Density Estimation-based algorithm for
clustering in large multimedia databases to overcome the limits of the classical
clustering algorithms in dealing with the large amount of noise (DENCLUE [16]).
Another one is to replace an example having a missing value with several exam-
ples, one for each of the possible attribute values, weighted by the conditional
(with regard to the class of the example) probabilities of the values (ASSISTANT
[2], CN2 [4], LINUS). The last one is to replace an example having a missing value
with many examples, each with one possible value of the attribute type (LINUS).

In general, these strategies adopt different methods to first complete the miss-
ing information (in some case with the additional support of a knowledge engi-
neer) and then learn from the completed data. Two problems can arise with them.
First, it is difficult to compute statistics and probabilities to fill in the missing val-
ues, as for domains in which new examples could be available during the learning
process thus requiring an incremental capability of the systems. The second is-
sue concerns both the impossibility to know a priori the whole set of descriptors
that make up the representation language and the limiting implicit assumption that
a knowledge engineer must monitor the pre-processing aimed at completing the
examples.

These observations led to design strategies that would dynamically handle in-
complete information within the learning process. An in-depth analysis of this
landscape revealed that the limitation of most traditional Machine Learning ap-
proaches is due to the fact that they exploit simple or constrained knowledge rep-
resentations for the sake of efficiency and are based on single inference [23]. This
suggested the exploitation of purposely designed mechanisms in order to broaden
the investigation and the applicability of machine learning schemes. Specifically, it
is necessary to move on to more expressive representations, which in turn require
more complex inference mechanisms.

Inference of abduction theories 219

A general schema for the concept-learning paradigm is provided by the fun-
damental equation for inference [23]: BK UT | O that involves a language L,
for which in this work the single representation trick [5] will be assumed, a back-
ground knowledge BK and a theory T, that contains concept definitions accounting
for some observations 0. Specifically, O stands for the extensional representation
of concepts, while T is an intensional description, expressed in £, that explains
such concepts together with BK. Deduction “traces forward” the equation, deriv-
ing O given T and BK, and hence it is a truth-preserving inference. Conversely,
tracing the equation “backward” yields two falsity-preserving inferences (mean-
ing that if O is false, then the hypothesis cannot be true): induction, when T is to
be hypothesized given O and BK, or abduction, when BK is to be hypothesized
given O and T (i.e., plausible/likely causes of given observations).

Most traditional approaches to concept-learning rely on inductive mechanisms
to fine-tune T in order to achieve the learning goal, but problems might arise due
to the partial relevance of the available evidence 0. Abduction could be exploited
to overcome such a limitation by bridging the observations’ relevance gap. In-
deed, it is able to capture default reasoning [26], a well-known form of reason-
ing to deal with incomplete information [19, 24]. Thus, making these inference
strategies work together would allow to take advantage of the benefits that each
of them can bring. Many studies presented in the literature aimed at enforcing
such an integration within an ILP framework in a principled way, dealing with in-
complete information based on an underlying theory of abduction so to combine
in a nontrivial fashion ILP learning methods and abduction methods. A step in
this direction is proposed in [20], where the Authors show how it is possible to
learn with incomplete background information about the training examples by ex-
ploiting the hypothetical reasoning of abduction. Specifically, the deductive proof
procedure of logic programming is replaced by an abductive proof procedure for
Abductive Logic Programming [19] (see Sect. 2). Furthermore, in [9, 12, 21] the
Authors proposed and developed a framework for the integration of abductive and
inductive learning in an ILP system able to incrementally perform the learning
task.

However, the research and literature so far assumed that the information
needed to the learning systems to exploit the hypothetical reasoning of abduc-
tion in support of induction within the learning task is provided by a knowledge
engineer. The objective in this work is the automatic inference of such informa-
tion. To this aim we developed a procedure that, starting from the training data,
generates a set of special rules to be exploited in the abductive proof procedure
supporting the standard inductive reasoning.

This paper is organized as follows. Next section describes the general frame-
work integrating inductive and abductive inference mechanisms to handle the im-
perfect data situation. Then, the techniques for automatically inferring the meta-
knowledge needed to carry out abductive reasoning are proposed. Finally, some
experiments are reported showing the effectiveness of the proposed methods in
both artificial and real-world datasets.

220 F. Esposito et al.

2 Abduction for handling missing values: the general framework

As a mechanism for knowledge assimilation, abduction can be employed when
observations about the world are given and must be assimilated into a knowl-
edge base [7]. As already pointed out, from an inferential point of view abduction
and induction are similar since both are falsity-preserving. However, abduction is
generally understood as reasoning from effects to causes (or explanations), while
induction concerns the inference of general rules from specific data. Abduction
requires an initial theory containing the conditions that can be involved in the
construction of the explanation. These can be made explicit by means of abduc-
tive inferences, and subsequently exploited by inductive mechanisms to synthesize
new knowledge, that in turn can be exploited by subsequent abductive inference
to build new explanations.

The general schema of an inductive learning algorithm [6] can be extended
with an abductive proof procedure. Hence, the problem of abduction can be for-
malized as follows [7]: Given a theory T, including also the background knowl-
edge, some observations O and some constraints /, Find an explanation H such
that T U H is consistent, 7 U H satisfies I and T U H = O.

Candidate abductive explanations H should be described in terms of domain-
specific predicates, referred to as abducibles, that are not (completely) defined
in 7, but may contribute to the definition of other predicates. They carry all the
incompleteness of T': if it is possible to complete these predicates then the theory
would be correctly described. The integrity constraints 7 should provide indirect
information about these abducible predicates [19].

2.1 Abductive logic programming

Abductive Logic Programming (ALP) [10, 21] is an extension of Logic Program-
ming to support abductive reasoning with theories (logic programs) that incom-
pletely describe their problem domain. In ALP this incomplete knowledge is cap-
tured by an abductive theory, defined as a triple made up by a (hierarchical) logic
program T, a set of abducible predicates .4, and a set of integrity constraints Z
represented as program clauses.

An abductive procedure can be exploited to deal with the problem of incom-
pleteness by finding explanations that make hypotheses (abductive assumptions)
on the state of the world, possibly involving new abducible concepts. The pro-
cedure is generally goal-driven by the observations that it tries to explain. Pre-
liminarily, the top-level goal undergoes a transformation process that converts it
into sub-goals. This provides a simple and unique modality for dealing with non-
monotonic reasoning. Algorithm 2.1 sketches the classical abductive proof proce-
dure proposed in [17]. After a literal is selected, if it is not abducible or a default
one (A1), the procedure continues with a resolution step with clauses from 7. Oth-
erwise, if the fact has been already assumed abductively (and consistently) as true
in previous steps (A2) it can be dropped (a case of successful proof). Otherwise
(A3), anew fact may be assumed as true, provided that it is consistent with the cur-
rent integrity constraints Z, which is verified by the consistency-check subroutine
reported in Algorithm 2.2.

Inference of abduction theories 221

Algorithm 2.1 Abductive Refutation Algorithm
abduce(T, G, A, AD,T)

{input: T': theory, G: Datalog goal (set of literals), A: initial abductive assump-
tions, AD: the set of abducibles and default literals, Z: the integrity constraints;
output: A’ final abductive assumptions;}
A = A;
while G # ¢ do
L := Select a literal from G;
if L ¢ AD then
/* (A1) */ G := Resolvent of some clause of T with G on L;
else if L € A’ then
[(A2)*/ G =G\ L;
elseif L; ¢ A’ and 3A¢ = consistency(T, L, A" U{L}, AD,) then
/% (A3)*/ G : =G\ L; A := Ac;

Algorithm 2.2 Consistency Derivation Algorithm
consistency(7, L, A, AD, 1)

{input: T': theory, L € AD: aliteral, A: initial abductive assumptions,
AD: the set of abducibles and default literals, Z: the integrity constraints;
output: A’ final abductive assumptions;}
A=A
C := | of goals of the form : —Ly, Ly, ..., L, obtained by resolving the
abducibles or default literal L with the integrity constraints Z with no such goal
been empty;
while C # () do
B := Select a goal from C; M := Select a literal from B;
if M ¢ AD then
H := Resolvent of some clause of 7" with B on M
C:={C\B}UH;
elseif M € AD and M € A’ then
/*F1)*/H:=B\M;C:={C\B}UH,
elseif M € AD and M € A’ then
/*(F2)*/C :=C\ B; .
elseif M € ADand (M ¢ A’, M ¢ A') then
[(F3) %/ -
if 3IA A = abduce(T, M, A, AD, T) then
C:=C\B; A=Ay

The various branches in the consistency-check subroutine are similar to deriva-
tions except that, when dealing with an abducible or a default literal, if it has
already been abduced (F1) then it is simply dropped (i.e., consistency is trivially
proved); otherwise, if its complement has already been abduced or can be abduced
(F2), the entire goal is dropped. In the last if-branch (F3), whenever the literal to be

222 F. Esposito et al.

tested is an abducible or default one, but neither it nor its complement have been
already abduced, the abductive procedure is called, in order to try hypothesizing
it by abduction. Thus, the two procedures may call each other both when a new
abductive assumption requires further consistency checks against the constraints
and vice-versa.

Representing theories as hierarchical logic programs allows to maintain the
Least Herbrand Models semantics, coping with negation by means of NAF [3]
rule. Indeed, since the language of definite clauses with integrity constraints has
been proven to subsume NAF [8], integrity constraints can be simulated using
NAF as well. The advantage of adopting this semantics resides in the fact that
TEP,TEP,....TEP,impliesthat T &= P, A P, A--- A P,. Hence, posi-
tive/negative examples can be tested separately for completeness/consistency, that
is fundamental in a theory revision context, since in the incremental learning pro-
cess one cannot assume to have all the examples available at any time.

2.2 Extending an inductive learning framework with an abductive proof
procedure

Algorithm 2.3 sketches the integration of an incremental inductive learning frame-
work with an abductive proof procedure as proposed in [12]. Here, M represents
the set of all positive and negative processed examples, E is the example currently
examined, T is the theory generated so far according to M, AbdT is the abduction
theory, D is the set of facts hypothesized by the abductive derivation when suc-
cessfully applied to a goal in theory T. Generalize and Specialize are the inductive
operators used by the system to refine an incorrect theory.

Algorithm 2.3 Theory Revision extending an incremental inductive learning
framework with an abductive proof procedure
Revise (T': theory, E: example, M: historical memory, AbdT : Abductive The-
ory);
D < E
if (Abductions = Abduce(T, E, D, AbdT)) succeeds then
Add to D the abduced literals Abductions; M < M U {E U D};
else M < MUE
if E is a positive example then Generalize(T, E, M);
else Specialize(T, E, M);

The incremental system works by checking on each new example whether the cur-
rently learned theory is able to correctly classify it. If an (omission/commision) er-
ror occurs, before performing a revision of the theory, the system checks whether
the example can be correctly explained by hypothesizing new facts by means of
the abductive procedure reported in Algorithm 2.1. Only in case of failure the
refinement operators are fired. Abduction is thus exploited to complete the ob-
servations in such a way that the corresponding examples are either covered (if
positive) or ruled out (if negative) by the already generated theory, thus avoiding,
whenever possible, the use of the operators to modify/revise the theory. The set of
abduced literals for each observation is minimal, which ensures that abducibles are
used only when really needed. Since specific facts are not allowed in the learned

Inference of abduction theories 223

theory, the abduced information is attached directly to the observation that gener-
ated it, so that the “completed” examples obtained this way will be available for
subsequent refinements of the theory. Such information will also be available to
subsequent abductions, in order for them to preserve consistency among the whole
set of abduced facts. To sum up, when a new observation is available, the abduc-
tive proof procedure is started, parameterized on the current theory, the example
and the current set of past abductive assumptions. If the procedure succeeds, the
resulting set of assumptions, that were necessary to correctly classify the obser-
vation, is added to the example description before storing it, otherwise the usual
refinement procedure (generalization/specialization) is performed.

3 Learning meta-knowledge for abductive inference

The abductive proof procedure presented in Sect. 2 requires that an abductive
theory for the specific application domain is available. In the current practice,
it is in charge of the human expert to specify it. Of course quality, correctness
and completeness in the formalization of such meta-information can affect the
feasibility of the learning process. Providing it is a very difficult task, also, that
requires a deep knowledge of the application domain, and is in any case an error-
prone activity, since omission errors may take place for a number of reasons. For
instance, the domain and/or the language used to represent it might be unknown
to the experimenter, because datasets are provided by third parties. In any case,
it is not easy for non-experts to single out and formally express such parameters,
just because they are not familiar with the representation language needed by the
automatic systems and the related technical issues. Other possible causes include
the large number of parameters to be specified, and the fact that they are sometimes
hidden from the normal focus-of-attention.

These considerations would make it highly desirable to develop procedures
that can automatically generate such information starting from the same obser-
vations that are input to the learning process in order to make the learning sys-
tem completely autonomous. Hence, a strong motivation for the research pre-
sented in this paper, aimed at proposing algorithms to automatically infer the
meta-information required to carry out abductive inference. The challenge in this
attempt is that it does not try to learn something about the given instances, but
instead aims at gathering information on the domain and/or its description from
the given instances. This means that we are no more concerned with the descrip-
tion of concepts by proper juxtaposition of literals, but rather with the meaning
underlying the language used. Thus, the problem deals with semantics rather than
with syntax.

3.1 Abducibles and integrity constraints

In setting up an abductive logic programming task, the logic program is typically
to be learnt, while abducibles and integrity constraints have to be provided by the
domain expert. Thus, a first problem is deciding on which properties and/or rela-
tions abduction can be carried out, i.e., listing the abducibles. Indeed, abductive

224 F. Esposito et al.

reasoning needs to know on which concepts abductions (i.e., guesses about un-
known facts) can be made. In the absence of further information, it is possible to
assume that any hypothesis that can help in solving the problem at hand is useful,
and the automatic system should be allowed to carry it out. Thus, a straightfor-
ward solution could be including in the set of abducibles all predicates that make
up the description language, in order to provide the abductive reasoner with all
the freedom it needs for hypothesizing information. In fact, if an intensional back-
ground knowledge is present, some of such predicates might have a definition,
which contradicts one of the requirements for abducibles. Thus, a better solution
is taking into account only the subset of “basic” predicates in the description lan-
guage that occur in the available observations, for which it holds the requirement
of not having a definition in the theory.

The other issue, far more complex, concerns the definition of the integrity
constraints. It is, at the same time, a fundamental and difficult task, whose quality
can determine the very feasibility of the learning process. Hence, the need for a
research on the possibility of automatically learning such constraints, this way
overcoming possible problems related to omissions and/or wrong formalization
on the part of the human expert.

Learning denials (the form in which integrity constraints are coded in an ab-
ductive theory) cannot be simply cast as a supervised learning task, since it aims at
inducing rules whose head is empty. Rather, it can be seen as a specific case of un-
supervised learning aimed at finding regularities (specifically, conditions that are
never verified) in a first-order logic database. Thus, the data mining approaches are
better suited to carry out this task. Some systems are present in the literature that
can learn denials. One of them, often referred to, is Claudien [25], that actually
implements a more general algorithm for finding regularities that occur in a set of
unlabelled observations represented as facts. It requires a template of the clauses
to be induced, and can limit the corresponding search space using heuristics and
resource bounds. By properly setting its parameters, it can be applied for learn-
ing classification rules, association rules, clauses and also denials. Such a system
inspired a number of successive works, among which the development of the sys-
tems Primus and its successor Tertius [14]. They are based on the generation of
possible (H, B) couples, where H and B are sets of literals in the given description
language to be interpreted, possibly negated, as candidate head and body, respec-
tively, of a clause to be generated. The frequency with which each candidate rule
is (or is not) verified in the dataset is computed, and statistical approaches are ex-
ploited to decide if such frequencies are significant, in which case a corresponding
rule is generated. Background knowledge (i.e., derived predicates such as ances-
tor in a family environment) can be used, but increasing the number of literals in
H and B causes high computational costs, thus sampling and non-redundant op-
erators are exploited. Aleph! is another widely known learning system to induce
integrity constraints, but no reference is available for this specific feature except
the user manual statement that it works in a similar way as Claudien. All of these
systems can actually learn denials, but this is just a specific setting or a side-effect
of a wider range of possibilities that the implemented algorithms provide. Thus,
the aim of this paper is devising simpler procedures, purposely devoted to the

! http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

Inference of abduction theories 225

generation of integrity constraints for an abductive theory, that being limited to
this specific task can carry out it in a more focused and effective way.

The starting point in doing this is the fact that integrity constraints represent
situations that cannot occur in the described world. Thus, the available observa-
tions cannot actively help in defining them. Rather, the aim is identifying combi-
nations of descriptors and of the related arguments that cannot hold. In doing so,
one possible strategy is generating a number of such combinations, according to a
given strategy, and then exploiting the available observations passively to check if
the generated combination occurs in at least one case or not. In the former case, it
cannot be a constraint, according to the assumption that observations are correct
and report only true information. In the latter case, this can be taken as a sugges-
tion, but not as a guarantee (since its absence could be due to just the fact that by
chance that situation did not ever occur in the specific observations at hand), that
the combination does not occur because it in fact makes no sense in the considered
world. This, of course, raises the problem of having a set of observations that is
significant not only numerically, but also in the sense that they depict a significant
amount of different cases.

Now, the next step is about how to generate the literals (and variables) com-
binations to be tested: Generating and testing all possible combinations becomes
soon impossible even for relatively small datasets; Bounding the cardinality of
the combinations to be generated to a given /, although useful, is not sufficient
to avoid the combinatorial explosion. Thus, it is necessary to identify specific
classes of constraints that can be considered meaningful in general (i.e., dataset
independent) and thus are worth checking. A first important class is that of object
properties, represented by unary predicates. Indeed, it is undoubtedly interesting
to know which combinations of attributes are (im-)possible for a given object, in
order for the abductive proof procedure to avoid them (e.g., it generally holds that
a line is either tall or wide, but cannot be both at the same time). In this case, the
problem can be significantly simplified since the presence of just one variable in
the predicates allows to focus on just the predicates combinations, excluding the
generation of duplicate literals and the presence of unrelated variables. Algorithm
3.1 sketches the procedure.

Algorithm 3.1 Induction of Integrity Constraints made up of unary predicates

Create_Constraints(N ; £; UnaryPreds; NotConstraints; Constraints);
{input: N: Maximal cardinality of constraints to generate; £: Set of observa-
tions; UnaryPreds: Set of Unary Predicates;
output: NorConstraints: Set of non-Constraints; Constraints: Set of Integrity
Constraints;}
NotConstraints := ; Constraints := {;
foralla,b € UnaryPreds,a # b do
if £+ {a(X), b(X)} then
NotConstraints := NotConstraints U {{a(X), b(X)}}
else Constraints := Constraints U {{a(X), b(X)}}
for n :=3..N do
for all NC € NotConstraints, INC| =n — 1 do
for all a(X) € UnaryPreds do
if € {{a(X)} UNC} then
NotConstraints := NotConstraints U {{a(X)} UNC}

226 F. Esposito et al.

else
if not_trivial(Constraints, {a(X)} U NC) then
Constraints := Constraints U {{a(X)} UNC}

NotConstraints and Constraints are the lists of the currently identified non-
constraints and constraints, respectively. Once a potential constraint is built, if
it does not occur in the observations it is added to the list of constraints, provided
that it is not a superset of some other (shorter) constraint (not_trivial function). In
the first step, all possible n-tuples (with 2 < n < N for a fixed N) of unary pred-
icates, all applied to the same variable, are generated and checked for occurrence
in the available observations. First, all pairs of unary predicates are generated and
checked for occurrence: those that are not satisfied by the observations are consid-
ered constraints and added to the Constraints list; conversely, those that happen at
least once are added to the NotConstraints list. Then, all non-constraints of car-
dinality 2 are extracted from NotConstraints and extended with one more unary
predicate, checked for occurrence and added to NotConstraints or Constraints ac-
cordingly. Then, all newly found non-constraints of cardinality 3 are extended and
checked, and so on until the fixed N is reached.

However, although very useful, constraints on properties are not sufficient. It
is often important, for the purpose of learning a significant abduction theory, to
consider also constraints built on n-ary predicates. Without loss of generality, in
this work we restrict to binary predicates, and propose a set of typical relationships
among the arguments that appear in pairs of such predicates that are deemed as
significant to be exploited as constraints. Specifically, the combinations that we
propose to check are as follows.

Definition 3.1 (Binary Predicate Properties) Let be p; and p, be two (not nec-
essarily distinct) binary predicates of the representation language, and X, Y and
Z be three variables. We define the following properties:

reflexivity: {p1(X, X)} (or {p2(X, X)});
— symmetry: {p1(X,Y), po(Y, X)};
transitivity: {py(X,Y), p2(Y, Z)};
convergence: {p1(X,Y), p2(Z,Y)};
divergence: {p1(X,Y), p2(X, Z)}.

In the next step, all binary predicates are considered, and checked for occur-
rence of the reflexive, symmetric, transitive, converging and diverging relation-
ships. Again, when a relationship has no counterpart in the available observations,
it is added to the Constraints, otherwise it is added to the NotConstraints. Lastly,
all possible combinations of non-constraints on binary predicates and on unary
predicates (applied to any of the variables appearing in the former), whose cardi-
nality does not exceed the fixed N, are checked for occurrence and added to the
Constraints, if it is the case, according to Algorithm 3.2.

It starts the process taking as input the list of non-constraints, both unary and
binary, built so far. UnaryNotConstrs and BinaryNotConstrs are the sets of non-
constraints found in the previous steps. Since all constraints on unary predicates
have at least cardinality 2, a preliminary step in which all possible combinations of
constraints on binary predicates with a single unary predicate must be separately

Inference of abduction theories 227

checked. Note that, in this step, no candidate constraint can be trivial, since its
binary component is not a constraint by itself and its unary component is just a
singleton. Conversely, in the loop that arranges unary and binary constraints, the
only way a constraint can be trivial is being a superset of a constraint obtained in
the previous loop, since none of its components is a constraint by itself.

Algorithm 3.2 Induction of Integrity Constraints made up of both unary and bi-
nary predicates
Create_constraints_with_binary unary literals(N; Unary; Constraints;
UnaryNotConstrs; BinaryNotConstrs);
{input: N: Maximal cardinality of constraints to generate; £: Set of observa-
tions; Unary: Set of Unary Predicates; UnaryNotConstrs: Set of non-constraints
made up of unary predicates; BinaryNotConstrs: Set of non-constraints made up
of binary predicates;
output: Constraints: Set of Integrity Constraints made up of unary or binary
predicates;}
for all NC € BinaryNotConstrs, X € vars(NC), p € Unary do
if INC| < NAEH NCU{p(X)} then
Constraints := Constraints U {{p(X)} UNC}
for all BNC € BinaryNotConstrs do
V := vars(BNC); TempConstraint := BNC,;
forall S CV do
Apply aUNC € BinaryNotConstrs to each X € §;
Add it to TempConstraint;
if |TempConstraint| < N A € t/ TempConstraint then
if not_trivial(Constraints, TempConstraint) then
Constraints := Constraints U {TempConstraint}

Example 3.1 Consider the description language made up of the predicates:
{block/1, line/1, low/1, medium/1, high/1, narrow/1, wide/1, part_of/2,
on_top/2, to_right/2}. Let the available observations be:

{part_of(a,b), part_of(a,c), part_of(a,d), part_of(a,e), part_of(a,f), line(b),
medium(b), narrow(b), block(c), high(c), wide(c), line(d), low(d), wide(d),
block(e), medium(e), wide(e), block(f), medium(f), wide(f), on_top(d,b),
on_top(d,e), on_top(d,f), on_top(b,c), on_top(e,c), on_top(f,c),to_right(b,e),
to_right(f,b)} (representing the block world in Fig. 1) and N be fixed to 4.

— Step I:

— Pairs of unary predicates:
Constraints = {{block(X), line(X)},
{block(X),low(X)}, {block(X), narrow(X)}, {line(X), high(X)},
{low(X), medium(X)}, {low(X), high(X)}, {low(X), narrow(X)},
{medium(X), high(X)}, {high(X), narrow(X)}, {narrow(X), wide(X)} }
NotConstraints = { {block(X), medium(X)}, {block(X), high(X)},
{block(X), wide(X)}, {line(X), low(X)}, {line(X), medium(X)},
{line(X), narrow(X)}, {line(X), wide(X)}, {low(X), wide(X)},
{medium(X), narrow(X)}, {medium(X), wide(X)}, {high(X), wide(X)}}

— Triplets of unary predicates (extending couples of NotConstraints):
Constraints = {{block(X), medium(X), narrow(X)},

228 F. Esposito et al.

Fig. 1 Sample block world

{line(X), medium(X), wide(X)}, {line(X), high(X), wide(X)}}
NotConstraints =

{{block(X), medium(X), wide(X)}, {block(X), high(X), wide(X)},
{line(X), low(X), wide(X)}, {line(X), medium(X), narrow(X)}}
All other possible extensions of binary non-constraints are trivial.

— 4-tuples of unary predicates: all 4-tuples obtained extending ternary non-
constraints are trivial, thus in this step both Constraints and NotConstraints
are empty. As a side effect, there are no non-constraints of cardinality 4 to
be extended, and hence no constraints of cardinality larger than 4 can be
found.

— Step 2:
— Reflexivity:
NotConstraints = ()
Constraints = {{part_of (X, X)}, {on_top(X, X)}, {toright (X, X)}}

— Symmetry:

NotConstraints = ()

Constraints =

{{part_of (X,Y), part of (Y, X)}, {on_top(X,Y), on_top(Y, X)},
{toright(X,Y),toright(Y, X)}, {part_of (X,Y),on_top(Y, X)},
{part_of (X,Y),toright(Y, X)}, {on_top(X,Y),toright(Y, X)}}

— Transitivity:

NotConstraints = {{on_top(X,Y),on_top(Y, Z)},

{toright(X,Y),toright Y, Z)}, {part of (X,Y),on_top(Y, Z)},

{part of (X,Y),toright(Y, Z)}, {toright(X,Y),on_top(Y, Z)}}

Constraints =

{{part of (X,Y), part of (¥, Z)}, {on_top(X,Y), part_of (Y, Z)},

{toright(X,Y), part_of (Y, Z)}, {on_top(X,Y), toright(Y, X)}}
— Convergence:

NotConstraints =

{{on_top(X,Y),on_top(Z,Y)}, {on_top(X,Y), part_of (Z,Y)},

{toright(X,Y), part_of (Z,Y)},{on_top(X,Y), toright(Z,Y)}}

Constraints =

{{partof (X,Y), part of (Z,Y)},{toright(X,Y),toright(Z,Y)}}

Inference of abduction theories 229

— Divergence:
NotConstraints = {{part_of (X,Y), part_of (X, Z)},
{on_top(X,Y),on_top(X, Z)}, {on_top(X,Y),toright(X, Z2)}}
Constraints = {{toright(X,Y),toright(X, Z)},
{on_top(X,Y), part of (X, Z)}, {toright(X,Y), part_of (X, Z)}};

— Step 3: There are no non-constraints concerning reflexivity and symmetry to
be extended, and 12 non-constraints coming from transitivity, convergence and
divergence that can be extended to obtain new integrity constraints. Each of
such non-constraints, let us call it C, has cardinality 2, so it can be extended by
adding at most 2 more predicates (since N = 4), and contains three variables
(X, Y, Z), so the only possibilities to be checked are:

a. adding a unary predicate to one variable:
C U {block(X)}, C U{line(X)}, C U{low(X)}, C U {medium(X)},
C U{high(X)}, C U {narrow(X)}, {wide(X)} and similarly for Y and Z
b. adding a unary predicate to two variables:
C U Ablock(X),block(Y)},C U {block(X),line(Y)},C U
{block(X), low(Y)},
C U {block(X), medium(Y)}, C U{block(X), high(Y)},
C U {block(X), narrow(Y)}, C U {block(X), wide(Y)}
C U A{block(X),block(Z)},C U {block(X),line(2)},C U
{block(X), low(Z)},
C U {block(X), medium(Z)}, C U {block(X), high(Z)},
C U {block(X), narrow(Z)}, C U {block(X), wide(Z)}
C U {block(Y),block(Z)},C U {block(Y),line(Z)},C U
{block(Y),low(Z)},
C U {block(Y), medium(Z)}, C U {block(Y), high(Z)},
C U{block(Y), narrow(Z)}, C U{block(Y), wide(Z)}
(excluding those that are a superset of constraints found in step a.);
c. adding a binary non-constraint on unary predicates to one variable:
{C U {block(X), medium(X)}, C U {block(X), high(X)},
C U {block(X),wide(X)},C U {line(X),low(X)},C U
{line(X), medium(X)},
C U Aline(X),narrow(X)},C U A{line(X),wide(X)},C U
{low(X), wide(X)},
C U{medium(X), narrow(X)}, C U {medium(X), wide(X)},
C U{high(X), wide(X)} } and similarly for ¥ and Z.
(excluding those that are superset of constraints found in step a.).

3.2 Descriptors type domains and abducibles

At the end of the procedure reported in Algorithm 3.1, the set of constraints of
cardinality 2 can be input to the type induction procedure presented in [13] in order
to infer type domains. Then, all pairs of unary predicates belonging to the same
domain can be eliminated from the set Constraints, thus reducing the complexity
of the abductive proof procedure, and a new kind of constraint will be introduced
to represent types, such that no two values from the same type domain will be
allowed applied to the same object. For example, if the descriptor type domain for
the color property is {blue, red, yellow, black, green}, and the object X is part

230 F. Esposito et al.

of an observation, it will be impossible to abduce two different color descriptors
from the above set applied to X.

The whole strategy for inducing the descriptors type domains, sketched in
Algorithm 3.3, is now summarized.

Algorithm 3.3 Identification of type domains

Require: Description language L
U:={p €L]| punary}
E:={(p,q) eUxU| AX:pX)Aq(X)}
G.,:=WU,E)
S:={C C U |C clique in G,}
F:={(p,q) €SxS|png=>0}
Gg:=(S,F)
T :={C € S |C clique in G4}
return argmax, < (| U,’, e til)

The first consideration one can do is that different values for the same attribute are
mutually exclusive, since one given object cannot have two of them at the same
time. Hence, the first problem to be solved is finding all couples of predicates
that are mutually exclusive, i.e. never co-occur referred to the same object in the
available knowledge of the world.

It goes without saying that finding mutually exclusive couples is not suffi-
cient: More precisely, any value in a given domain cannot co-occur in one object
with any other value in the same domain. Thus, the problem becomes identifying
groups of unary predicates whose elements are couplewise mutually exclusive. In
particular, since for any set of predicates fulfilling such property it holds that all
of its subsets fulfill the same property as well, we are interested in maximal sets
only, i.e., we discard groups that are subsets of other groups. This can be obtained
by mapping the problem onto a corresponding one in the graph context. Specif-
ically, we build an undirected graph G, whose nodes are unary predicates in the
description language, and where an edge connects two nodes if and only if they
are mutually exclusive. Here, the maximal sets we are looking for correspond to
all the maximal cliques (i.e., cliques that cannot be further extended) in G,.

The groups found this way are still far from being the desired solutions. In-
deed, there can be groups of predicates with couplewise mutually exclusive ele-
ments even if they do not refer to a same attribute. For instance, it is generally
true that a line is never too tall, hence in a paper document domain we might
find the group {line, high, very_high, highest} in which it is obvious that value
line belongs to the domain of type shape, while the other three values refer to
the type height. Nevertheless, we expect that two correct (i.e., distinct, or, more
precisely, disjoint) groups exist, one containing all (and only those) values be-
longing to property shape, and the other containing all (and only those) values
belonging to property height. Here, the clue is that, in the end, the desired solution
will include only groups that have no element in common. Hence, since the above
group would have elements in common with properties height and shape, it should
be discarded. Again, this problem can be solved in the graph context by building
an undirected graph G, in which nodes are groups identified in the previous step
as cliques of graph G, and an edge connects two nodes if and only if they are dis-
joint sets. Now, the solution will be made up by only couplewise disjoint subsets,

Inference of abduction theories 231

and specifically by maximal groups of disjoint subsets, each of which corresponds
to a maximal clique in G.

However, the clique in G4 will probably not be unique, in which case one
must have a clue for choosing the right one. The intuition, in this case, is that any
“wrong” clique, in order to fulfill the mutual disjunction requirement, will have
overall a number of values that is less than that of the correct solution, since the
correct solution should be the only one containing all the possible values for each
property (represented by a group), and hence the union of predicates in all of its
components should be equal to the whole set of values for all possible attributes.
In other words, the solution is actually a partition of the set of unary predicates.
This holds because the description language is assumed not to contain “boolean”
properties; if it does, the union would not be a partition, but should in any case
contain more unary predicates than any other candidate partition.

It is worth noting that the feasibility of reaching the target solution requires that
the number of values for the domains to be identified and the amount of available
knowledge about observations to be strictly proportional. Indeed, the more the
values, the more the possible interrelations that can take place between them. If
the available observations are not sufficiently significant, i.e., too many existing
interrelations are not recognizable in them, then knowledge about the actual biases
in the given domain would be too loose for the algorithm to properly separate
semantically different values.

4 Experiments

The proposed methods were tested on various domains (Scientific Paper Domains
[11], Family Relationships [1], Multiplexer [27] and Congressional Votes [18])
suitably chosen in order to cover all the possible cases of available observations
and target types to be recognized. In the following we show both the experiments
aimed at learning the descriptors type domain when imperfect data are provided
and other experiments showing the benefit that the learning process can bring by
the exploitation of the learned abductive theory.

4.1 Descriptors type domains and abducibles

The first experiment concerns the Scientific Papers dataset. It is based on a rep-
resentation language made up of predicates with various arities, of which unary
predicates represent values belonging to many different domains (general case).
It is made up of 112 scientific papers, belonging to 4 different classes, whose
layout structure was described in terms of its composing layout blocks features
(height, width, horizontal position, vertical position, content type) and relative
position (horizontal adjacency, vertical adjacency, horizontal alignment, verti-
cal alignment). The procedure (see Algorithm 3.3) found the following (correct)

types:
1. Width: {large, medium, medium_large, medium_small, small, very_large,

very_small}
2. Content: {graphic, hor_line, image, mixed, text,ver_line}

232 F. Esposito et al.

. Vertical position: {lower, middle, upper}

. Horizontal position: {center, left, right}

. Height: {large, medium, medium_large, medium_small, small, smallest,
very_large, very_small, very_very_large, very_very_small}

W AW

The Family Relationships dataset [1] refers to a description language made
up of predicates with various arities, of which unary predicates all belong to the
same type. It describes a hypothetical family in terms of each person’s sex and
of the basic relations among persons (parent and married), whose members’ pairs
are tagged according to the derived relations (father, mother, son, daughter, uncle,
aunt, etc.). In this case, all the unary predicates fell in one group (thus there was
no need for building G), that was also the only type (successfully retrieved by
the algorithm):

1. Sex: {female, male}

The Multiplexer dataset [27] describes 6-bit configurations, with the aim of in-
ducing the definition of a multiplexer such that, among the last four bit positions,
the position denoted by the first two bits must be 1. All 64 possible bit configura-
tions are included, which should make significantly easier the type induction task,
as confirmed by the algorithm output:

. Sixth bit: {bit6at0, bit6atl}

. Fifth bit: {bit5at0, bit5at1}

. Fourth bit: {bit4at0, bit4atl}
. Third bit: {bit3at0, bit3atl}

. Second bit: {bit2at0, bit2at1}
. First bit: {bitlatO, bitlatl}

Lastly, the Congressional Votes [18] dataset describes 435 Congressmen as
being democrats (267) or republicans (168) according to their votes on 16 issues.
The 435 examples are described by means of 32 predicates each representing the
favorable (y) or opposite (n) vote on one of the above issues. It is particularly
interesting because a certain amount of noise is present in the descriptions, in
the form of unknown (omitted) votes, as reported in Table 1. Nevertheless, the
algorithm is able to correctly infer all the 16 types (corresponding to the issues),
each with its 2 descriptors (corresponding to the yes/no options).

Now, our aim is to check the effectiveness of the proposed procedure in
handling imperfect data. To this purpose, we focused on the Scientific Papers
dataset, for a number of reasons. First, because it is a real-world one, and is
probably the most complex among those considered. Second, the shape of the
descriptions is not fixed, differently from the Votes and Multiplexer ones. Third,
it was made up of many different observations, differently from the Family one.
Various experiments were run, in which noise was progressively introduced in
the dataset descriptions. For each fixed amount of noise to be introduced, 10
random corruptions of the dataset were performed, on which running the pro-
posed algorithm. Then, the learned types were checked and categorized in one
of the following categories (listed by decreasing desirability): correct, incom-
plete (i.e., missing some types or some values in some type domains, but with-
out mixing values belonging to different types), impossible (when the algorithm
autonomously recognized that the available information was too loose for get-
ting to a correct solution), and wrong (when at least one of the identified types

AN AW =

Inference of abduction theories 233

Table 1 Noise on congressmen votes

Issue Omissions
Handicapped infants 0

Crime 25
Adoption budget resolution 48

mx missile 15
Physicians fee freeze 11

el salvador aid 11
Religious groups in schools 15
Immigration 22
Synfuels corporation cutback 7
Education spending 21

Water project cost sharing 12

Duty free exports 17

Aid to nicaraguan contrast 14
Superfund right to sue 31

Export administration act S.A. 28

Anti satellites test ban 11

——Correct -=-Incomplete Impossible — Wrong | ——Correct -=-Incomplete — Impossible — Wrong

Induced Types
Induced Types

| o | o | 1 ! ! | } ol

R % & & 0w m m m
Corruption Percentage Corruption Percentage

Fig. 2 Descriptors type domains: progressively smaller datasets (/eft) and progressively incom-
plete descriptions (right)

contained in its domain values actually belonging to different types). A first ex-
periment in this direction aimed at assessing how sensitive the algorithm is to the
amount of observations provided to it. In this case, the dataset corruption con-
sisted in progressively eliminating observations (examples) from it (remember
that the initial size was 112). The amount of corruption ranged between 10 and
90% of the entire dataset, and the corresponding results are reported in Fig. 2.
It is interesting to note that the algorithm never generated undesirable (i.e., im-
possible or wrong) type domains. Actually, up to 50% of the dataset it always
gave correct and complete answers. After that threshold, completeness started
decreasing, but even when 90% of the observations was dropped (i.e., only 12
paper descriptions were available) in two cases it succeeded in finding the correct
and complete types. This should allow one to state that the system is effective also
when provided with very few observations.

Then, the next question was how much noise could be present in the avail-
able knowledge in order for the system not to be misled in its task. For this
purpose, each available observation was corrupted by progressively eliminating
a portion from 10% up to 60% of its description. The experimental outcomes,

234 F. Esposito et al.

graphically represented in Fig. 2, suggest that the algorithm is more sensitive to
partial descriptions than it was to a small number of observations. Indeed, in this
case complete and correct types are induced only up to 20% of corruption. Con-
sidering as a good outcome also incomplete types raises the threshold up to 30%.
Anyway, also for more dramatic corruptions, the desirable (i.e., correct + incom-
plete) outcomes far outperform the undesirable ones. Only when 60% of each
description in the dataset is dropped the number of wrong inductions becomes
predominant, but interestingly it does not exceed half of the trials.

This behavior can be explained because the proposed algorithm for the de-
scriptor type domains heavily relies on co-occurrence of values for inducing the
type domains. Thus, eliminating whole observations, but leaving complete the re-
maining ones, potentially still preserves many co-occurrences. On the contrary,
dropping portions of each observation is likely to introduce false (supposed) in-
compatibilities among values that actually belong to different types. As already
pointed out, some of these false incompatibilities are already present in the com-
plete dataset (e.g., a line can have any width or height but is never too thick),
thus artificially adding more noise of this kind makes an already hard task even
harder. However, if the procedure is to be used in a Machine Learning context,
incomplete (unknown) information in the available observations is a problem on
its own, and experimental results, reported in the following, show that abductive
operators can cope with it only to some extent, which is in any case far below the
threshold after which the proposed algorithm’s performance becomes too low to
be acceptable (and in general does not deal with datasets in which all descriptions
are corrupted).

4.2 Exploitation of the learned abductive theories

This section reports the experiments carried out on the same datasets reported in
the previous section exploiting the abducibles and the integrity constraints au-
tomatically learned by the procedures presented in Sect. 3. INTHELEX [9], an
incremental inductive logic programming system, has been provided with the ab-
ductive proof procedure [12] in order to complete the observations in such a way
that the corresponding examples are correctly classified by the already generated
theory, thus avoiding, whenever possible, the use of the operators to modify the
theory.

4.2.1 Multiplexer

The “multiplexer” problem aims at learning the definition of a 6-bits multiplexer.
The dataset contains descriptions of all possible configurations of 6-bits, in which
the first 2-bits represent the address of one of the subsequent 4-bits, that must be
set at 1. Thus, if the bit addressed is actually 1 the example is positive, otherwise
it is considered as negative for the target concept.

Example 4.1 The multiplexer configuration 010110 contains, in the first and sec-
ond position, the pair 01, that is the binary representation of the decimal number
2; thus, it addresses the second element of the 4-tuple 0110 (i.e., the remaining

Inference of abduction theories 235

mul(X) :- mul (X) :- mul (X) :- mul(X) :-
bitlat0(X), bitlat0(X), bitlatl(X), bitlat1(X),
bit2at0(X), bit2at1(X), bit2at0(X), bit2at1(X),
bit3at1(X). bitdatl(X). bitbatl(X). bit6atl(X).

Fig. 3 A correct definition for multiplexer configurations

part of the original configuration). Since the addressed bit is 1, the configuration
description represents a positive example.

Since a 6-bits multiplexer can assume 2° = 64 possible configurations, the
complete training set is made up of 64 examples, 32 positive and 32 negative. The
representation language of the observations is the same as in [27]: For instance,
the multiplexer 100110 is represented by the clause

mul (e) :- bitlatO(e), bit2atl(e), bit3ato0(e),
bit4atl(e), bit5atl(e), bitéatO (e)

The first step was checking if the system is actually able to learn the expected
theory. To this purpose, it was provided with a complete training set containing all
the 64 possible configurations. Starting from scratch, the resulting learned theory
(see Fig. 3) was composed of four clauses describing the multiplexer problem. It
was obtained, in 1.38 s, performing 12 theory revisions.

Successively, an incomplete dataset was obtained by corrupting 12 examples
out of 64 so that only three bits out of six of the original configuration were spec-
ified. Both the examples to be corrupted and their bits to be neglected were ran-
domly selected for 10 times.

Example 4.2 Suppose that the configuration in the previous example, 010110, is
corrupted by omitting the second, third and sixth bits. Now, the resulting configu-
ration is 070?17 and its representation is

mul (e) :- bitlatO(e), bit3at0(e), bitS5atl(e).

As described in [27], such an incomplete dataset was exploited for learning
theories in two different ways: first using induction only, and then using induc-
tion supported by abduction. The theories obtained in the two cases were tested
(without using abduction) on the uncorrupted dataset. Table 2 shows the sys-
tem performance in the two cases, averaged on the 10 corrupted datasets, as
regards the number of definitions in the learned theories, the performed theory
revisions, the number of exceptions, runtime and predictive accuracy (i.e., num-
ber of examples correctly classified/total number of examples). The learned Ab-
duction Theory provided to the system included all the predicates of the form
bitNatB (N € {1..6}, B € {0, 1}) as abducibles, and integrity constraints of the

Table 2 System performance on the multiplexer dataset

Data Definitions Revisions Exceptions Runtime (s) Accuracy

Without abduction 4.1 6.05 2.05 4.55 99.38
With abduction 4.1 5.55 0.4 4.36 99.22

236 F. Esposito et al.

Table 3 System performance on the congressional voting records dataset

Data Definitions Revisions Exceptions Runtime (s) Accuracy
Without abduction ~ 12.40 26.90 1.7 30.30 93.33
With abduction 10.10 19.20 0.80 41.36 96.8

form ic [(bitNat0 (X), bitNatl (X))] (meaning that “if the bit in posi-
tion N is set to O it can’t be set to 1, and vice versa”).

Our expectation was that, when exploiting abduction, the system should be
able to do correct assumptions on the omitted bits value and position, thus re-
covering from the missing information. Indeed, it was able to capture the correct
definitions (the same as those shown in Fig. 3) but applying less theory revisions,
adding less exceptions and in a shorter execution time. In particular, it is notewor-
thy the decrease in the number of exceptions with respect to those that induction
alone needed in order to account for the learned theory.

Example 4.3 In one of the 10 sets containing the corrupted example
mul (el6) :- bitlatO(el6) ,bit5atl(el6),bitéatl(els).

The abduction succeeded in completing the available description, thus avoid-
ing a revision of the theory, by making the following assumptions: bit3atl(el6),
bit2at0(e16). Note that no assumption was made on the status of bit 4, that is not
significant with respect to the address O (corresponding to bit 3) expressed by the
first two bits.

4.2.2 Congressional voting records

On the Multiplexer dataset, the use of abduction in support of induction suc-
ceeded in improving the system performance as regards both the number of re-
visions/exceptions and the runtime, but not concerning the predictive accuracy.
Here, an experiment showing that abduction could improve accuracy, as well, is
presented. The problem, as reported in [18], consists in classifying a Congress-
man as a democrat (target concept) or a republican (not(democrat)), according
to his votes on the 16 issues in Table 1. A certain amount of noise is present in
the descriptions, in the form of unknown votes, that were omitted, resulting in a
distribution for each issue (Table 1).

Definitions for the class democrat were learned, exploiting first pure induction
and then induction plus abduction, starting from the empty theory. The corre-
sponding predictive accuracy was tested, according to a 10-fold cross validation
methodology, ensuring that each fold contained the same proportion of positive
and negative examples. Table 3 shows the system performance on this dataset. It
is possible to note that the use of abduction improves all evaluation parameters,
except Runtime. This can be explained by taking into account the additional time
needed to search for consistent abductive explanations due to the large number of
integrity constraints in the learned abductive theory.

4.2.3 Family relationships

So far, the presented experiments were carried out on datasets whose incomplete-
ness was fixed. Now, a new experiment is described, whose aim was investigating

Inference of abduction theories 237

the abductive proof procedure behavior with respect to different degrees of in-
completeness. In this case, we followed the same approach adopted by [20] on
the same dataset, not only as regards the corruption of the available family de-
scription, but also concerning other problem settings. First of all, only examples
about father were taken into account: the training set included 36 positive exam-
ples and 200 negative ones that were randomly generated. Moreover, the examples
description is more complex than before, in that it includes not only the basic ob-
servations (male, female, parent, married) but also all the known facts concerning
the concepts other than father (i.e., son, daugther, mother, etc.), for a total of 742
literals. Progressive corruption of such a complete description was obtained by
randomly eliminating facts from it. Specifically, learning was run on the following
percentages of preserved descriptions: 100% (no incompleteness), 90, 80, 70, 60,
50, and 40%. Hence, the description size varied as follows: 742 literals (100%),
668 literals (90%), and so on. For each percentage, the dataset was corrupted in
five different ways, thus obtaining five corresponding learning problems whose
performance was averaged according to a five-fold cross validation methodology,
ensuring that each fold contained the same proportion of positive and negative
examples.

Here an extract of the learned Abduction Theory, specifically some integrity
constraints, for this domain is reported (whose interpretation is: “‘one person can-
not be both male and female”; “a son cannot be female, and vice versa’; ““a daugh-
ter cannot be male, and vice versa”):

ic([male (X), female (

X)]). ic([son(X,Y),female(X)]) .
ic([daughter (X,Y) ,male(

X)) .

Comparing the performance with and without abduction on the corrupted
datasets, the benefit becomes very evident with respect to all the parameters taken
into account in Table 4: number of definitions, number of theory revisions, runtime
and predictive accuracy. It is possible to note how abduction is able to preserve the
theories from being refined (indeed, the number of revisions per clause dramati-
cally decreases). Moreover, lower runtimes (except in one case) prove that the
abductive procedure is also efficient. Finally, note that, in spite of the number of
clauses being less when using abduction in all corrupted cases, predictive accuracy
is always higher than the case without abduction.

4.2.4 Scientific paper domain

This section presents the experiments concerning the induction of classification
rules for a dataset obtained by corrupting a subset of the scientific paper docu-
ments belonging to one of the four classes. The corruption consisted in eliminat-
ing 8% of the descriptors for each observation (made up of 112 facts on average
(76 min.—170 max.)) contained in the tuning set. INTHELEX was applied first
without exploiting its abductive procedure. Successively, the learning process was
repeated, allowing the system to exploit its abductive capability, after learning
the abducibles and the integrity constraints according to the procedures described
in Sect. 3. We focused our attention on binary constraints made up of unary and
binary predicates, i.e., of the form (ic([a(X), b(X)],ic([c(X,Y),d(X,Y)]). Fur-
thermore, another experiment was run to test the usefulness of the descriptors type

238 F. Esposito et al.

Table 4 System performance on the family dataset

(%) Definitions Revisions Revisions/definitions Runtime Accuracy
100 noabd 1 1.6 1.6 52.25 99.58
abd 1 1.2 1.2 47.13 100
90 noabd 2.8 6.2 2.2 146.19 96.28
abd 1 1.2 1.2 69.04 99.17
80 noabd 3.8 8.8 2.3 190.12 96.27
abd 1 1.2 1.2 70.35 100
70 noabd 5 9 1.8 218.03 93.78
abd 1 1.2 1.2 59.70 100
60 noabd 6.8 114 1.7 287.57 92.13
abd 1.8 1 0.5 448.82 100
50 noabd 7.2 9.6 1.3 256.91 92.15
abd 1.8 1 0.5 43.08 100
40 noabd 10.2 12 1.2 871.51 90.9
abd 1.8 1 0.5 24.32 98.75

Table 5 System performance on the scientific papers domain

With abduction
Without abduction ~ Without type domains ~ With type domains

Revisions 7.72 5.48 1
Clauses 4.09 3.18 1.72
Accuracy (%) 96.24 99.32 98.75
Runtime (s) 5.16 40.05 24.29

domains in discarding some integrity constraints made up of predicates belonging
to different type domains.

Table 5 reports the system performance when using the abductive procedure
(with and without the exploitation of the learned descriptors type domains) and
when not using it, as to the performed theory revisions, the added definitions, the
predictive accuracy and the execution time (s). Predictive accuracy and number
of theory revisions improve when the abductive procedure is exploited, both with
and without the use of descriptors type domains. In particular, the number of
theory revisions decreases when type domains are exploited. This means that
the system was able to correctly complete the corrupted observations without
applying the refinement procedure. As regards runtime, it increases because of the
abductive procedure; in this case we can note that when we exploit the description
type domains in the choice of the integrity constraints the runtime is better than
the case when they were not exploited because less integrity constraints must be
taken into account.

4.2.5 Comparison

The proposed approach does not aim at completing the training data before
the learning process starts. Rather, its aim is the automatic learning of specific
knowledge: abducibles, i.e., the predicates on which hypothesis can be done,
and integrity constraints, that are exploited to dynamically handle the incomplete
information within the learning process. Thus, a comparison with systems that
propose to overcome the problem of handling missing values by pre-processing

Inference of abduction theories 239

Table 6 Comparison of abduction on the family dataset

100% 90% 80% 70% 60% 50% 40%

INTHELEX 1 99.17 1 1 1 1 98.75
ACL1 1 1 99.60 1 1 9720 97.60
mFOIL 1 99.20 98.40 97.50 9840 98.40 95.10

the training data before the learning process starts (FOIL [22], LINUS, ASSISTANT)
would be unfair. Nevertheless, we compare the results obtained by the ILP
incremental learning system INTHELEX, in which the framework integrating
abductive and inductive reasoning is developed, with ACL1 [20] and mFOIL [22],
the FOIL extension able to deal with incomplete data. Specifically, we performed
the comparison on the family and congressional votes datasets that are the same
exploited by [20] for the same purpose. Table 6 reveals that the predictive accu-
racy results of the comparison on the family dataset for progressive corruption is
almost the same as that obtained by the other systems. As regards the experiment
on congressional voting, INTHELEX turned out to be absolutely better with respect
to the other systems, reporting 96.8% accuracy against 85.25% for ACL1 and 78%
for mFOIL. This assesses the effectiveness of the abductive theory automatically
learned and exploited in it.

5 Conclusion

Real-world domains are often affected by noise, that makes significantly more
difficult the process of knowledge discovery in such environments. As a solution,
machine learning studies have moved towards more expressive representations,
which in turn require more complex inference mechanisms, such as abductive
reasoning. However, such mechanisms strongly rely on the availability of a deep
background knowledge about the specific application domain, that is usually pro-
vided by a domain expert. Due to the difficulty in formalizing such knowledge,
and considering its importance for making the learning process effective, a step
forward consists in automatically learning such a theory starting from the avail-
able observations on the application domain in order to make the learning system
completely autonomous. This paper proposed a methodology for automatically in-
ferring the meta-knowledge to perform the abductive reasoning starting from the
available observations. Experiments confirm that the abductive theories automati-
cally inferred are actually capable of improving various parameters of the learning
process in different artificial and real-world domains.

References

1. Blockeel H, De Raedt L (1996) Inductive database design. In: Proceedings of the 10th
international symposium on methodologies for intelligent systems (ISMIS96), vol 1079 of
Lecture Notes in Artificial Intelligence, Springer-Verlag, pp 376385

2. Cestnik B, Kononenko I, Bratko I (1987) Assistant 86: A knowledge-elicitation tool for
sophisticated users. In: Proceedings of EWSL, Sigma Press. Bled, Yugoslavia, pp 31-45

3. Clark K (1978) Negation as failure. In: Gallaire H, Minker J (eds) Logic and databases,
Plenum Press, New York, pp 293-322

240

F. Esposito et al.

4.

10.

11.

12.

16.
17.
18.
19.
20.
21.

22.

Clark P, Boswell R (1991) Rule induction with CN2: Some recent improvements. In: Pro-
ceedings of the fifth European working session on learning, Springer, Berlin Heidelberg
New York, pp 151-163

Cohen P, Feigenbaum E (eds) (1981) The Handbook of artificial intelligence. vol 3. Morgan
Kaufmann, San Mateo, CA

De Raedt L (1992) Interactive theory revision—an inductive logic programming approach.
Academic Press, New York

Dimopoulos Y, Kakas A (1996) Abduction and learning. In: Raedt LD (ed) Advances in
inductive logic programming, IOS Press, pp 144—171

. Eshghi K, Kowalski R (1989) Abduction compared to negation by failure. In: Levi G,

Martelli M (eds) Proceedings of the 6th international conference on logic programming,
The MIT Press, Cambridge, MA, pp 234-255

Esposito F, Ferilli S, Fanizzi N, Basile T, Di Mauro N (2003) Incremental multistrategy
learning for document processing. Appl Artif Intell: An Int J 17(8-9):859-883

Esposito F, Lamma E, Malerba D, Mello P, Milano M, Riguzzi F, Semeraro G (1996) Learn-
ing abductive logic programs. In: Proceedings of the ECAI96 workshop on abductive and
inductive reasoning, Budapest, Hungary, pp 23-30

Esposito F, Malerba D, Lisi F (2000a) Machine learning for intelligent processing of printed
documents. J Intell Inf Syst 14(2-3):175-198

Esposito F, Semeraro G, Fanizzi N, Ferilli S (2000b) Multistrategy theory revision: induc-
tion and abduction in INTHELEX. Machine Learn 38(1-2):133-156

. Ferilli S, Esposito F, Basile T, Di Mauro N (2004) Automatic induction of first-order logic

descriptors type domains from observations. In: Camacho R, King RD, Srinivasan A (eds)
ILP, vol 3194 of LNCS, Springer, Berlin Heidelberg New York, pp 116-131

. Flach P, Lachiche N (2001) Confirmation-guided discovery of first-order rules with

Tertius. Machine Learn 42(1-2):61-95

. Hewett R, Leuchner J (2002) Knowledge discovery with second-order relations. Knowledge

Inf Syst 4(4):413-439

Hinneburg A, Keim D (2003) A general approach to clustering in large databases with noise.
Knowledge Inf Syst 5(4):387-415

Kakas A, Mancarella P (1990) On the relation of truth maintenance and abduction. In:
Proceedings of the 1st pacific rim international conference on artificial intelligence, Nagoya,
Japan

Kakas A, Riguzzi F (1999) Abductive concept learning. New Gen Comput

Kakas A, Kowalski R, Toni F (1993) Abductive logic programming. J Logic Comput 718—
770

Kakas C, Riguzzi F (2000) Learning with abduction. New Gen Comput 18(3):243-294
Lamma E, Mello P, Milano M, Riguzzi F, Esposito F, Ferilli S, Semeraro G (2000) Coopera-
tion of abduction and induction in logic programming. In: Kakas A, Flach P (eds) Abductive
and inductive reasoning: essays on their relation and integration, Kluwer, Dordrecht
Lavra¢ N, Dzeroski S (1994) Inductive logic programming: techniques and applications.
Ellis Horwood, New York

. Michalski R (1994) Inferential theory of learning. developing foundations for multistrat-

egy learning. In: Michalski R, Tecuci G (eds) Machine learning. A multistrategy approach,
vol IV. Morgan Kaufmann, San Mateo, CA, pp 3-61

. Poole D (1988) A logical framework for default reasoning. Artif Intell 36:27-47

. Raedt LD, Dehaspe L (1997) Clausal discovery. Machine Learn 26(2):99-146

. Reiter R (1980) A logic for default reasoning. J Artif Intell 13:81-132

. Riguzzi F (1998) Extensions of Logic Programming as Representation Languages for Ma-

chine Learning, PhD thesis, University of Bologna

. Skillicorn DB, Wang Y (2001) Parallel and sequential algorithms for data mining using

inductive logic. Knowledge Inform Syst 3(4):405-421

Inference of abduction theories

241

Author biographies

Floriana Esposito received the Laurea degree in electronic
Physics from the University of Bari, Italy, in 1970. Since
1994 is Full Professor of Computer Science at the Univer-
sity of Bari and Dean of the Faculty of Computer Science
from 1997 to 2002. She founded and chairs the Laboratory
for Knowledge Acquisition and Machine Learning of the De-
partment of Computer Science. Her research activity started
in the field of numerical models and statistical pattern recog-
nition. Then her interests moved to the field of Artificial In-
telligence and Machine Learning. The current research con-
cerns the logical and algebraic foundations of numerical and
symbolic methods in machine learning with the aim of the in-
tegration, the computational models of incremental and mul-
tistrategy learning, the revision of logical theories, the knowl-
edge discovery in data bases. Application include document
classification and understanding, content based document re-
trieval, map interpretation and Semantic Web. She is author

of more than 270 scientific papers and is in the scientific committees of many international sci-
entific Conferences in the field of Artificial Intelligence and Machine Learning. She co-chaired
ICML96, MSL98, ECML-PKDD 2003, IEA-AIE 2005, ISMIS 2006.

v

Stefano Ferilli was born in 1972. After receiving his Lau-
rea degree in Information Science in 1996, he got a Ph.D. in
Computer Science at the University of Bari in 2001. Since
2002 he is an Assistant Professor at the Department of Com-
puter Science of the University of Bari. His research interests
are centered on Logic and Algebraic Foundations of Machine
Learning, Inductive Logic Programming, Theory Revision,
Multi-Strategy Learning, Knowledge Representation, Elec-
tronic Document Processing and Digital Libraries. He partic-
ipated in various National and European (ESPRIT and IST)
projects concerning these topics, and is a (co-)author of more
than 80 papers published on National and International jour-
nals, books and conferences/workshops proceedings.

242 F. Esposito et al.

Teresa ML.A. Basile got the Laurea degree in Computer Sci-
ence at the University of Bari, Italy (2001). In March 2005
she discussed a Ph.D. thesis in Computer Science at the Uni-
versity of Bari titled “A Multistrategy Framework for First-
Order Rules Learning.” Since April 2005, she is a research at
the Computer Science Department of the University of Bari
working on methods and techniques of machine learning for
the Semantic Web. Her research interests concern the inves-
tigation of symbolic machine learning techniques, in partic-
ular of the cooperation of different inferences strategies in
an incremental learning framework, and their application to
document classification and understanding based on their se-
mantic. She is author of about 40 papers published on Na-
tional and International journals and conferences/workshops
proceedings and was/is involved in various National and Eu-
ropean projects.

Nicola Di Mauro got the Laurea degree in Computer Science
at the University of Bari, Italy. From 2001 he went on mak-
ing research on machine learning in the Knowledge Acquisi-
tion and Machine Learning Laboratory (LACAM) at the De-
partment of Computer Science, University of Bari. In March
2005 he discussed a Ph.D. thesis in Computer Science at
the University of Bari titled “First Order Incremental Theory
Refinement” which faces the problem of Incremental Learn-
ing in ILP. Since January 2005, he is an assistant professor
at the Department of Computer Science, University of Bari.
His research activities concern Inductive Logic Programming
(ILP), Theory Revision and Incremental Learning, Multistrat-
egy Learning, with application to Automatic Document Pro-
cessing. On such topics HE is author of about 40 scientific
papers accepted for presentation and publication on interna-
tional and national journals and conference proceedings. He
took part to the European projects 6th FP IP-507173 VIKEF
(Virtual Information and Knowledge Environment Framework) and IST-1999-20882 COLLATE
(Collaboratory for Annotation, Indexing and Retrieval of Digitized Historical Archive Materi-
als), and to various national projects co-funded by the Italian Ministry for the University and
Scientific Research.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

