Incremental Learning of First Order Logic Theories
for the Automatic Annotations of Web Documents

Floriana Esposito

Stefano Ferilli

Nicola Di Mauro

Teresa M.A. Basile
Universita degli Studi di Bari-Dipartimento di Informatica
Via Orabona, 4 - 70126 Bari - Italy
{esposito, ferilli, ndm, basile} @di.uniba.it

Abstract

Organizing large repositories spread throughout the
most diverse Web sites rises the problem of effective storage
and efficient retrieval of documents. This can be obtained
by selectively extracting from them the significant textual
information, contained in peculiar layout components, that
in turn depend on the identification of the correct document
class. The continuous flow of new and different documents
in a weakly structured environment like the Web calls for in-
crementality, as the ability to continuously update or revise
a faulty knowledge previously acquired, while the need to
express structural relations among layout components sug-
gest the exploitation of a powerful and symbolic represen-
tation language. This paper proposes the application of in-
cremental first-order logic learning techniques in the docu-
ment layout preprocessing steps, supported by good results
obtained in experiments on a real dataset.

1 Introduction & Motivations

Today, huge amounts of documents are spread through-
out the most diverse Web sites. Up to now most research
effort was spent on principles and techniques for setting up
and managing Digital Libraries [1, 3, 7, 8, 9]. Thus, the
next problem is developing techniques for semantics-related
tasks, such as information retrieval and integration. Indeed,
in order to capture the semantics underlying a document on
the Web, one would need access to the conceptual model
of the information source. Ontologies can hardly deal with
heterogeneous representations in a poorly structured envi-
ronment like the Web. A more effective indexing can be
obtained by focusing on the most relevant text components
in the document, that can be identified based on its logical
layout structure. Performing such a task consists in recog-
nizing the correct document class first, and then its signifi-

cant components, from which extracting the relevant infor-
mation. Since an important role to carry out this task is
played by the relationships between components, a Doc-
ument Image Understanding technique should be able to
manage them. However, to the best of our knowledge, at
the moment there is no technique that can automatically an-
notate the layout components of digital documents, without
mapping the document itself to a strict and static template,
or using a grammar (in some cases induced by means of
a syntactic parsing of the document) representing its lay-
out. On the other hand, writing useful models to under-
stand a particular kind of document can be a demanding
task, possibly unfeasible in a weakly structured environ-
ment like the Web. This work proposes the use of a con-
cept learning system to infer rules able to identify the doc-
ument type and its significant components from its layout
structure. Specifically, since in digital libraries new and
different documents typically become available over time
and are to be integrated in the collection, we consider incre-
mentality as a fundamental requirement for the techniques
to be adopted. Indeed, it can allow the system to update
or revise at any moment a faulty knowledge previously ac-
quired for identifying the logical structure of documents.
Furthermore, the inborn complexity of the document do-
main, in which one cannot know a priori how many com-
ponents make up a generic document and information on
the topological structure of the document’s components can
be crucial for the understanding process, require the ability
to express relations among components, and suggest to ex-
ploit first-order logic as a powerful symbolic representation
language, that also shows human comprehensibility of the
resulting learned rules as an additional desirable feature.

In this work we focus on the integration of an incremen-
tal learning system in DOMINUS (DOcument Management
INtelligent Universal System), a system characterized by
the intensive exploitation of intelligent techniques in each
step of document processing, from acquisition to indexing,
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Figure 1. DOMINUS Architecture

categorization, storage and retrieval (technical details can
be found in [5]). After a brief description of the architec-
ture of DOMINUS, the learning system is presented along
with operation examples in the document management sys-
tem and an application to a real dataset.

2 DOMINUS: Overall Architecture

The architecture of DOMINUS is depicted in Figure 1.
The layout analysis process on documents in digital for-
mat starts with the application of a pre-processing mod-
ule, called WINE (Wrapper for the Interpretation of Non-
uniform Electronic document formats), that takes as input a
digital document (currently in PS or PDF format) and pro-
duces (by an intermediate vector format) its initial XML
description as a set of pages made up of basic blocks. Due
to the large number of such blocks, that often correspond
to fragments of words, it is necessary a first aggregation
based on blocks overlapping or adjacency, yielding com-
posite blocks corresponding to whole words. The number of
blocks after this step is still large, thus a further aggregation
(e.g., of words into lines) is needed. Since grouping tech-
niques based on the mean distance between blocks proved
unable to correctly handle the case of multi-column docu-
ments, such a task was cast to a multiple instance problem
and solved exploiting the kernel-based method proposed in
[4], implemented in the Learning Server module. It is able
to generate rewriting rules that suggest how to set some
parameters in order to group together word blocks to ob-
tain lines. The inferred rules will be stored in the Theories
knowledge base for future exploitation and modification by
RARE (Rule Aggregation REwriter).

Once the line-block representation is generated, DOC
(Document Organization Composer) collects the semanti-
cally related blocks into groups by identifying the surround-
ing frames based on the results of a background structure
analysis performed according to an improved version of

Breuel’s algorithm [2], that finds iteratively the maximal
white rectangles in a page: here the process is stopped be-
fore finding insignificant white spaces such as inter-word or
inter-line ones. At the end of this step, some blocks might
not be correctly recognized. In such a case a phase of layout
correction is started by DOCG (Document Organization
Correction Generator) by exploiting embedded rules stored
in the Theories knowledge base. Such rules were automat-
ically learned, using the incremental learning system (see
next section) embedded in the Learning Server, from previ-
ous manual corrections collected on the initial documents.
Once the layout structure has been correctly and defi-
nitely identified, a semantic role must be associated to each
significant component in order to perform the automatic
extraction of the interesting text with the aim of improv-
ing document indexing. This step is performed by DLCC
(Document and Layout Components Classifier) by firstly
associating the document to a class that expresses its type
and then labelling every significant layout component with
a tag expressing its role. Both tasks are performed accord-
ing to theories, previously learned and stored in the The-
ories knowledge base, that in case of failure can be prop-
erly updated. Theory learning and revision are carried out
by the first-order incremental learning system, that runs on
the new observations and tries to modify the old theories in
the knowledge base. At the end of this step both the orig-
inal document and its XML representation, enriched with
class information and components annotation, are stored in
the Internal Document Database, IDD. Finally, the text is
extracted from the significant components and the Indexing
Server is called by the IGT (Index Generator for Text) mod-
ule to exploit such information for an effective and efficient
content-based document storage and retrieval.

3 The Incremental Learning Core

A central role is played by the Learning Server, which
intervenes during different processing steps to continuously
adapt the knowledge taking into account new evidence and
changes in the context. The most important component in
such a module is INTHELEX (see [6] for technical details),
an incremental learning system able to induce first-order
logic theories for multiple concepts/classes starting from a
set of examples. Starting from an empty theory, the system
considers one by one the available examples, continuously
revising the learned theory until it passes the desired accu-
racy threshold. At that moment, the theory becomes opera-
tional and is used to classify new unseen documents. When
a reject occurs, a revision is started (although the classifi-
cation task can still proceed with the old theory until a new
one is available) that can even result in the addition of a
completely new class learned from just one instance.

INTHELEX incorporates two refinement operators to
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correct the wrong behavior of the current theory: one for
generalizing definitions that reject positive examples and
the other for specializing definitions that explain negative
examples. In the former case, the system can: 1) Drop
some conditions from one of the available definitions of the
concept the example refers to, so that the resulting revised
theory covers the new example and is consistent with all the
past negative examples; 2) Add to the current theory (if con-
sistent) a new alternative definition of the concept based on
the misclassified example; 3) Add the positive example to
the theory as an exception. In the latter case, among the
theory definitions that concur in explaining the example,
the system can: 1) Add to it some conditions which char-
acterize all the past positive examples and can discriminate
them from the current negative one; 2) Add the negation of a
condition, that is able to discriminate the negative example
from all the past positive ones; 3) Add the negative example
to the theory as an exception. New incoming observations
are always checked against the exceptions before applying
the rules defining the concept they refer to.

Another peculiarity of the system is the exploitation of
multistrategy (specifically, Abduction and Abstraction) op-
erators that, if selected, may help in solving the theory revi-
sion problem by pre-processing the incoming information.
Abduction can hypothesize unseen facts that, together with
a given theory, could explain a new incoming observation,
this way completing possibly partial information in the ex-
amples (adding more details). Abstraction can perform a
shift from the language in which examples and the learned
theory are described to a higher level one, by means of a set
of operators that can replace a number of components by a
compound object, or decrease the granularity of a set of val-
ues, or ignore whole objects or just part of their features, or
neglect the number of occurrences of some kind of object.

The overall learning cycle, according to Figure 2, can be
described as follows. A set of examples of the concepts to
be learned, possibly selected by an expert, is provided by
the environment. Whenever a new example is taken into

account, it (or its abstracted version obtained exploiting the
Abstraction module and database, AbsDB) is stored in the
database of processed examples (ExsDB) and checked by
the Evaluator against the current theory. If the theory is
correct the system steps to the next example (if any), other-
wise the Evaluator tries to avoid the refinement step using
the Abduction Module and database (AbdDB), to hypothese
information that can consistently complete the observation.
If this cannot be done then the Evaluator can refine the
existing theory by means of the Refiner (described above)
or, in case of an example referring to a completely new
class/concept, use the Learner (steps 2 and 3 of the gen-
eralization phase). Both modules check their result against
the examples stored in ExsDB and the theory learned so far.

3.1 Operation Examples

Suppose that the theory learned so far says that: “a docu-
ment belongs to class A if, among other blocks, it contains
a block (block3) in the top-left part”':

class_A (doc) :-—
part_of (doc,blockl) ,part_of (doc,block2),
part_of (doc,block3),part_of (doc,block4),
text (blockl), text (block2),
posupper (doc,block3) ,posleft (doc,block3), ..

Suppose that this block represents a date and that a new pos-
itive example for class A contains the date on the bottom-
left part. To correctly classify such a new example, if
the vertical position is not significant for distinguishing the
date, the system generalizes the definition by dropping a
condition as follows:

class_A (doc) :-—
part_of (doc,blockl),part_of (doc,block2),
part_of (doc,block3d),part_of (doc,block4),
text (blockl), text (block2),
posleft (doc,block3), .. ..o,

saying that “a document belongs to class A if, among others,
there is a block on the left of the document”. Otherwise, if
this violates consistency against past negative examples, the
theory is revised by adding an alternative definition:

class_A (doc) :—
part_of (doc,blockl),part_of (doc,block2),
part_of (doc,block3) ,part_of (doc,block4),
text (blockl), text (block2),
posupper (doc,block3) ,posleft (doc,block3),

LA brief description of the predicate symbols exploited in the docu-
ment representation follows. For each layout component C identified in
the document structure, the part_of(D,C) indicates that it is part of a docu-
ment Dj; the unary predicate symbols (attributes) describe properties of the
layout component (e.g. height, width, type of component (text, graphic,
mixed, vertical_line, horizontal_line), position in the page (vertically-
upper/middle/lower, horizontally-left/center/rigth)); the n-ary predicate
symbols (relations) express relationships between layout components (po-
sition of a component with respect to other (vertically-top/middle/bottom,
horizontally-left/center/rigth), one is on top/to right the other).



class_A (doc) :—
part_of (doc,blockl),part_of (doc,block2),
part_of (doc,block3),part_of (doc,blockd),
part_of (doc,block5),part_of (doc,blocko),
text (blockl), text (block2),
poslower (doc,block3),posleft (doc,block3),

meaning that “a document belongs to class A if, among
other blocks, there is a block in the top-left or bottom-left
part”’. On the other hand, suppose that the new negative ex-
ample for class A is very similar to the documents analyzed
so far (it contains a block on the top-left part), with the only
difference of the block type: in the positive examples it rep-
resents a date and thus it is fext, in the negative example it
represents a logo and thus it is graphic. In such a situation
the system specializes the theory by adding a condition:
class_A (doc) :—

part_of (doc,blockl),part_of (doc,block2),

part_of (doc,block3),part_of (doc,block4),

text (blockl), text (block2),

posupper (doc,block3),posleft (doc,block3),

text (block3), v v it i e e

i.e. “a document belongs to class A if, among other blocks,
there is a text block in the top-left of the document”.
Before performing the theory revision, the system exploits
its multi-strategic capabilities to process the description it-
self, in order to make computationally easier the revision
step, and/or to avoid it completely, if possible. For example,
the abstraction operator can clean the document description
from details uninteresting for learning a useful description
for the document class. Suppose that the new document de-
scription contains a block (block3) that is an horizontal line
which was not present in previous positive examples:
class_A(doc) :—
part_of (doc,blockl),part_of (doc,block2),
part_of (doc,block3d),part_of (doc,block4),
text (blockl), text (block2),
posupper (doc,block3) ,posleft (doc,block3),
horizontal_line(block3), ...
The abstraction operator can eliminate this block and its fea-
tures from the description, resulting in:
class_A(doc) :—
part_of (doc,blockl),part_of (doc,block2),
part_of (doc,block4),
text (blockl),text (block2), ...

The revision process could be avoided by exploiting the ab-
ductive operator to hypothesize, for example, the value of
missing features in the document description due to possi-
ble noise introduced by the layout analysis step. In case of
success, the hypothesized features are stored for future pro-
cessing; otherwise, the theory revision step is performed.
Suppose that the theory learned so far says that “a docu-
ment belongs to class A if, among others, there is a text
block (block3) on the top-left part of the document’:
class_A (doc) :-—

part_of (doc,blockl) ,part_of (doc,block2),

part_of (doc,block3),part_of (doc,block4d),

text (blockl), text (block2),text (block3),
posupper (doc,block3) ,posleft (doc,block3), ..
Suppose that this block represents a date and that a new
document description, d1, does not contain such a block
due to a failure of the layout analysis step:

class_A(dl) :-

part_of (dl,blockl),part_of (dl,block2),
part_of (dl,block4),

text (blockl),text (block2), ..........

Since the resulting example could not be recognized as be-
longing to class A, before revising the theory (which would
eliminate a possibly important detail) the system tries to hy-
pothesize the presence of the date completing the new ex-
ample description with such an information, provided that
this is consistent with the theory and previous assumptions:
class_A(dl) :-—

part_of (dl,blockl),part_of (dl,block2),
part_of (dl,block3) ,part_of (dl,block4),

text (blockl), text (block2),text (block3),
posupper (dl,block3) ,posleft (dl,block3),

abduced|[part_of (dl,block3),text (block3),
posupper (dl,block3) ,posleft (dl,block3)].

The learned theories are represented in a language that can
be naturally read by humans. Indeed, the end user of DOMI-
NUS could ask to translate them in natural language.

4 Evaluation

This section presents experimental results of the incre-
mental system on the layout correction, classification and
understanding phases of the document processing task. The
dataset consisted of 353 documents coming from a collec-
tion of publications of the last ten years available online
(e.g., in publishers’ sites, authors’ home pages, scientific
paper repositories). Four layout styles (classes) were iden-
tified: Springer-Verlag Lecture Notes series (svIn, 70 doc-
uments), Elsevier journals (61), Machine Learning Jour-
nal (Mlj, 122 documents: formerly Kluwer Academic, now
Springer Science publishers) and Journal of Machine Learn-
ing Research (jmlr, 100). Since even documents in the same
class might follow different layout standards according to
the time of publication and changes in spatial organization
of the first page might affect the classification step, the in-
cremental abilities of the learning system are necessary to
accommodate the various concept definitions in time.

After the layout analysis step, each document page
was automatically described by its number and position
(whether it is at the beginning, in the middle or at the end of
the document), and by its blocks and frames size, type, po-
sition and topological relations (e.g. closeness, intersection,
overlapping and inclusion). Each document, resulting in a
description made up of an average of 400 predicate instan-
tiations, was considered as a positive example for the class



Table 1. Learning System Performance

MLJ Rev Rev+ Rev- Acc.
Title 59.6 (12%) 382 (35%) 21.4(6%) 91.1%
Abstract 50.7 (11%) 39.6 38%) 11.1 3%) 92%
Author 521 (11%) 39.7 (25%) 11.4(4%) 94.2%
Keywords  34.2 (7%) 279 26%) 6.3 (2%) 97%
Elsevier Rev Rev+ Rev- Acc.
Title 182 (7%) 13.6 24%) 4.6 2%) 95.5%
Abstract 289 (11%)  22.1 (4%) 6.8 3%) 96.6%
Author 21.4 (8%) 16.6 31%) 4.8 2%) 95.2%
Keywords 17.2 (7%) 15536%) 1.7(1%) 96.2%
Logo 5.8 2%) 5.8 (11%) 0 (0%) 99.6%
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Figure 3. Accuracy on tuning phase

it belongs to, and as a negative example for all the other
classes to be learned. The system performance was evalu-
ated according to a 10-fold cross validation methodology.

The first experiment was run to infer rules for layout cor-
rection: 1897 manual corrections were collected, described
(representing the situation before and after the correction)
and provided to the learner, that inferred correction rules
showing a 97.7% average accuracy. The second experi-
ment concerned the induction of classification rules, and
obtained good performance in terms of runtime (52 sec.-
elsevier, 399 sec.-svIn, 588 sec.-jmlr, 3213 sec.-mlj), accu-
racy (100%-elsevier, 97.73%-svIn, 98.3%-jmlr, 95.75%-
mlj) and number of theory revisions (6.3-elsevier, 11.8-
svin, 26.4-mlj, 11.4-jmlr) on an average of 320 examples in
each fold. Here we report the best (elsevier) and worst (mlj)
performing classes on document image understanding. Al-
though we focus on first page layout components, it should
be noted that DOMINUS is able to handle multi-page doc-
uments, and hence could also recognize components placed
in other pages, such as bibliographic references, that can be
a valuable source of information.

Table 1 reports the experimental results, averaged on the
10 folds. Predictive accuracy (Acc) is always very high.
Furthermore, the number of revisions performed, both in
absolute value (Rev = overall, Rev+ (Rev-) = on positive
(negative) examples only) and in ratio (in parentheses), con-
firm the cautious behavior of the system in learning defini-

tions (and thus a model for the classes/layout components)
that preserve as much information as possible from the orig-
inal training examples, so that generalizations are needed
more often than specializations. Figure 3 shows the accu-
racy evolution during the incremental induction of layout
components definitions on mlj class: after a first phase in
which many revisions have to be performed to restore the
theory correctness, resulting in a poor accuracy, it tends to
increase towards a stable condition meaning that the system
was able to grasp the correct layout component definitions.

5 Conclusion

The huge amount of documents available in digital for-
mat and the flourishing of digital repositories raise problems
concerning effective and efficient document storage and re-
trieval. This paper highlights how systems for document
management can take advantage by the intensive applica-
tion of Machine Learning, and specifically of incremental
first-order logic learning techniques. Indeed, experiments
on a real-world dataset have been presented and discussed,
that confirm the validity of the proposed approach.
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