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Abstract. Traditional Machine Learning approaches based on single inference mechanisms have
reached their limits. This causes the need for a framework that integrates approaches based on ab-
duction and abstraction capabilities in the inductive learning paradigm, in the light of Michalski’s
Inferential Theory of Learning (ITL). This work is intendedas a survey of the most significant
contributions that are present in the literature, concerning single reasoning strategies and practical
ways for bringing them together and making them cooperate inorder to improve the effectiveness
and efficiency of the learning process. The elicited role of an abductive proof procedure is tack-
ling the problem of incomplete relevance in the incoming examples. Moreover, the employment of
abstraction operators based on (direct and inverse) resolution to reduce the complexity of the learn-
ing problem is discussed. Lastly, a case study that implements the combined framework into a real
multistrategy learning system is briefly presented.
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1. Introduction

The last decade revealed that traditional Machine Learningapproaches have reached their limits [28].
Indeed, most of them exploit simple or constrained knowledge representations for the sake of efficiency
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and are based on single (often simple or simplified) inference mechanisms. In order to broaden the inves-
tigation and the applicability of machine learning schemes, it is necessary to move on to more expressive
representations which require more complex inference mechanisms. One possibility is making different
inference strategies work together, taking advantage of the benefits that each approach can bring.

This paper overviews and summarizes a number of studies, taken from the literature, aimed at enforc-
ing the integration of multiple inference strategies within a logic programming framework forrelational
learning, a research area that has come evolving in the last years [30,31, 11]. Indeed, although sev-
eral learning methodologies based on different inferential mechanisms have been proposed for complex
multi-relational scenarios, rarely they have come to a cooperation. Therefore, in the light of Michalski’s
Inferential Theory of Learning (ITL) [28], there can be a rich ground of interaction between different
inferential operators, as regards both the semantic specification and their computation.

The general schema of the inductive predicate-learning paradigm (
�� � � �� �) involves four

variables, namely: the language�, for which in this paper thesingle representation trick[8] will be
assumed, the background knowledge

��
and the theory

�
that contain concept definitions explaining

the occurrence of some observations�. In inductive learning, observations� stand for the extensional
representation of concepts, and the aim is building an intensional description

�
, expressed in the language

�, that explains such concepts, supposed that
��

is insufficient to give such an explanation. Most
approaches focus on inductive mechanisms to fine-tune

�
in order to achieve the learning goal. This

goal has been pursued by identifying desirable properties for the inductive refinement operators, such as
ideality [23] andoptimality [9], and studying their mutual relationships and the conditions under which
they can be obtained. For instance, a framework for the definition of ideal operators that can exhaustively
search the space of candidate concept definitions and find correct ones, when the language� is able to
express them, has been proposed in [13].

In a multistrategy perspective, such a framework can be extended by means of operators descend-
ing from other inferential strategies in order to act on the remaining variables of the general inference
schema, when problems of different kinds arise. Specifically, two problems of the traditional approach to
predicate-learning can be tackled: the partial relevance of the available evidence� and the insolvability
of a learning problem when the language� is not enough powerful to express a proper predicate defini-
tion in

�
. The idea is to employ, respectively, abduction and abstraction to overcome such limitations.

The former would pre-process the observations in order to bridge the gap between the observations and
the (more operational) instances of the target concepts. The latter should guarantee the shift to a higher
language bias whenever in the current one it is impossible tocapture the target predicate definition.

From an operational point of view, abduction should in some way complete the observations with
unknown facts that are likely to take place in the given situation and that can help in solving the learning
problem at hand; it can be carried out by an abductive proof procedure, that shares the falsity-preserving
nature with the inductive refinement operators [24]. As regards abstraction, it should be included for
dealing with cases when learning can be more effective if it can take place at multiple different levels of
complexity, which can be confronted to the language bias shift considered in [9]. A useful perspective
for the integration of this inference operator in an inductive learning framework was given in [43]. In
this view, concept representation deals with entities belonging to three different levels. Underlying any
source of experience there is theworld, whereconcreteobjects (the ‘real things’) reside. It is not directly
known, since any observer’s access to it is mediated by hisperceptionof it. The percepts reality con-
sists in the ‘physical’ stimuli produced on the observer. Tobe available over time, these stimuli must be
memorized in an organizedstructure, i.e. anextensionalrepresentation of the perceived world, in which



F. Esposito et al. / Multistrategy Operators for RelationalLearning... 3

stimuli related to each other are stored together. Finally,to reason about the perceived world and commu-
nicate with other agents, alanguageis needed, that describes itintensionally. World, representation and
language make up areasoning context. In the setting dealt with in the following, situations are supposed
not to change in time.

Given a reasoning context, it is possible to reason at any of the given levels. Moreover, reasoning
at multiple levels can be very advantageous both in effectiveness and efficiency [22]. Then, the learning
framework can be extended, for the exploitation of deductive operators based on abstraction, acting on
the detail of the information at any level of the reasoning context. Indeed, it could be the case that, by
simplifying the problem setting or, equivalently, by shifting the representation, a solution for the learning
problem is more easily reachable.

The remainder of this paper is organized as follows. Section2 recalls a theoretical framework for
integrating different learning strategies. Section 3 summarizes notions about first-order representation
languages and the problem of the relevance of the examples. Then, Section 4 discusses the integration
of abductive reasoning with inductive refinement operators, and Section 5 deals with the support of
operators based on abstraction to the learning process. Section 6 introduces a possible integration of the
two in a learning system. Lastly, Section 7 concludes the paper.

2. Michalski’s Inferential Theory of Learning

Learning is generally defined as a behavior change due to experience. A learning agent must be able to
performinferenceand must havememorythat supplies the knowledge needed and records the results for
future use. Thus, an equation

�������� � �������	� 
���
��

can be drawn. In humans, declarative (conceptual) and procedural knowledge (skills) seem to reside in
different neural structures, and are acquired in differentways. Since there is a “conscious” access to
the former kind, but not to the latter, acquiring the former is based primarily on an explicit reasoning
and memorizing of the results (“studying”), whereas acquiring the latter relies primarily on practice and
exercise (without much reasoning). Such a distinction doesnot happen in computer systems, that store
and access both kinds of knowledge in the same way.

More precisely, theInferential Theory of Learning(ILT) defines learning as a process affected by
three fundamental factors, that make up alearning task: what information is provided to the learner (in-
put), what the learner already knows that is relevant to the input (background knowledge, BK) and what
the learner wants to accomplish (goal). The process involved in accomplishing a learning goal canbe
characterized in terms of high-level inference patterns, calledknowledge transmutations, each of which
takes the input and the learner’s BK and generates another piece of knowledge. They represent different
reasoning methods, i.e. classes of transformations that can be implemented in many different ways. De-
pending on the knowledge representation and the computational mechanism, knowledge transmutations
are performed explicitly or implicitly (cf. symbolic systems vs. subsymbolic ones).

Any knowledge transmutation is characterized by the type ofunderlying inference along the truth-
falsity dimension, that determines the validity of its conclusion. Since any kind of inference may be
involved in a learning process, a complete learning theory must include a complete theory of inference
that accounts for all possible types of knowledge transformations (see Figure 1).
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Figure 1. A classification of major types of inference

Inferences can be divided in two fundamentals types: deductive and inductive. To define these
kinds of inference in a language-independent way,it is useful to start from thefundamental equation for
inference:

� ��� �� � (1)

where
�

is a set of statements (calledpremise),
��

is the reasoner’sbackground knowledgeand� is a
set of statements (calledconsequent).

Deductive inference “traces forward” Equation 1, deriving� given
�

and
��

; inductive inference
traces it “backward”, hypothesizing

�
given� and

��
. Hence, deduction is a truth-preserving infer-

ence, while induction is a falsity-preserving one (meaningthat if � is false, the
�

cannot be true).
If Equation 1 is interpreted in an approximate, common-sense way, the “strong” (valid) entailment

way may be replaced by a “weak” one, which leads to another basic distinction among types of inference.
Universal inferences assume the “strong” entailment;contingentones assume the “weak” entailment.
According to such a distinction, deduction (resp., induction) is “strongly” or “weakly” truth-preserving
(resp., falsity-preserving). Universal deductive inference is strictly truth-preserving, and universal in-
duction is strictly falsity preserving. Contingent deduction (resp., induction) is truth-preserving (resp.,
falsity-preserving) only to the extent to which contingentdependencies involved in reasoning are true.

Both contingent deduction and contingent induction (orabduction) are based on domain-dependent
relationships. There is no principal difference between them except if one assumes that

�� in Equation 1
indicates a causal ordering (i.e.,

�
is viewed as a cause, and� as a consequence). In this case, contingent

deduction yields plausible/likely consequences of given causes; abduction yields plausible/likely causes
of given consequences.

The intersection of truth-preserving and falsity-preserving inference represents an equivalence-based
inference.Analogycan be viewed as an extension of equivalence-based inference. It can be characterized
as a combination of induction (involved in detecting an analogical match, i.e. the properties and/or
relations similar for the two analogs) and deduction (that uses the hypothesized analogical match to
derive unknown properties of the target analog).

3. Representation and Relevance

In the following, we adopt a representation language� expressing concepts as predicate definitions
in logic programsmade up of Datalogclauses. Refer to [25, 31] for the basic notions about clausal
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representation. Datalog [6] is the function-free (yet not constant-free) fragment of pure Prolog. Hence,
a Datalog program is a finite set of range restricted1 Horn-clauses without functors of arity� � �. It has
been thought for describing deductive databases.

In such a context, typically theunique names assumption[33] is adopted, which has been extended
by theObject Identityassumption [35] that is similar to theunique substitution semantics[21]. Such an
assumption requires that “in a clause, terms denoted with different symbols must be distinct”, i.e. they
represent different entities of the domain.

DatalogOI, the language resulting from the application of Object Identity to Datalog, has the same
expressive power as Datalog [35].�-subsumption and implication under Object Identity induceordering
relationships between clauses that turned out to be weaker but more manageable than the standard ones.
Hence, it is expected that effective operators from other inferential mechanisms may be defined in this
framework. A thorough discussion of these generalization models can be found in [13].

In empirical learning most of the information comes from examples and observations, hence they
must be expressive enough to convey the information that is necessary for the inference of general rules.

Many approaches to concept-learning need that each exampleis completely specified. This property
is calleddirect relevance[27]. For instance, the examples could be represented as ground clauses whose
body contains all the needed information accounting for thefact stated in the head:

������	
���
���	

���� �����	
�����
�����	���
� ���� �	����
� ����
��		�
������ ��		�
�� ����
����	�
������� ����	�
�������
��� 
������� ��� 
�� �����
���	
������� ���	
�� ����

Another approach, followed by most ILP systems, isindirect relevance[9], according to which examples
are specified as ground facts, (e.g.

������	
��), and further related information is to be derived from
the current theory and the background knowledge.

Direct relevance simplifies the problem of learning, by assuming that all necessary information is
provided. However, it is a strong requirement, since the task of selecting the predicates to be used in the
concept description has already been carried out a priori. Nevertheless, since the derivation of the rest of
information is accomplished by using both the background knowledge, which is assumed correct, and the
current theory, indirect relevance does not seem free of problems. Some learning systems ask directly to
the user to decide about feature relevance [39], or require the user to distinguish primitive from derived
features. Some other systems handle indirect relevance within a bias. In CLINT [9], the system is able to
shift to a higher bias when the current one cannot describe the concept. In some approaches, knowledge
about the concept-description language can be exploited toprune the search space [38]. Sometimes this
knowledge is expressed in a declarative form or as irrelevance constraints.

4. Abduction: Dealing with Incomplete Observations

Abduction, just like induction, has been recognized as a powerful mechanism for performing hypothetical
reasoning in the presence of incomplete knowledge. The problem of Abduction, defined asinference to

1A clause is arange-restrictedwhen all variables occurring in its head also occur in the body.
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the best explanationaccording to a given domain theory, can be formalized as follows2 [10]:

Given a theory
�

, some observations� and some constraints�
Find an explanation� such that:

1.
� �� is consistent

2.
� �� satisfies�

3.
� �� �� �

Candidate abductive explanations� should be described in terms of domain-specific predicates,
referred to asabducibles, that are not (completely) defined in

�
, but contribute to the definition of

other predicates. They carry all the incompleteness of theory
�

(if it were possible to complete these
predicates then the theory would be correctly described). The integrity constraints� should provide
indirect information about these abducible predicates [19]. Since several explanations may hold in this
problem setting, integrity constraints can also be exploited to encode preference criteria for selecting the
best ones. Recent extensions allow to properly treat more general forms of integrity constraints, viewed
as active rules [26].

In general, the following schema forAbductive Logic Programming(ALP) [24] can be adopted:

Definition 4.1. An abductive logic theoryis a triple�� � �� ���� �
where:

� � is a (hierarchical) normal logic program;

� �
is the set of abducible predicates;

� �
is a set of integrity constraints represented as program clauses.

An abductive procedure can be exploited to deal with the problem of relevance and incompleteness.
Indeed, abduction is able to capturedefault reasoningas a form of reasoning which deals with incomplete
information [19]. Moreover, abduction can model alsonegation as failurerule (NAF) [7], with simple
transformations of logic programs into abductive theories. Thus, abduction gives a uniform way to deal
with negation, incompleteness and integrity constraints [24], as shown in the following.

An abductive proof procedure can find explanations that makehypotheses (abductive assumptions)
on the state of the world, possibly involving new abducible concepts. Indeed, when partial relevance is
assumed (see Section 3), it could be the case that not only theset of all observations is partially known,
but also any single observation may turn out to be incomplete.

The procedure is generally goal-driven by the observationsthat it tries to explain. Preliminary, the
top-level goal undergoes a transformation process that converts it into sub-goals. The theory and goals
must be transformed into theirpositive version, by converting each literal�� into its positive version�	� �

(default literals). Moreover, in order to embed NAF in such a mechanism, it is necessary to
add, for each predicate
, an integrity constraint stating that both
 and its negation cannot hold at the
same time (represented as

� ���	� �
). This provides a simple and unique modality for dealing with

non-monotonic reasoning.

2Here, the theory� is assumed to include also the background knowledge.
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input: � : theory,�: Datalog goal,�: initial abductive assumptions;
output: �� final abductive assumptions;
begin
�� := �; �� := �; � := �;
while �� �	 
 do

�� 	� ��
 � � � 
��;�� := �����; (*where� is the selection rule*)
if �� �� � �� then

���� := ����� 
���where� � � and
���
�� resolve upon�� ;

���� := ��
elsif �� � ��

���� := � ��
 � � � 
����
����
 � � � 
��
���� := ��

elsif �� �� �� and �! 	 "#$%�%&'$"(�� 
 ����
�� � ��� ��
���� := � ��
 � � � 
����
����
 � � � 
��
���� := �!

� := � ) �;
return ��
end.

Figure 2. Abductive Refutation Algorithm

Figure 2 sketches the classic algorithm for an abductive proof procedure proposed by Kakas and
Mancarella [20]. Initially, like in standard SLD derivations, a literal is selected. When it is not abducible
or a default one, the procedure continues with a resolution with clauses from

�
, through the resolution

operator*. Else, if the fact has been already assumed abductively (andconsistently) as true in previous
steps it can be dropped (a case of successful proof). As a further possibility, a new fact may be assumed
as true, provided that it is consistent with the current integrity constraints

�
, which is verified by the

consistency-check subroutine (reported in Figure 3). In this subroutine, whenever the literal to be tested
is an abducible or default one, but neither it nor its complement have been already abduced (on last if-
branch), the abductive procedure is called, in order to check whether it can be hypothesized by abduction.
The other branches are similar to derivations except that, when dealing with an abducible or default
literal, if it has already been abduced then it is simply dropped (i.e. consistency is trivially proved);
otherwise, if its complement has already been abduced or canbe abduced, the entire goal is dropped.
Thus, the two procedures may call each other both when a new abductive assumption requires further
consistency checks against the constraints and vice-versa.

As a mechanism forknowledge assimilation, abduction can be employed when observations about
the world are given (which does not necessarily represent anexplicit learning problem), and they are to
be assimilated into a knowledge base [10].

From an inferential point of view abduction and induction are similar since both are falsity-preserving
[28]. Hence, their conclusions can be controversial. Accordingly, they are both non-monotonic and
deal with forms of incompleteness of the available information. Abduction is generally understood as
reasoning from effects to causes (or explanations), while induction concerns the inference of general
rules from specific data. The two problems can be regarded as dual to each other since they share the
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input: � : theory,� � � ��: literal, �: initial abductive assumptions;
output: �� final abductive assumptions;
begin
�� :=

�� 	� ��
 � � � 
�� �� �������
���
 � � � 
 � � ��;
�� := �; � := 1;
while �� �	 
 do
�� 	 ��� � ����
 � � � 
��� 	 ��� ���;
Consider some�� � �� 
 � 	 �
 � � � 
	;
if �� �� � �� then
���� := ��� ������ 

��, resolved upon�� , such that� �� ��� and
 � � ;
���� := ��

else if�� � � �� and�� � ��, 	 � � then
���� := ��� � ����
 � � � 
����
����
 � � � 
���;
���� := ��

else if�� � � �� and�� � �� then
���� := ���; ���� := ��

else if�� � � �� and (�� �� ��
 �� �� ��) then
if  �� 	 
���"'�� 
��� 
��� then
���� := ���; ���� := ��

� := � ) �
return ��
end.

Figure 3. Consistency Derivation Algorithm

basic formal specification. In the former paradigm, an initial theory is needed containing the conditions
that can be involved in the construction of the explanation.These can be made explicit by means of
abductive inferences, thus knowledge cannot be induced without a prior abductive explanation. In the
latter, the theory is to be synthesized previously from examples by means of inductive mechanisms,
hence examples cannot be explained without a prior inductive inference.

Abductive and Inductive operators address different formsof incompleteness in the theories. Specif-
ically, abductionextracts from the theorya hypothesis which is considered to bear incompleteness with
respect to some (abducible) predicates but is complete withrespect to others. Moreover, the explanations
constructed by abduction are specific to the situation of that observation. Hence abduction can be seen
as a way to reason with incomplete information, rather than to complete knowledge [10].

Induction builds hypotheses in terms of the concepts possibly present in the theory. On the other
hand, the observations concern typically concepts that arenot yet defined in the theory, thus, as an effect
of abduction, the theory is completed with the definitions learned for these concepts. This suggests
that abduction can be employed at an initial phase of the learning task to explain the training data (raw
observations about the world), thus providing relevant examples, described at a higher, theory-dependent
level of knowledge, for deriving newer hypotheses with standard inductive operators.

The general schema of an inductive learning algorithm can beextended with an abductive proof
procedure. The integration of abduction in an inductive learning framework makes this process more
knowledge intensive, for the exploitation of the whole information available both in the theory and in the
background knowledge.
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In the original ALP framework, the theories are to be interpreted according to the Stable Model
semantics. Unfortunately, under such semantics it does nothold that

� �� ��� � �� �� � � � � � � �� �� ������� � �� �� 	 �� 	 
 
 
 	 ��

(think of
�

as a theory and of the��’s as positive examples). Thus, the completeness of the theory with
respect to the positive examples available cannot be checked by testing each of them separately. The
solution proposed in [24] is to test them in a pipeline so thatat each step the set of abducibles assumed
in the previous tests is taken into account. Another solution could be to adopt the declarative semantics,
where the above relation holds, and hence it is possible to test the positive examples separately. Indeed,
representing the theories as (hierarchical) normal programs allows to maintain the same semantics (least
Herbrand model), coping with negation by means of NAF. From amodel-theoretic point of view, there
are no problems in adopting this rule if only hierarchical theories are adopted. Indeed, the language
of definite clauses with integrity constraints has been proven to subsume NAF [12], thus integrity con-
straints can be simulated using NAF. Hence, the declarativesemantics of hierarchical abductive theories
comprises CET and the completion of clauses in the theory [7].

5. Abstraction: Dealing with an Incomplete Representation

Reasoning by abstraction is related to the problem of relevance. Abstraction is a transmutation that
reduces the amount of information conveyed by the description of a givenreference set[28] (i.e. a set
of concept instances). Typically, this reduction is lead tosuch an extent that the information that is
relevant to the achievement of a learning goal is maintained, whereas the rest of information is discarded
or hidden.

Abstraction can be regarded as a form of deductive transmutation since it preserves the important
information about the input and does not hypothesize anything (provided that the background knowledge
is complete).

In this case the gap to be abridged concerns different intensional language representations�� em-
ployed to account for the extensional knowledge of the worldrepresentation. When the current language
bias�� proves not to be expressive enough for representing conceptdescriptions that can explain the
examples, it could be the case to shift to a higher one [41, 9].Abstraction can provide operators for per-
forming this shift. If learning is modeled as a search process in a space of versions, typically by means
of an upper and a lower bounding set of versions [29], the necessity of shifting to a different bias can be
detected when the boundaries meet [9].

So far, abstraction has been investigated in the context of theorem proving and problem solving
[32, 18]. In this case, we address a different facet, namely the role that abstraction can play in inductive
learning. In particular, some studies have already focusedon learning concepts in propositional logics or
equivalent non structural representations, especially for learning plans for autonomous agents [42] at dif-
ferent task layers [37], and on showing how biologically-inspired Perceptual Learning mechanisms could
be used to build efficient lowlevel Abstraction operators that deal with real world data [4]. However, the
focus in the present work is on integrating abstraction in a first order concept learning framework as in
[17, 3, 2].

Recent developments in conceptual clustering tend to consider the case of classifications that orga-
nizeknowledge[3, 5]. These purely symbolic approaches are not based on distance optimization but on
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generalization languages and can take into account the available domain knowledge. Suitable languages
for describing structural knowledge can be represented by means of concept triples (like in RDF). The
problem is then how to deal with the NP-completeness of graphmatching. A possible solution lies in
progressively enriching the languages used to organize thesame extension of objects. Groups of triplets
covering the same extension (referencein Michalski’s terminology) can be formed as candidate gener-
alizations (most specific ones are preferred). Then nodes can be connected on the ground of inclusion
relationships between their extensions. More complex relations represented in a concept graph are ob-
tained by abstracting paths between concepts giving rise tonew abstract relations between them [3].

Abstraction is defined as a mapping between representationsthat are related to the same reference
set but contain less detail. Apparently, abstraction and inductive generalization are very similar notions
to each other. However, they belong to totally different classes of inference. Indeed, the former is
deductive and the latter inductive. Typically, abstraction is a truth-preserving operation, since deduction
is the supporting inference. The set of strong inferences that are derivable from the starting description is
larger than the one supported by the output one (strongabstraction). Nevertheless, it is possible to weaken
this setting, by allowing forms of abstraction that are not fully truth-preserving (weakabstraction) [28].
Hence, abstraction can be embedded in an inductive generalization framework; for instance, ignoring
details about the objects belonging to a class may facilitate the generation of rules for that class.

5.1. Syntactic Abstraction

The process of functional transformation of a representation into another one allows to meet two ob-
jectives: helping to solve the learning problem in the starting search space and making the search for a
solution more easily manageable [18].

Definition 5.1. Given two clausal theories
�

and
� �

built upon different languages� and�� (and deriva-
tion rules), anabstractionis a tuple�� �� � �� �, where� is a computable total mapping between clauses
in � and those in��. We will designate

�
asground theoryand

� �
asabstract theory.

The goal of such an abstraction mapping is to preserve some properties and discard others. Among
the properties that should be preserved, the most importantfrom the theorem proving viewpoint isderiv-
ability. A taxonomy of abstractions with respect to such a property can be drawn [18], characterizing the
statements of the theory in terms of theoremhood.

Definition 5.2. An abstraction�� �� � �� � is said to be:

� constant(TC) iff
�� � � �

� � � � � � � � ���;
� decreasing(TD) iff

�� � � �
� � � � ���� � � �

;

� increasing(TI) iff
�� � � �

� � � � � � � � ���.
Constant abstractions map theorems to theorems and vice-versa: all the solutions to a derivation

problem in the ground theory have a corresponding solution in the abstract theory. In decreasing abstrac-
tions, some solutions may be lost because of the detail elimination, but any solution in the abstract theory
can be traced back to the ground theory. Conversely, for increasing abstractions, the abstract problem
might have more solutions than the ground one and hence a solution cannot always be mapped back to
the ground language (false proof problem[40]).
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Table 1. Uses of abstraction classes

deductive abductive

positive TD TI

negative TI TD

Abstractions can be employed in different ways (see Table 1). A possible classification distinguishes
betweendeductiveand abductiveuses of these mappings. Deductively, a property for� ��� holding
in the abstract theory assures that the same property holds for

�
(e.g. derivability). Using abstraction

abductively gives a suggestion, not a guarantee, on the truth of a property in the ground theory. Another
dimension distinguishes betweenpositiveand negativeuses. With positive uses, given that� ��� is
derivable, then also

�
is (or may be) provable. In the negative use, if� ��� is unprovable, than

�
is (may

be) unprovable.
A deductive use yieldssoundtheorem proving strategies; an abductive one yieldscompletestrategies

(since it allows to always find proofs). In the inductive learning framework, one should focus primarily on
the abductive use of abstraction. Even increasing abstractions can be used for abducting, positively, that
something can be true in the ground theory, given the proof for some abstract elements (

� � � � ��� �
� � �

). Additionally, one can exploit abstractions abductivelyto suggest negative information that
could be true (

� � �� � ���� � �� �
).

5.2. Semantic Abstraction

So far, abstraction has been regarded as a mapping between formulæ. Since a mere rewriting cannot
guarantee for the preservation of consistency [40], a semantic formulation of abstraction becomes neces-
sary. Semantic abstractions are definable in first order logic because of the soundness of resolution. This
defines a TI abstraction once a universe of objects is given for the variables and calculation procedures
for functions and predicates (and the standard interpretation for connectives and quantifiers).

An original approach has been formalized in [17]. It preserves many important properties such as
completeness, consistency, extensionality and the hierarchy of the representations. The central point is
the construction of abstract data types starting from the objects of the ground theory, extending Tenen-
berg’s idea of restricted abstract mapping, by allowing abstractions as semantic mappings between mod-
els. Some of these definitions and results are briefly presented in the following, adapted to a first-order
clausal representation.

Definition 5.3. An abstraction theory�� from � to �� is a consistent set of formulæ:

	���� ������� 	� � ������� � 
 
 
 � ��� ���� 	� � �������

where	 is a predicate in��, �� � � � �� � � � �� are predicates of� and the functions�� � � � �� � � � �� map
the arguments of the

��s onto that of	.

i.e., it is a collection of intermediate concepts represented as a disjunction of alternative definitions. Each
concept can be equivalently expressed as a set of clauses with the same head	���

, implicitly assuming
the double entailment yielded by the completion semantics [7]. This allows for an easier integration with
the abductive operator defined in the previous section.
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Definition 5.4. Given two languages� and��, a clausal theory
� � ��

and an abstraction theory��
that maps predicates of� to predicates of��, we designateabstractionof

�
, the theory

� � � ���
, such

that:
� ��� � � �

.

Any least Herbrand model��
of
� �

can be considered as the abstraction of a model� of
�

, hence
the consistency is preserved. Also the generality relationship among clauses is preserved, and various
other properties fulfilled. In particular, preservation ofthe entailment corresponds to preservation of
correctness of the descriptions. Indeed, an abstract concept is defined as entailed by a series of charac-
teristics (descriptions). Thus, if a concept has been defined from a series of examples, and the ground
predicates cover these examples, the same does the abstractconcept, since the entailment is preserved
(correctness). In fact, the abstract concept may cover moreexamples, making the abstraction theory a
generalizing operator.

A notion of completeness of the abstraction theory can be given as follows.

Definition 5.5. An abstraction theory�� is completeness preservingiff it holds:� ������ � ��
implies

� ���� � �
for any

��� � �
and

�� ��� � � �
such that:

� ��� ���� �
��

and
� ��� � ��� � ��.

Thus, a completeness preserving abstraction theory coversexactly those examples that were covered
by the ground one. In the following, the focus is set on the problem of building abstraction theories
through proper operators.

5.3. Abstraction Operators

Among the three levels of a reasoning context (see Section 1)there may be a complex interplay. If they
are generated upwards, the world-perception� �� �

is the very source of information, that is recorded
into the structure	 and then described by the language

�
. Modifications to the structure and language

are merely a consequence of differences in the perception ofthe world, that may occur for a number of
reasons (e.g., the medium used and the focus-of-attention), even though the world itself does not change3.
Thus, abstraction should be defined as a mapping at the level of perceived world [43].

Abstraction takes place at level� �� �
by means of a set of operators
and then propagates to higher

levels, where it is possible to identify operators corresponding to the previous ones. At level	 we have�
, whereas at level

�
we have�. These sets can be reduced or augmented according to domain-specific

abstraction types, but in general contain operators for performing the following operations: grouping
indistinguishable objects into equivalence classes; grouping a set of ground objects to form a new com-
pound object4 that replaces them in the abstract world; ignoring terms that can be in the abstract world,
where they disappear; merging a subset of values that are considered indistinguishable; dropping a subset
of arguments, thus reducing the arity or a relation; eliminating all arguments, so that the function (or rela-
tion) moves from a predicate logic to a propositional logic setting (which corresponds to apropositional
abstractionat the language level).

Modifications are performed by mappings among perceived world, and cause corresponding mod-
ifications to the structure and language only as side-effects. Hence, given a ground reasoning context,

3In ML, this corresponds to the phase offeature selection.
4It is called term construction [17], and offers the most significant promises for limiting the complexity of learning in afirst
order logic setting, since it simplifies the matching process between hypotheses and examples.
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knowing the operators in
 it is possible not only to obtain the perceived world abstraction ��, but
also the abstract structure	� and language

�� by exploiting the correspondent operators in
�

and�,
respectively.

When concepts and examples are defined at ground level, the problem is to determine the features
of an abstraction mapping that make the corresponding abstract concepts moreeasily learnable in the
abstract space using

��. Besides, it should be specified how to map back an abstract concept definition
learnt in

�� to one in the ground language
��.

The definition of an unknown concept is searched for in a space, defined by the underlying language,
whose most important structure is the generality relationship among hypotheses5. Thus, in our case it
is desirable that abstractions preserve such a relationship (Generality-preserving Language Abstraction
Mapping, or GLAM). The only restriction is that the abstract structure must be used for evaluating the
truth of the abstracted hypotheses.

As regards the second problem, it should be noted that while syntactic
��

abstractions are depre-
cated for loosing theorems, when shifting to the ground space from the abstract one, this may no longer
be a limitation in our case, as long as the generality relation is preserved. Indeed, in the presented
framework, some abstractions defined at the domain level maynot be expressible at the language one.

5.4. A Framework for Abstraction Operators in ILP

In inductive learning, the shift to a higher level representation (shift of language bias[41]) can be per-
formed directly when the abstraction theory is given. Thus it can be exploited to shift in a hierarchy of
search spaces. More interestingly, when the abstraction theory is not given, it has to be learned during
the process of learning. Unfortunately, it has been proven that the shift is not always decidable [36].

Inverse resolutionoperators [30], by tracking back resolution steps, can suggest new salient proper-
ties and relations of the learning domain. They are divided in V-operators and W-operators depending on
the form of the resolution step(s) inverted. In particular the W-operators may introduce new predicates.
Inverse resolution operators can be a valuable mechanism tobuild abstraction theories, as introduced
in [16]. To this purpose, the absorption, inter-construction and intra-construction operators can be ex-
ploited, also in the case of first order clauses. This paper isinterested in the case of a Datalog program
as ground space of the abstraction, as in [34], where clausesareflattened, hence function-free.

Definition 5.6. (Inversion Resolution Operators)

absorption: let
�

and
�

be two Datalog clauses. If there exists a unifier� such that�	 � �
������	 � �
������, then applying the absorption operator yields the new clause
��

such that:

� �������� � �������
� �
������ � ��
����� � 	� � ����������.

inter-construction: let
��� �� � �� � � � ��� be a set of Datalog clauses. If there exists a set of literals�

and a unifier�� for each clause
��, such that

�	� � �
������� 	� � ���, then we define:

5Given two hypotheses�	 and�
, �	 is more general than�
 if the set of models of�
 is included in that of�	.
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� a new predicate
� � �

� for all � � �� � � � �� �
������ can be rewritten as��
������ � 	�� � �����.
intra-construction: let

��� �� � �� � � � ���be a set of Datalog clauses. If there is a subset	 � �
������
for all �, then we define:

� a new predicate with the clauses:
� � �� �� � �� � � � ���where�� � �
������ � 	

� the predicate in�������� can be defined by a single clause:�������� � 	��.

Absorption may generalize the clause it is applied to. Sincenormally absorption should not gener-
alize the clauses, it is important to eliminate the direct orindirect generalizations that absorption might
cause. This could be solved by using an “oracle” or the CWA andcompletion semantics. However, a
better solution is to limit the absorption operator as proposed by Giordana and Saitta, by introducing the
Non-Generalizing absorptionoperator (NG-Absorption) [16]. Like for absorption, also the limitation of
NG-absorption makes it not applicable to recursive clauses. However, it is possible to see that abstracting
a theory

�
by using NG-absorption and the constructive operators (inter and intra-construction), the re-

sulting abstract theory
� �

is consistent with the models of
�

(even non minimal ones). These abstraction
operators realize the so-calledNon-Generalizing CP-abstraction. In the actual integration of abstraction
in an inductive learning system, a more conservative operator, namedsaturation[34], can be used.

A different way to cope with generalizing abstraction operators is to employ an abstraction operator
which has the effect of specializing the theory. The underlying idea is that, similarly to the previous
operators, based on the inversion of resolution, one could use an operator that partially performs the res-
olution step. In fact this operator, known asunfolding[1], has been studied as a mechanism for program
transformation, aiming at the improvement of logic programs in terms of efficiency and comprehensi-
bility, which is a typical case oftheory restructuring. Unfolding can be applied directly to abstraction
theories. Indeed, a natural way to specialize an overly general abstraction theory�� is specializing a
clause

� � �� by substituting it with its resolvents upon some atoms in thebody. It is straightforward
to notice that the new abstraction theory�� � is implied by�� . Some of these resolvents can be deleted
from �� �, thus specializing the theory and ruling out some unwanted possible generalizations.

6. A Case Study for a Combined Framework

Two problems of the traditional approach to predicate-learning are the partial relevance of the available
evidence and the infeasibility of a learning problem when the language is not enough powerful to express
a proper predicate definition. Integration of different inference strategies can help to carry out a broader
approach to inductivepredicate-learning[9]. Indeed, there can be a rich ground of interaction among
them, both as regards the semantic specification and their computation. In the following we analyze a
system that is endowed with multistrategy capabilities, according to the Inferential Theory of Learning
framework presented in Section 2, in order to improve effectiveness and efficiency of the learning task.
Such a system, named INTHELEX, originally developed as a purely inductive learner, was first provided
with abductive capabilities in [15], and successively extended with abstraction and deduction operators,
showing interesting performance when applied to complex real-world problems [14]. It is an incremen-
tal learning system for the induction of hierarchical theories from positive and negative examples, using
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Figure 4. New INTHELEX architecture

Datalog�
�

(see Section 3) as a representation language. Specifically,theories (and background knowl-
edge) are represented as sets of constant-free clauses whose body describes the definition of the concept
in the head. As to the relevant evidence, it will be represented by ground clauses whose body describes
the observations accounting for the example in the head. Examples regard directly the concepts to be
learned, yet no complete relevance is assumed. Observations concern concepts that are “perceived” from
the world.

The new version results in a novel integration scheme for coordinating and harmonizing different
inference strategies aimed at a profitable cooperation. Namely, deductionexploits the provided Back-
ground Knowledge (i.e. some partial concept definitions known to be correct, and hence not modifiable)
to recognize known objects in an example description and explicitly add them to the description itself.
Abstractioncan be cast as the process of focusing on what is relevant in anobservation. Indeed, ignoring
the details about the objects belonging to a class may facilitate the generation of rules for that class.
Abductionis used to complete the observations, whenever possible, insuch a way that the examples
they represent are explained (if positive) or rejected (if negative). This prevents the refinement operators
from being applied, as long as possible, leaving the theory unchanged. Implementing the theoretical
combined framework obviously raises new issues due both to the representation formalism used by the
system and to the procedures according to which it manipulates the available data. Both abduction and
abstraction are exploited to perform a pre-processing of incoming information. Even if using opposite
approaches, both aim at reducing the computational effort required to learn a correct theory with respect
to the incoming examples.

Figure 4 graphically represents the architecture of the newversion of INTHELEX, embodying the
cooperation between the different multistrategy operators. The presence throughout the diagram of dot-
ted arrows, representing (possibly abductive) derivations, demostrates how abduction is pervasive in the
proposed behaviour. Specifically, abduction can be inhibited by the user in any of these derivations, trans-
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forming them into normal derivations, in order to make the system more cautios in relying on facts whose
truth value is not guaranteed to be correct. Let us now describe the typical information flow inside the
architecture. Every incoming example preliminarily undergoes a pre-processing step of abstraction, that
eliminates uninteresting details according to the available operators provided in the abstraction theory
(possibly hypothesizing unknown facts, if necessary). Then, the example is checked for correct expla-
nation according to the current theory and the background knowledge, and it is stored in the examples
repository. In the coverage and saturation steps, an abductive derivation that exploits the abductive theory
(containing the abducibles and the integrity constraints)is used if abduction is turned on, otherwise the
normal deductive derivation is started to reach the same goal without hypothesizing unseen information.
In case the derivation fails, a theory refinement is necessary, and thus the example is (abductively or
deductively) saturated and the inductive engine is startedin order to generalize/specialize the proper def-
initions, possibly using the abductive or deductive derivation whenever needed. The resulting refinement
is then implemented in the new version of the theory, and the procedure ends.

Figure 5 summarizes the new behavior of the system when it is applied to each new example.
� �

�� ���
represents the set of all positive (

��
) and negative (

��
) processed examples,

�
is the

example currently examined,
�

represents the theory generated so far according to
�

. For simplicity,��
(the background knowledge),���� (the abstraction theory) and���� (the abduction theory), that

are to be provided by the user, are assumed to be fixed parameters (and hence are not present in the
procedure headings).���� and	��� are, respectively, the examples generated by the abstraction and
saturation phases from the example;

�
is the set of literals returned by the abductive derivation when

successfully applied to a goal� in theory
�

. ProcedureDerive exploits abduction (through procedure
Abduct) or deduction (through procedureDeduct), according to the specific settings for each step of
the revision process, to prove a goal. It returnstrue or false, according to the success or failure of the
proof procedure.Saturateis the procedure that returns all implicit information in the given example.
GeneralizeandSpecializeare the inductive operators used by the system to refine an incorrect theory.

The process of theory revision, as performed by the system, is now briefly summarized. When a
positive example is not covered, a revised theory is obtained in one of the following ways (listed by
decreasing priority) such that completeness is restored: replacing a clause in the theory with one of its
generalizations; adding a new clause to the theory; adding apositive exception. When, on the other hand,
a negative example is covered, a revised theory that restores consistency is reached by performing one
of the following actions: adding positive literals to clauses; adding a negative literal to a clause; adding
a negative exception.

Deduction is performed by a saturation operator that exploits a dependency graphdescribing the
dependencies among the concepts to be learned. Whenever a new example is taken into account, and
before it is stored in the historical memory, it undergoes a saturation phase. If any of its (direct or
indirect) sub-concepts in the dependency graph can be recognized in its description according to the
definitions learned thus far and the Background Knowledge, literals concerning those concepts are added
(properly instantiated) to the example description. The background knowledge rules cannot be modified
by the refinement operators.

According to the framework described in Section 5, abstraction consists in the shift from a description
language to a higher level one, and an abstraction theory is used to perform such a shift. The abstraction
theory, if any, must be given by the Expert (i.e. it has not to be learned by the system), and the system will
automatically apply it to each example before processing it(thus, the shift to the higher level language
always occurs, and it occurs just once for each example). Indeed, incremental systems cannot change
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Revise (� : theory; �: example;� 	�� ���
: historical memory);��%� �Abstract(�,

��%� )
if Derive(

��%�, � , 
) succeedsthen
� �� � ���%� �
�

else
� �� ���%��
&� � ��%� � Saturate(

��%�, � ���)
if
��%� is a positive examplethen
Generalize(� 
��
�
&� 
��

)
else

Specialize(� 
��
�
&� 
��)

Derive (�: goal; � : theory; 
: abduced literals;)
if Abduction is ON at the current stage of processingthen

 ��
if success�Abduct(�
� ���
���� , 
) succeedsthen

Add to
 the abduced literals
else

 � 

success�Deduct(�, � ���)

return success

Figure 5. Multistrategy Theory Revision in INTHELEX

the abstraction theory in the middle of a learning task, because the result of abstracting separately the
partial theory already learnt and the past examples would not be the same as learning a theory directly
from examples described at the new abstraction level. As already pointed out, abstraction at the language
level is only a consequence of an abstraction step occurred at the perception level and memorized at the
structure level. This is reflected in the system by the fact that examples and related observations are stored
in the historical memory, and used for undergoing the normalprocessing, in the new (abstract) form, and
not as they are provided to it, which corresponds to application of operators in the set

�
. Conversely, the

abstraction theory contains information for performing the shift specified by the operators of the set�.
In detail, the abstraction operator of Absorption, proposed in the theoretical framework in Section 5.4,
is applied to the example description exploiting the abstraction theory. Unlike deduction, there is no
reference to the dependency graph in the application of abstraction. Since the structure level must be
abstracted, and the learned theory must be abstracted too, the abstraction step must precede the storage
of the incoming examples (and hence the possible inductive refinement). In general, application of these
operators yields a TD abstraction, in that they eliminate information that in principle could be useful
for proving other facts. Assuming that the provider of the abstraction theory knows that no detail that it
eliminates is necessary for any proof that the system needs to carry out, all the ‘important’ things that
the system could prove are preserved also after the languageshift, and hence it can be considered a TC
abstraction.

According to the framework in Section 4, the system has been provided with an abductive proof pro-
cedure to help it in managing situations in which not only theset of all observations is partially known,
but each observation could be incomplete too [15]. Specifically, abduction has been exploited to com-
plete the observations in such a way that the corresponding examples are either covered (if positive)
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or ruled out (if negative) by the already generated theory, thus avoiding, whenever possible, the use of
the operators to modify the theory. The set of abduced literals for each observation is minimal, which
ensures that the inductive operators use abducibles only when really needed. Since specific facts are not
allowed in the learned theory, the abduced information is attached directly to the observation that gener-
ated it, so that the ‘completed’ examples obtained this way will be available for subsequent refinements
of the theory. Such information will also be available to subsequent abductions, in order for them to
preserve consistency among the whole set of abduced facts. The negative literals that might appear in
the set of abduced literals are not added to the description,but are handled by means of the CWA. Since
observations are described exclusively in terms of basic predicates in the description language, only such
predicates have been considered as abducibles. These predicates do not have a definition in the theory,
which also complies with the requirements for abducibles. No explicit integrity constraints for default
negation is needed: they are implicitly assumed, and default negation is simulated by means of NAF
(thus embedding it in the normal Prolog derivation). To sum up, when a new observation is available,
the abductive proof procedure is started, parameterized onthe current theory, the example and the cur-
rent set of past abductive assumptions. If the procedure succeeds, the resulting set of assumptions, that
were necessary to correctly classify the observation, is added to the example description before storing
it (of course, being it minimal by definition, if no assumption is needed for the correct classification,
the example description is not affected). Otherwise the usual refinement procedure (generalization or
specialization) is performed.

7. Conclusions

This paper presented a survey of relevant research in the literature aimed at studying the possibile inte-
gration of different inference strategies, in order to carry out a broader approach toinductive learning
than the classical single-strategy framework. Indeed, there can be a rich ground of interaction between
different operators, both as regards the semantic specification and their computation.

In particular, two important problems of inductive learning have been considered, namely the prob-
lem of relevance within a language bias and the shift of language bias. Initially, an abductive proof
procedure has been discussed that aims at attacking the former problem by hypothesizing likely facts
that are not explicitly stated in the observations. Successively, a way for extending the framework with
the integration of deductive operators based on abstraction has been presented, allowing to switch to
more suitable description languages when the adopted one proves unable to express the target concept(s)
to be learnt.

Finally, a framework in which these methodologies have beenbrought to cooperation has been men-
tioned. It is implemented in an inductive learning system, by extending it with features that make it
able to handle observation descriptions both by eliminating details that are not significant to the learning
process, and by adding unseen information that can be consistently hypothesized or deduced.
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Data Mining(S. Džeroski, N. Lavrač, Eds.), Springer, September 2001, 262–291.



20 F. Esposito et al. / Multistrategy Operators for RelationalLearning...

[23] van der Laag, P.:An Analysis of Refinement Operators in Inductive Logic Programming, Ph.D. Thesis,
Erasmus University, Rotterdam, The Netherlands, 1995.

[24] Lamma, E., Mello, P., Milano, M., Riguzzi, F., Esposito, F., Ferilli, S., Semeraro, G.: Cooperation of Abduc-
tion and Induction in Logic Programming., in:Abductive and Inductive Reasoning: Essays on their Relation
and Integration(A. Kakas, P. Flach, Eds.), Kluwer, 2000, 233–252.

[25] Lloyd, J.: Foundations of Logic Programming, 2nd edition, Springer, 1987.

[26] Mancarella, P., Terreni, G.: An Abductive Proof Procedure Handling Active Rules,AI*IA 2003: Advances in
Artificial Intelligence, 8th Congress of the Italian Association for Artificial Intelligence, Pisa, Italy, Septem-
ber 23-26, 2003, Proceedings(A. Cappelli, F. Turini, Eds.), Lecture Notes in Computer Science, vol. 2829
of Lecture Notes in Computer Science, Springer, 2003.

[27] Michalski, R.: A Theory and Methodology of Inductive Learning, in: Machine Learning: an artificial
intelligence approach(R. Michalski, J. Carbonell, T. Mitchell, Eds.), vol. I, Morgan Kaufmann, San Mateo,
CA, 1983, 83–134.

[28] Michalski, R.: Inferential Theory of Learning. Developing Foundations for Multistrategy Learning, in:
Machine Learning. A Multistrategy Approach(R. Michalski, G. Tecuci, Eds.), vol. IV, Morgan Kaufmann,
San Mateo, CA, 1994, 3–61.

[29] Mitchell, T.: Generalization as Search,Artificial Intelligence, 18, 1982, 203–226.

[30] Muggleton, S., De Raedt, L.: Inductive Logic Programming, Journal of Logic Programming, 19/20, 1994,
629–679.

[31] Nienhuys-Cheng, S., de Wolf, R.:Foundations of Inductive Logic Programming, vol. 1228 ofLecture Notes
in Artificial Intelligence, Springer, 1997.

[32] Plaisted, D.: Theorem Proving with Abstraction,Artificial Intelligence, 16, 1981, 47–108.

[33] Reiter, R.: Equality and Domain Closure in First Order Databases,Journal of ACM, 27, 1980, 235–249.

[34] Rouveirol, C., Puget, J.: Beyond Inversion of Resolution, Proceedings of the 7th International Conference
on Machine Learning, Morgan Kaufmann, Austin, TX, 1990, 122–130.

[35] Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A Logic Framework for the Incremental
Inductive Synthesis of Datalog Theories,Proceedings of the 7th International Workshop on Logic Program
Synthesis and Transformation(N. Fuchs, Ed.), LNCS, vol. 1463 ofLNCS, Springer, 1998, 300–321.

[36] Stahl, I.: Predicate Invention in Inductive Logic Programming, Advances in Inductive Logic Programming
(L. D. Raedt, Ed.), IOS Press, Amsterdam, 1996, 34–47.

[37] Stone, P., Veloso, M. M.: Layered Learning,Machine Learning: ECML 2000, Proceedings of the 11th
European Conference on Machine Learning, vol. 1810, Springer, Berlin, 2000, 369–381.

[38] Subramanian, D., Genesereth, M.: The relevance of irrelevance,Proceedings of the 10th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann, 1987, 416–422.

[39] Tecuci, G., Kodratoff, Y.: Apprenticeship learning innonhomogeneous domain theories, in:Machine Learn-
ing. A Multistrategy Approach(Y. Kodratoff, R. Michalski, Eds.), vol. III, Morgan Kaufmann, San Mateo,
CA, 1990, 514–552.

[40] Tenenberg, J.: Preserving Consistency Across Abstraction Mappings,Proceedings of the 10th International
Joint Conference on Artificial Intelligence, Milan, Italy, 1987, 1011–1014.

[41] Utgoff, P.: Shift of Bias for Inductive Concept Learning, in: Machine Learning: an artificial intelligence
approach(R. Michalski, J. Carbonell, T. Mitchell, Eds.), vol. II, Morgan Kaufmann, Los Altos, CA, 1986,
107–148.



F. Esposito et al. / Multistrategy Operators for RelationalLearning... 21

[42] Zucker, J., Bredeche, N., Saitta, L.: Abstracting Visual Percepts to Learn Concepts,Proceedings of Abstrac-
tion, Reformulation and Approximation, 5th InternationalSymposium, SARA 2002(S. Koenig, R. C. Holte,
Eds.), Lecture Notes in Computer Science, vol. 2371 ofLecture Notes in Computer Science, Springer, 2002,
256–273.

[43] Zucker, J.-D.: Semantic Abstraction for Concept Representation and Learning,Proceedings of the 4th Inter-
national Workshop on Multistrategy Learning(R. S. Michalski, L. Saitta, Eds.), 1998, 157–164.


