Fundamenta Informaticae 69 (2006) 1-21 1
10S Press

Multistrategy Operators for Relational Learning and Their
Cooperation

F. Esposito, N. Fanizzi, S. Ferilli, T.M.A. Basile

N. Di Mauro*

Dipartimento di Informatica

Universit degli Studi di Bari

Via Orabona 4, 70125 Bari, Italy
esposito,fanizzi,ferilli,basile,ndm@di.uniba.it

Abstract. Traditional Machine Learning approaches based on singégdnce mechanisms have
reached their limits. This causes the need for a framewaikititegrates approaches based on ab-
duction and abstraction capabilities in the inductivené@ay paradigm, in the light of Michalski's
Inferential Theory of Learning (ITL). This work is intendexs a survey of the most significant
contributions that are present in the literature, concgrsingle reasoning strategies and practical
ways for bringing them together and making them cooperateder to improve the effectiveness
and efficiency of the learning process. The elicited rolerofhductive proof procedure is tack-
ling the problem of incomplete relevance in the incomingregkes. Moreover, the employment of
abstraction operators based on (direct and inverse) t@soho reduce the complexity of the learn-
ing problem is discussed. Lastly, a case study that implésrtee combined framework into a real
multistrategy learning system is briefly presented.

Keywords: Inductive Learning, Abstraction, Abduction, MultistrgieLearning

1. Introduction

The last decade revealed that traditional Machine Learapgyoaches have reached their limits [28].
Indeed, most of them exploit simple or constrained knowdepresentations for the sake of efficiency
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and are based on single (often simple or simplified) infegenechanisms. In order to broaden the inves-
tigation and the applicability of machine learning schenitas necessary to move on to more expressive
representations which require more complex inference amsims. One possibility is making different
inference strategies work together, taking advantageedbémefits that each approach can bring.

This paper overviews and summarizes a number of studies fatan the literature, aimed at enforc-
ing the integration of multiple inference strategies withilogic programming framework foelational
learning a research area that has come evolving in the last year813@,1]. Indeed, although sev-
eral learning methodologies based on different inferéntiechanisms have been proposed for complex
multi-relational scenarios, rarely they have come to a ecafpon. Therefore, in the light of Michalski's
Inferential Theory of Learning (ITL) [28], there can be atriground of interaction between different
inferential operators, as regards both the semantic spatiiin and their computation.

The general schema of the inductive predicate-learningdigm BK U T = O) involves four
variables, namely: the languadk for which in this paper theingle representation trick8] will be
assumed, the background knowledg&  and the theoryl” that contain concept definitions explaining
the occurrence of some observati@ns In inductive learning, observatiors stand for the extensional
representation of concepts, and the aim is building an sn@al descriptiod’, expressed in the language
L, that explains such concepts, supposed that is insufficient to give such an explanation. Most
approaches focus on inductive mechanisms to fine-fuie order to achieve the learning goal. This
goal has been pursued by identifying desirable properiethé inductive refinement operators, such as
ideality [23] andoptimality [9], and studying their mutual relationships and the caadg under which
they can be obtained. For instance, a framework for the defindf ideal operators that can exhaustively
search the space of candidate concept definitions and findoct@mes, when the languages able to
express them, has been proposed in [13].

In a multistrategy perspective, such a framework can bendeig by means of operators descend-
ing from other inferential strategies in order to act on theaining variables of the general inference
schema, when problems of different kinds arise. Specificalio problems of the traditional approach to
predicate-learning can be tackled: the partial relevafteeoavailable evidenc® and the insolvability
of a learning problem when the languages not enough powerful to express a proper predicate defini
tion in 7. The idea is to employ, respectively, abduction and akstraco overcome such limitations.
The former would pre-process the observations in orderitigbrthe gap between the observations and
the (more operational) instances of the target concepts.laftter should guarantee the shift to a higher
language bias whenever in the current one it is impossibbapture the target predicate definition.

From an operational point of view, abduction should in sonag womplete the observations with
unknown facts that are likely to take place in the given situtmand that can help in solving the learning
problem at hand; it can be carried out by an abductive praméqaure, that shares the falsity-preserving
nature with the inductive refinement operators [24]. As rdgabstraction, it should be included for
dealing with cases when learning can be more effective dnttake place at multiple different levels of
complexity, which can be confronted to the language biaf$ sbinsidered in [9]. A useful perspective
for the integration of this inference operator in an indeetiearning framework was given in [43]. In
this view, concept representation deals with entitiesrdmghg to three different levels. Underlying any
source of experience there is therld, whereconcreteobjects (the ‘real things’) reside. Itis not directly
known, since any observer’s access to it is mediated bpdriseptionof it. The percepts reality con-
sists in the ‘physical’ stimuli produced on the observerb&aavailable over time, these stimuli must be
memorized in an organizestructure i.e. anextensionatepresentation of the perceived world, in which
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stimuli related to each other are stored together. Finallgeason about the perceived world and commu-
nicate with other agents,languageis needed, that describedritensionally World, representation and
language make upraasoning contextin the setting dealt with in the following, situations atgpposed
not to change in time.

Given a reasoning context, it is possible to reason at anhefiven levels. Moreover, reasoning
at multiple levels can be very advantageous both in effentgs and efficiency [22]. Then, the learning
framework can be extended, for the exploitation of dedectigerators based on abstraction, acting on
the detail of the information at any level of the reasoningtest. Indeed, it could be the case that, by
simplifying the problem setting or, equivalently, by shiff the representation, a solution for the learning
problem is more easily reachable.

The remainder of this paper is organized as follows. Se@ioecalls a theoretical framework for
integrating different learning strategies. Section 3 sampes notions about first-order representation
languages and the problem of the relevance of the examplemn, Bection 4 discusses the integration
of abductive reasoning with inductive refinement operatarsed Section 5 deals with the support of
operators based on abstraction to the learning procestoisédntroduces a possible integration of the
two in a learning system. Lastly, Section 7 concludes thepap

2. Michalski’'s Inferential Theory of Learning

Learning is generally defined as a behavior change due taierpe. A learning agent must be able to
performinferenceand must havenemorythat supplies the knowledge needed and records the results f
future use. Thus, an equation

Learning = Inference + Memory

can be drawn. In humans, declaratieerfceptudl and procedural knowledgekills) seem to reside in
different neural structures, and are acquired in diffekgays. Since there is a “conscious” access to
the former kind, but not to the latter, acquiring the formebased primarily on an explicit reasoning
and memorizing of the results (“studying”), whereas adqggithe latter relies primarily on practice and
exercise (without much reasoning). Such a distinction samédappen in computer systems, that store
and access both kinds of knowledge in the same way.

More precisely, thénferential Theory of LearnindILT) defines learning as a process affected by
three fundamental factors, that make uparning task what information is provided to the learnen{
puf), what the learner already knows that is relevant to thetifipackground knowledg@&K) and what
the learner wants to accomplisbo@l). The process involved in accomplishing a learning goal lwan
characterized in terms of high-level inference patteraied knowledge transmutationsach of which
takes the input and the learner's BK and generates anotbes pf knowledge. They represent different
reasoning methods, i.e. classes of transformations tndte€amplemented in many different ways. De-
pending on the knowledge representation and the compughtinechanism, knowledge transmutations
are performed explicitly or implicitly (cf. symbolic systes vs. subsymbolic ones).

Any knowledge transmutation is characterized by the typenaferlying inference along the truth-
falsity dimension, that determines the validity of its cluston. Since any kind of inference may be
involved in a learning process, a complete learning theangtrimclude a complete theory of inference
that accounts for all possible types of knowledge transédions (see Figure 1).
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CONCLUSIVE

Conclusive Deduction Conclusive Induction

Contingent Deduction

CONTINGENT Contingent Induction

DEDUCTIVE INDUCTIVE
Truth- Falsity-
presenving presening

Figure 1. A classification of major types of inference

Inferences can be divided in two fundamentals types: dedueind inductive. To define these
kinds of inference in a language-independent way;, it isuigefstart from thundamental equation for
inference

PUBK =C 1)

whereP is a set of statements (callpdemise, BK is the reasoner’background knowledgendC' is a
set of statements (callambnsequent

Deductive inference “traces forward” Equation 1, derivifiggiven P and B K ; inductive inference
traces it “backward”, hypothesizing givenC and BK. Hence, deduction is a truth-preserving infer-
ence, while induction is a falsity-preserving one (meariaj if C is false, theP cannot be true).

If Equation 1 is interpreted in an approximate, common-semay, the “strong” (valid) entailment
way may be replaced by a “weak” one, which leads to anothéc Hegtinction among types of inference.
Universalinferences assume the “strong” entailmerintingentones assume the “weak” entailment.
According to such a distinction, deduction (resp., indut}iis “strongly” or “weakly” truth-preserving
(resp., falsity-preserving). Universal deductive infexe is strictly truth-preserving, and universal in-
duction is strictly falsity preserving. Contingent dedaot(resp., induction) is truth-preserving (resp.,
falsity-preserving) only to the extent to which contingdependencies involved in reasoning are true.

Both contingent deduction and contingent inductiondbductior) are based on domain-dependent
relationships. There is no principal difference betweeamtlexcept if one assumes thatin Equation 1
indicates a causal ordering (i.#,is viewed as a cause, agtas a consequence). In this case, contingent
deduction yields plausible/likely consequences of givamses; abduction yields plausible/likely causes
of given consequences.

The intersection of truth-preserving and falsity-pregepinference represents an equivalence-based
inference.Analogycan be viewed as an extension of equivalence-based ingerérmman be characterized
as a combination of induction (involved in detecting an egilal match, i.e. the properties and/or
relations similar for the two analogs) and deduction (thsg#suthe hypothesized analogical match to
derive unknown properties of the target analog).

3. Representation and Relevance

In the following, we adopt a representation languahexpressing concepts as predicate definitions
in logic programsmade up of Dataloglauses Refer to [25, 31] for the basic notions about clausal
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representation. Datalog [6] is the function-free (yet mmstant-free) fragment of pure Prolog. Hence,
a Datalog program is a finite set of range restrittddrn-clauses without functors of arity> 0. It has
been thought for describing deductive databases.

In such a context, typically thenique names assumpti¢d3] is adopted, which has been extended
by theObject Identityassumption [35] that is similar to thanique substitution semanti¢gl]. Such an
assumption requires thain‘a clause, terms denoted with different symbols must himclis i.e. they
represent different entities of the domain.

Datalog”", the language resulting from the application of Object tifgrio Datalog, has the same
expressive power as Datalog [3F}subsumption and implication under Object Identity indoogering
relationships between clauses that turned out to be weakendre manageable than the standard ones.
Hence, it is expected that effective operators from othiramtial mechanisms may be defined in this
framework. A thorough discussion of these generalizatiadeis can be found in [13].

In empirical learning most of the information comes from rexges and observations, hence they
must be expressive enough to convey the information thadessary for the inference of general rules.

Many approaches to concept-learning need that each exasmaenpletely specified. This property
is calleddirect relevancd27]. For instance, the examples could be represented asd@auses whose
body contains all the needed information accounting forfdlcestated in the head:

bicycle(b) < frame(f,b), saddle(s,b),
handlebar(h,b), pedals(p,b),
wheel (w;,b), wheel(wy,b),
spikes(k;,w;), spikes(kp,ws),
rim(ry,wy), rim(ry,ws),
tire(ti,w1), tire(tg,ws)

Another approach, followed by most ILP systemsndirect relevancg9], according to which examples
are specified as ground facts, (etd.cycle (b)), and further related information is to be derived from
the current theory and the background knowledge.

Direct relevance simplifies the problem of learning, by asigg that all necessary information is
provided. However, it is a strong requirement, since thke tdselecting the predicates to be used in the
concept description has already been carried out a priewveNheless, since the derivation of the rest of
information is accomplished by using both the backgrourmtaedge, which is assumed correct, and the
current theory, indirect relevance does not seem free dfi@nos. Some learning systems ask directly to
the user to decide about feature relevance [39], or requir@iser to distinguish primitive from derived
features. Some other systems handle indirect relevanbewaitias. In CLINT [9], the system is able to
shift to a higher bias when the current one cannot descrivedhcept. In some approaches, knowledge
about the concept-description language can be exploitpdutte the search space [38]. Sometimes this
knowledge is expressed in a declarative form or as irrelvaonstraints.

4. Abduction: Dealing with Incomplete Observations

Abduction, just like induction, has been recognized as agoiwmechanism for performing hypothetical
reasoning in the presence of incomplete knowledge. Thdgrobf Abduction, defined asference to

A clause is aange-restrictedvhen all variables occurring in its head also occur in theybod
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the best explanatioaccording to a given domain theory, can be formalized asviafl [10]:

Given a theoryT’, some observation® and some constrainis
Find an explanatiord such that:

1. T'U H is consistent
2. T U H satisfiesl

3. TUHEO

Candidate abductive explanatioiis should be described in terms of domain-specific predicates,
referred to asabducibles that are not (completely) defined iR, but contribute to the definition of
other predicates. They carry all the incompleteness ofryh@o(if it were possible to complete these
predicates then the theory would be correctly describedje ihtegrity constraintd should provide
indirect information about these abducible predicate$. [Bihce several explanations may hold in this
problem setting, integrity constraints can also be exptbib encode preference criteria for selecting the
best ones. Recent extensions allow to properly treat morergkforms of integrity constraints, viewed
as active rules [26].

In general, the following schema fébductive Logic Programmin@ALP) [24] can be adopted:

Definition 4.1. An abductive logic theorys a triple AT = (T, A, Z) where:
e T'is a (hierarchical) normal logic program;
e A is the set of abducible predicates;
e T is a set of integrity constraints represented as prograoseta

An abductive procedure can be exploited to deal with thelprolof relevance and incompleteness.
Indeed, abduction is able to captalefault reasonin@s a form of reasoning which deals with incomplete
information [19]. Moreover, abduction can model atsggation as failureule (NAF) [7], with simple
transformations of logic programs into abductive theorigsus, abduction gives a uniform way to deal
with negation, incompleteness and integrity constrai?dg,[as shown in the following.

An abductive proof procedure can find explanations that niggetheses (abductive assumptions)
on the state of the world, possibly involving new abducildaceepts. Indeed, when partial relevance is
assumed (see Section 3), it could be the case that not ongethad all observations is partially known,
but also any single observation may turn out to be incomplete

The procedure is generally goal-driven by the observatibasit tries to explain. Preliminary, the
top-level goal undergoes a transformation process thatectait into sub-goals. The theory and goals
must be transformed into theiositive versionby converting each literatp into its positive version
not_p (default literalg. Moreover, in order to embed NAF in such a mechanism, it isesgary to
add, for each predicate an integrity constraint stating that bagthand its negation cannot hold at the
same time (represented as p,not_p). This provides a simple and uniqgue modality for dealinghwit
non-monotonic reasoning.

2Here, the theor{ is assumed to include also the background knowledge.
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input: T': theory,GG: Datalog goalA: initial abductive assumptions;
output: A’ final abductive assumptions;
begin
G1:=G; Ay =A0:=1;
while G; # () do
Gi=+«Lq,...,Ly;
L; .= R(Gy); (*whereR is the selection rul§
if L; ¢ AUD then
Gi+1 = R({G;,C}) whereC € T and{G;, C'} resolve uporL;;

AVIRRE YAV

elsif L; € A;
Gi+1 =< Ll, .. .,Ljfl,L]#l, - ,Lk
AVISRE WAV,

eIsifZJ §é Ai andEIAc = consz'stency(T, {Lj}, Ai U {LJ})
Gi+1 =< Ll, - -Lj—lij+1; - ,Lk

3

A = Ac
=1+ 1;
return A;

end.

Figure 2. Abductive Refutation Algorithm

Figure 2 sketches the classic algorithm for an abductivefgpoocedure proposed by Kakas and
Mancarella [20]. Initially, like in standard SLD derivatis, a literal is selected. When it is not abducible
or a default one, the procedure continues with a resolutibin elauses froni’, through the resolution
operatorR. Else, if the fact has been already assumed abductivelyd@mslstently) as true in previous
steps it can be dropped (a case of successful proof). Astefupbssibility, a new fact may be assumed
as true, provided that it is consistent with the currentgritg constraintsZ, which is verified by the
consistency-check subroutine (reported in Figure 3). imghbroutine, whenever the literal to be tested
is an abducible or default one, but neither it nor its comgethave been already abduced (on last if-
branch), the abductive procedure is called, in order tolchdwther it can be hypothesized by abduction.
The other branches are similar to derivations except thaemdealing with an abducible or default
literal, if it has already been abduced then it is simply gep (i.e. consistency is trivially proved);
otherwise, if its complement has already been abduced obeabduced, the entire goal is dropped.
Thus, the two procedures may call each other both when a nductie assumption requires further
consistency checks against the constraints and vice-versa

As a mechanism foknowledge assimilatigrabduction can be employed when observations about
the world are given (which does not necessarily represenialicit learning problem), and they are to
be assimilated into a knowledge base [10].

From an inferential point of view abduction and inductioa similar since both are falsity-preserving
[28]. Hence, their conclusions can be controversial. Aditwgly, they are both non-monotonic and
deal with forms of incompleteness of the available infoiorat Abduction is generally understood as
reasoning from effects to causes (or explanations), whilleigtion concerns the inference of general
rules from specific data. The two problems can be regardedi@stal each other since they share the
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input: T theory,L € AU D: literal, A: initial abductive assumptions;
output: A’ final abductive assumptions;
begin
Ci ={G =+« Li,...,L,|Ge R({{L},C}), C €I, p>0};
A=A =1
while C; # 0 do
C; ZCl{U{(—Ml,...,Mk}ZCZ{UBZ’;
Considersomé/; € B;, j =1,...,k;
if M; ¢ AUD then
Ciy1 :=C;UR({B;, D}), resolved upor/;, such thatd ¢ C; andD € T,
AVIE R YAV
elseifM; € AUD andM; € A;, k > 1then
C¢+1 = CZI U {(— My, .. .,Mj_l,Mj+1,. . .,Mk};
Ajpr = Ay
elseifM; € AUD andM; € A; then
Ciy1 =0 A =4
elseifM; € AUDand (M; ¢ A;, M; ¢ A;) then
if 3A 4 = abduce(T, + M;,A;) then
Ciy1 = C;i Ajp1 =AY

1 =1+1
return A;
end.

Figure 3. Consistency Derivation Algorithm

basic formal specification. In the former paradigm, anahitheory is needed containing the conditions
that can be involved in the construction of the explanatidhese can be made explicit by means of
abductive inferences, thus knowledge cannot be inducedtbutita prior abductive explanation. In the
latter, the theory is to be synthesized previously from gXasi by means of inductive mechanisms,
hence examples cannot be explained without a prior indratiference.

Abductive and Inductive operators address different fanfincompleteness in the theories. Specif-
ically, abductionextracts from the theorgt hypothesis which is considered to bear incompletenes$s wit
respect to some (abducible) predicates but is completerasiect to others. Moreover, the explanations
constructed by abduction are specific to the situation dfdbaervation. Hence abduction can be seen
as a way to reason with incomplete information, rather tibagomplete knowledge [10].

Induction builds hypotheses in terms of the concepts plyspitesent in the theory. On the other
hand, the observations concern typically concepts that@rget defined in the theory, thus, as an effect
of abduction, the theory is completed with the definitioraried for these concepts. This suggests
that abduction can be employed at an initial phase of thailegitask to explain the training data (raw
observations about the world), thus providing relevantrgdas, described at a higher, theory-dependent
level of knowledge, for deriving newer hypotheses with dead inductive operators.

The general schema of an inductive learning algorithm caexbended with an abductive proof
procedure. The integration of abduction in an inductiverdeey framework makes this process more
knowledge intensive, for the exploitation of the whole imf@tion available both in the theory and in the
background knowledge.
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In the original ALP framework, the theories are to be intetpd according to the Stable Model
semantics. Unfortunately, under such semantics it doeboidtthat

TP, TEP, ..., TP, impliesT =P AP, A+ AP,

(think of T as a theory and of th&;’s as positive examples). Thus, the completeness of theythéth
respect to the positive examples available cannot be ctidokdesting each of them separately. The
solution proposed in [24] is to test them in a pipeline so #iatach step the set of abducibles assumed
in the previous tests is taken into account. Another satutimuld be to adopt the declarative semantics,
where the above relation holds, and hence it is possiblestdtte positive examples separately. Indeed,
representing the theories as (hierarchical) normal progralows to maintain the same semantics (least
Herbrand model), coping with negation by means of NAF. Fromaalel-theoretic point of view, there
are no problems in adopting this rule if only hierarchicaédhies are adopted. Indeed, the language
of definite clauses with integrity constraints has been gmao subsume NAF [12], thus integrity con-
straints can be simulated using NAF. Hence, the declaratw@antics of hierarchical abductive theories
comprises CET and the completion of clauses in the theory [7]

5. Abstraction: Dealing with an Incomplete Representation

Reasoning by abstraction is related to the problem of ral@ya Abstraction is a transmutation that
reduces the amount of information conveyed by the deseriptf a givenreference sef28] (i.e. a set
of concept instances). Typically, this reduction is leadstich an extent that the information that is
relevant to the achievement of a learning goal is maintaimbeéreas the rest of information is discarded
or hidden.

Abstraction can be regarded as a form of deductive trandimataince it preserves the important
information about the input and does not hypothesize angt{provided that the background knowledge
is complete).

In this case the gap to be abridged concerns different iimiealslanguage representatiods em-
ployed to account for the extensional knowledge of the wafitesentation. When the current language
bias £; proves not to be expressive enough for representing comasgtiptions that can explain the
examples, it could be the case to shift to a higher one [41ABtraction can provide operators for per-
forming this shift. If learning is modeled as a search predesa space of versions, typically by means
of an upper and a lower bounding set of versions [29], theswsityeof shifting to a different bias can be
detected when the boundaries meet [9].

So far, abstraction has been investigated in the contexhemirem proving and problem solving
[32, 18]. In this case, we address a different facet, nanieyale that abstraction can play in inductive
learning. In particular, some studies have already focosddarning concepts in propositional logics or
equivalent non structural representations, especiatlieoning plans for autonomous agents [42] at dif-
ferent task layers [37], and on showing how biologicallggined Perceptual Learning mechanisms could
be used to build efficient lowlevel Abstraction operatorst ttheal with real world data [4]. However, the
focus in the present work is on integrating abstraction imst éirder concept learning framework as in
[17, 3, 2].

Recent developments in conceptual clustering tend to densiie case of classifications that orga-
nize knowledgd3, 5]. These purely symbolic approaches are not based tamdes optimization but on
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generalization languages and can take into account thiabladomain knowledge. Suitable languages
for describing structural knowledge can be represented égns of concept triples (like in RDF). The
problem is then how to deal with the NP-completeness of graptching. A possible solution lies in
progressively enriching the languages used to organizeaime extension of objects. Groups of triplets
covering the same extensioreferencein Michalski’s terminology) can be formed as candidate gene
alizations (most specific ones are preferred). Then nodedeaonnected on the ground of inclusion
relationships between their extensions. More complexiogla represented in a concept graph are ob-
tained by abstracting paths between concepts giving risewoabstract relations between them [3].

Abstraction is defined as a mapping between representdtiansare related to the same reference
set but contain less detail. Apparently, abstraction adddtive generalization are very similar notions
to each other. However, they belong to totally differentssks of inference. Indeed, the former is
deductive and the latter inductive. Typically, abstrattima truth-preserving operation, since deduction
is the supporting inference. The set of strong inferencaisaife derivable from the starting description is
larger than the one supported by the output @ti®gabstraction). Nevertheless, it is possible to weaken
this setting, by allowing forms of abstraction that are ndlyftruth-preserving Weakabstraction) [28].
Hence, abstraction can be embedded in an inductive gerwiah framework; for instance, ignoring
details about the objects belonging to a class may faalited generation of rules for that class.

5.1. Syntactic Abstraction

The process of functional transformation of a represesratito another one allows to meet two ob-
jectives: helping to solve the learning problem in the gigrsearch space and making the search for a
solution more easily manageable [18].

Definition 5.1. Given two clausal theori€s and7” built upon different languages and£’ (and deriva-
tion rules), ambstractionis a tuple(7', 7", f), wheref is a computable total mapping between clauses
in £ and those inC’. We will designatel” asground theoryand7” asabstract theory

The goal of such an abstraction mapping is to preserve soapegies and discard others. Among
the properties that should be preserved, the most impdrtantthe theorem proving viewpoint deriv-
ability. A taxonomy of abstractions with respect to such a propextyle drawn [18], characterizing the
statements of the theory in terms of theoremhood.

Definition 5.2. An abstraction(7", 7", f) is said to be:
e constan(TC)iff VC e L: THC & T'+ f(C);
e decreasingTD)iff VC e L: T'F f(C) =T+ C,
e increasing(Thiff VCe L: THC =T+ f(C).

Constant abstractions map theorems to theorems and wisa:vall the solutions to a derivation
problem in the ground theory have a corresponding solutidhe abstract theory. In decreasing abstrac-
tions, some solutions may be lost because of the detailrditioin, but any solution in the abstract theory
can be traced back to the ground theory. Conversely, foeasing abstractions, the abstract problem
might have more solutions than the ground one and hence tiospaannot always be mapped back to
the ground languagédalse proof problenj40]).
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Table 1. Uses of abstraction classes

deductive abductive
positive TD TI
negative TI TD

Abstractions can be employed in different ways (see Tablé possible classification distinguishes
betweendeductiveand abductiveuses of these mappings. Deductively, a propertyffaf') holding
in the abstract theory assures that the same property hmids e.g. derivability). Using abstraction
abductively gives a suggestion, not a guarantee, on thHe afgt property in the ground theory. Another
dimension distinguishes betweg@ositive and negativeuses. With positive uses, given thatC) is
derivable, then als6¢’ is (or may be) provable. In the negative usej,(i€) is unprovable, thad' is (may
be) unprovable.

A deductive use yieldsoundtheorem proving strategies; an abductive one yietlapletestrategies
(since it allows to always find proofs). In the inductive lgiag framework, one should focus primarily on
the abductive use of abstraction. Even increasing abstngctan be used for abducting, positively, that
something can be true in the ground theory, given the praodme abstract elements’(- f(C) =
T + C). Additionally, one can exploit abstractions abductivetysuggest negative information that
could be trueT” t/ f(C) = T t/ O).

5.2. Semantic Abstraction

So far, abstraction has been regarded as a mapping betweeuld®. Since a mere rewriting cannot
guarantee for the preservation of consistency [40], a seéafmnmulation of abstraction becomes neces-
sary. Semantic abstractions are definable in first ordec loggause of the soundness of resolution. This
defines a Tl abstraction once a universe of objects is givethéovariables and calculation procedures
for functions and predicates (and the standard interpoetédr connectives and quantifiers).

An original approach has been formalized in [17]. It pressrmany important properties such as
completeness, consistency, extensionality and the bleyaof the representations. The central point is
the construction of abstract data types starting from theotd of the ground theory, extending Tenen-
berg’s idea of restricted abstract mapping, by allowingraletions as semantic mappings between mod-
els. Some of these definitions and results are briefly predantthe following, adapted to a first-order
clausal representation.

Definition 5.3. An abstraction theoryAT from £ to £’ is a consistent set of formulee:
C(X) A (dl(Yl) NX = fl(Yl)) VeV (dn(Yn) NX = fn(Yn))

wherec is a predicate inC’, d;, i = 1,...,n are predicates of and the functiong;, 7 = 1,...,n map
the arguments of the;s onto that ot.

i.e., itis a collection of intermediate concepts represeéas a disjunction of alternative definitions. Each
concept can be equivalently expressed as a set of claudetheisame head X ), implicitly assuming
the double entailment yielded by the completion semanfigsThis allows for an easier integration with
the abductive operator defined in the previous section.
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Definition 5.4. Given two language£ and£’, a clausal theorg” C 2* and an abstraction theor/T’
that maps predicates dfto predicates of2’, we designatabstractionof 7', the theoryl” C 2¢', such
that: 7' U AT +T".

Any least Herbrand modeW1’ of 7" can be considered as the abstraction of a madedf 7', hence
the consistency is preserved. Also the generality relatigmamong clauses is preserved, and various
other properties fulfilled. In particular, preservationtbé entailment corresponds to preservation of
correctness of the descriptions. Indeed, an abstract poigdefined as entailed by a series of charac-
teristics (descriptions). Thus, if a concept has been difirmm a series of examples, and the ground
predicates cover these examples, the same does the alosinaept, since the entailment is preserved
(correctness). In fact, the abstract concept may cover examples, making the abstraction theory a
generalizing operator.

A notion of completeness of the abstraction theory can bengas follows.

Definition 5.5. An abstraction theoryT is completeness preserviriffjit holds:
T'U{C'} - D" implies TU{C}F DforanyC,D € T'andC’,D’ € T' such thatT'UAT U{C} -
C'andTUATU{D} + D"

Thus, a completeness preserving abstraction theory cexacdly those examples that were covered
by the ground one. In the following, the focus is set on theblenm of building abstraction theories
through proper operators.

5.3. Abstraction Operators

Among the three levels of a reasoning context (see Sectitmel® may be a complex interplay. If they
are generated upwards, the world-perceptitfiV) is the very source of information, that is recorded
into the structureS and then described by the langualje Modifications to the structure and language
are merely a consequence of differences in the perceptitimeakorld, that may occur for a number of
reasons (e.g., the medium used and the focus-of-attenéve though the world itself does not chahge
Thus, abstraction should be defined as a mapping at the lepetceived world [43].

Abstraction takes place at levB(1') by means of a set of operatdesand then propagates to higher
levels, where it is possible to identify operators corresgjdog to the previous ones. At lev8lwe have
Y, whereas at level, we haveA. These sets can be reduced or augmented according to depeiific
abstraction types, but in general contain operators fdiopaing the following operations: grouping
indistinguishable objects into equivalence classes;gjnaua set of ground objects to form a new com-
pound object that replaces them in the abstract world; ignoring termsdha be in the abstract world,
where they disappear; merging a subset of values that asidewnad indistinguishable; dropping a subset
of arguments, thus reducing the arity or a relation; eliringgall arguments, so that the function (or rela-
tion) moves from a predicate logic to a propositional logittiag (which corresponds topaopositional
abstractionat the language level).

Modifications are performed by mappings among perceiveddwand cause corresponding mod-
ifications to the structure and language only as side-affddence, given a ground reasoning context,

3In ML, this corresponds to the phasefefture selection
“It is called term construction [17], and offers the most gigant promises for limiting the complexity of learning irfiast
order logic setting, since it simplifies the matching pradestween hypotheses and examples.
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knowing the operators ifi it is possible not only to obtain the perceived world abdtoacP,, but
also the abstract structure, and languagd., by exploiting the correspondent operatorsXirand A,
respectively.

When concepts and examples are defined at ground level, abéepr is to determine the features
of an abstraction mapping that make the correspondingaabstoncepts moreasily learnable in the
abstract space using,. Besides, it should be specified how to map back an abstracepb definition
learnt inL, to one in the ground languadg;.

The definition of an unknown concept is searched for in a sphefaned by the underlying language,
whose most important structure is the generality relatignamong hypotheses Thus, in our case it
is desirable that abstractions preserve such a relatipr{&&nerality-preserving Language Abstraction
Mapping or GLAM). The only restriction is that the abstract structure mestused for evaluating the
truth of the abstracted hypotheses.

As regards the second problem, it should be noted that winileasticT D abstractions are depre-
cated for loosing theorems, when shifting to the ground eiiamn the abstract one, this may no longer
be a limitation in our case, as long as the generality relatsopreserved. Indeed, in the presented
framework, some abstractions defined at the domain levelrmotlge expressible at the language one.

5.4. A Framework for Abstraction Operators in ILP

In inductive learning, the shift to a higher level represgioh hift of language bia$41]) can be per-
formed directly when the abstraction theory is given. ThHumh be exploited to shift in a hierarchy of
search spaces. More interestingly, when the abstracteoryhs not given, it has to be learned during
the process of learning. Unfortunately, it has been prokanthe shift is not always decidable [36].

Inverse resolutioroperators [30], by tracking back resolution steps, can esiggew salient proper-
ties and relations of the learning domain. They are divided-operators and W-operators depending on
the form of the resolution step(s) inverted. In particulas YW-operators may introduce new predicates.
Inverse resolution operators can be a valuable mechanidmuiltb abstraction theories, as introduced
in [16]. To this purpose, the absorption, inter-constiuttand intra-construction operators can be ex-
ploited, also in the case of first order clauses. This pap@tesested in the case of a Datalog program
as ground space of the abstraction, as in [34], where claurs#iattened hence function-free.

Definition 5.6. (Inversion Resolution Operators)

absorption: let C' and D be two Datalog clauses. If there exists a unifieuch that
38 C body(C), S = body(D)H, then applying the absorption operator yields the new eldis
such that:
e head(C") = head(C)
e body(C") = (body(C) \ S) U{head(D)b}.

inter-construction: let {C;|i = 1,...,n} be a set of Datalog clauses. If there exists a set of litdfals
and a unifiel; for each claus€’;, such thatlS; C body(C;), S; = R6;, then we define:

5Given two hypothesek; andhs, ki is more general thah; if the set of models ok is included in that of:; .
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e anew predicatd. < R
e foralli =1,...,n body(C;) can be rewritten a&ody(C;) \ S;) U {L6;}.

intra-construction: let{C;|i = 1,...,n} be a set of Datalog clauses. If there is a subSset body (C;)
for all 7, then we define:

e anew predicate with the clauses:«— R; (i = 1,...,n) whereR; = body(C;) \ S
e the predicate ithead(C;) can be defined by a single claugeiad(C,) < S, L.

Absorption may generalize the clause it is applied to. Simarenally absorption should not gener-
alize the clauses, it is important to eliminate the diredndirect generalizations that absorption might
cause. This could be solved by using an “oracle” or the CWA @mipletion semantics. However, a
better solution is to limit the absorption operator as pegubby Giordana and Saitta, by introducing the
Non-Generalizing absorptioaperator NG-Absorption [16]. Like for absorption, also the limitation of
NG-absorption makes it not applicable to recursive claudesvever, it is possible to see that abstracting
a theoryT by using NG-absorption and the constructive operatorer(iand intra-construction), the re-
sulting abstract theory” is consistent with the models @f (even non minimal ones). These abstraction
operators realize the so-calldbn-Generalizing CP-abstractionn the actual integration of abstraction
in an inductive learning system, a more conservative opemamedsaturation[34], can be used.

A different way to cope with generalizing abstraction operais to employ an abstraction operator
which has the effect of specializing the theory. The undeglydea is that, similarly to the previous
operators, based on the inversion of resolution, one cadchan operator that partially performs the res-
olution step. In fact this operator, known @asfolding[1], has been studied as a mechanism for program
transformation, aiming at the improvement of logic progsamterms of efficiency and comprehensi-
bility, which is a typical case atheory restructuring Unfolding can be applied directly to abstraction
theories. Indeed, a natural way to specialize an overly ig¢bstraction theoryT is specializing a
clauseC € AT by substituting it with its resolvents upon some atoms inktbdy. It is straightforward
to notice that the new abstraction theoty" is implied by AT'. Some of these resolvents can be deleted
from AT, thus specializing the theory and ruling out some unwantessiple generalizations.

6. A Case Study for a Combined Framework

Two problems of the traditional approach to predicaterliey are the partial relevance of the available
evidence and the infeasibility of a learning problem whenl#imguage is not enough powerful to express
a proper predicate definition. Integration of differentirgnce strategies can help to carry out a broader
approach to inductiveredicate-learning9]. Indeed, there can be a rich ground of interaction among
them, both as regards the semantic specification and theiputation. In the following we analyze a
system that is endowed with multistrategy capabilitiesoading to the Inferential Theory of Learning
framework presented in Section 2, in order to improve effeaess and efficiency of the learning task.
Such a system, named INTHELEX, originally developed as algunductive learner, was first provided
with abductive capabilities in [15], and successively egixl with abstraction and deduction operators,
showing interesting performance when applied to complakwerld problems [14]. It is an incremen-
tal learning system for the induction of hierarchical thesifrom positive and negative examples, using
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Figure 4. New INTHELEX architecture

Datalod’! (see Section 3) as a representation language. Specifitatyies (and background knowl-
edge) are represented as sets of constant-free clauses bdysdescribes the definition of the concept
in the head. As to the relevant evidence, it will be represeibly ground clauses whose body describes
the observations accounting for the example in the headmpbes regard directly the concepts to be
learned, yet no complete relevance is assumed. Obsematmtern concepts that are “perceived” from
the world.

The new version results in a novel integration scheme fordinating and harmonizing different
inference strategies aimed at a profitable cooperation. eiamleductionexploits the provided Back-
ground Knowledge (i.e. some partial concept definitionsakmio be correct, and hence not modifiable)
to recognize known objects in an example description antiaitkp add them to the description itself.
Abstractioncan be cast as the process of focusing on what is relevantdhsarvation. Indeed, ignoring
the details about the objects belonging to a class may tieilthe generation of rules for that class.
Abductionis used to complete the observations, whenever possibleydh a way that the examples
they represent are explained (if positive) or rejectedddative). This prevents the refinement operators
from being applied, as long as possible, leaving the theaghanged. Implementing the theoretical
combined framework obviously raises new issues due bothetodpresentation formalism used by the
system and to the procedures according to which it manigsildite available data. Both abduction and
abstraction are exploited to perform a pre-processing adnmng information. Even if using opposite
approaches, both aim at reducing the computational effgaired to learn a correct theory with respect
to the incoming examples.

Figure 4 graphically represents the architecture of the viension of INTHELEX, embodying the
cooperation between the different multistrategy opesatdhe presence throughout the diagram of dot-
ted arrows, representing (possibly abductive) derivaticiemostrates how abduction is pervasive in the
proposed behaviour. Specifically, abduction can be irdgaldity the user in any of these derivations, trans-
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forming them into normal derivations, in order to make thgtegn more cautios in relying on facts whose
truth value is not guaranteed to be correct. Let us now daescthie typical information flow inside the
architecture. Every incoming example preliminarily urgters a pre-processing step of abstraction, that
eliminates uninteresting details according to the avialaperators provided in the abstraction theory
(possibly hypothesizing unknown facts, if necessary). T tiee example is checked for correct expla-
nation according to the current theory and the backgroumaviatge, and it is stored in the examples
repository. In the coverage and saturation steps, an abewigrivation that exploits the abductive theory
(containing the abducibles and the integrity constraiistsised if abduction is turned on, otherwise the
normal deductive derivation is started to reach the samkevgtd®ut hypothesizing unseen information.
In case the derivation fails, a theory refinement is necgssad thus the example is (abductively or
deductively) saturated and the inductive engine is stantedder to generalize/specialize the proper def-
initions, possibly using the abductive or deductive ddidrawhenever needed. The resulting refinement
is then implemented in the new version of the theory, and thegulure ends.

Figure 5 summarizes the new behavior of the system when jifgkeal to each new examplé/ =
M™* U M~ represents the set of all positivd/(") and negative X/ ) processed exampleg; is the
example currently examined; represents the theory generated so far according td=or simplicity,
BK (the background knowledgelbsT (the abstraction theory) andibdT' (the abduction theory), that
are to be provided by the user, are assumed to be fixed paranfetel hence are not present in the
procedure headings¥bsE andSatFE are, respectively, the examples generated by the abstaatid
saturation phases from the example;is the set of literals returned by the abductive derivatidrew
successfully applied to a goél in theoryT'. ProcedureDerive exploits abduction (through procedure
Abduc) or deduction (through proceduieduc), according to the specific settings for each step of
the revision process, to prove a goal. It retutme or false according to the success or failure of the
proof procedure.Saturateis the procedure that returns all implicit information irethiven example.
GeneralizeandSpecializeare the inductive operators used by the system to refine arr@ut theory.

The process of theory revision, as performed by the systemow briefly summarized. When a
positive example is not covered, a revised theory is obthiineone of the following ways (listed by
decreasing priority) such that completeness is restorgulacing a clause in the theory with one of its
generalizations; adding a new clause to the theory; addiugitive exception. When, on the other hand,
a negative example is covered, a revised theory that restamsistency is reached by performing one
of the following actions: adding positive literals to clags adding a negative literal to a clause; adding
a negative exception.

Deduction is performed by a saturation operator that etgplwtdependency graphdescribing the
dependencies among the concepts to be learned. Whenever example is taken into account, and
before it is stored in the historical memory, it undergoesaturation phase. If any of its (direct or
indirect) sub-concepts in the dependency graph can be maamhin its description according to the
definitions learned thus far and the Background Knowledtgals concerning those concepts are added
(properly instantiated) to the example description. Thekgeound knowledge rules cannot be modified
by the refinement operators.

According to the framework described in Section 5, abstractonsists in the shift from a description
language to a higher level one, and an abstraction theoseis 1o perform such a shift. The abstraction
theory, if any, must be given by the Expert (i.e. it has notdddarned by the system), and the system will
automatically apply it to each example before processifthits, the shift to the higher level language
always occurs, and it occurs just once for each example)ekhdincremental systems cannot change
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Revise (: theory; E: example; M = M™ U M ~: historical memory);
AbsE < Abstractl, AbsT)
if Derive(AbsE, T, D) succeedshen
M+ M U{AbsEU D}
else
M < M U AbsE
SatE < AbsE U SaturatefibsE, T U BK)
if AbsE is a positive exampléhen
Generalize[', BK, SatE, M ™)
else
Specialize(', BK, SatE, M)

Derive (G: goal; T": theory; D: abduced literals;)
if Abduction is ON at the current stage of processtmn
D+ G
if success— Abduct(G, T U BK, AbdT', D) succeedghen
Add to D the abduced literals
else
D+
success— Deduct(G, T' U BK)
return success

Figure 5. Multistrategy Theory Revision in INTHELEX

the abstraction theory in the middle of a learning task, beedhe result of abstracting separately the
partial theory already learnt and the past examples would@ahe same as learning a theory directly
from examples described at the new abstraction level. Aadir pointed out, abstraction at the language
level is only a consequence of an abstraction step occutrhe @erception level and memorized at the
structure level. This is reflected in the system by the feattéixamples and related observations are stored
in the historical memory, and used for undergoing the nopratessing, in the new (abstract) form, and
not as they are provided to it, which corresponds to apjptinaif operators in the sét. Conversely, the
abstraction theory contains information for performing #hift specified by the operators of the et

In detail, the abstraction operator of Absorption, propoisethe theoretical framework in Section 5.4,
is applied to the example description exploiting the aloitva theory. Unlike deduction, there is no
reference to the dependency graph in the application ofadiigin. Since the structure level must be
abstracted, and the learned theory must be abstractechtoabstraction step must precede the storage
of the incoming examples (and hence the possible induatireament). In general, application of these
operators yields a TD abstraction, in that they eliminatermation that in principle could be useful
for proving other facts. Assuming that the provider of thetedxction theory knows that no detail that it
eliminates is necessary for any proof that the system needarty out, all the ‘important’ things that
the system could prove are preserved also after the langlaijeand hence it can be considered a TC
abstraction.

According to the framework in Section 4, the system has beaviged with an abductive proof pro-
cedure to help it in managing situations in which not only sbeof all observations is partially known,
but each observation could be incomplete too [15]. Spedificabduction has been exploited to com-
plete the observations in such a way that the correspondiamgles are either covered (if positive)
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or ruled out (if negative) by the already generated thednys tavoiding, whenever possible, the use of
the operators to modify the theory. The set of abduced lgdox each observation is minimal, which
ensures that the inductive operators use abducibles ordywdally needed. Since specific facts are not
allowed in the learned theory, the abduced informationtacaed directly to the observation that gener-
ated it, so that the ‘completed’ examples obtained this wilyoe available for subsequent refinements
of the theory. Such information will also be available to seduent abductions, in order for them to
preserve consistency among the whole set of abduced fabtsnégative literals that might appear in
the set of abduced literals are not added to the descrigiitirgre handled by means of the CWA. Since
observations are described exclusively in terms of bagidipates in the description language, only such
predicates have been considered as abducibles. Theseghesdilo not have a definition in the theory,
which also complies with the requirements for abducibles. edplicit integrity constraints for default
negation is needed: they are implicitly assumed, and defeaglation is simulated by means of NAF
(thus embedding it in the normal Prolog derivation). To symmwhen a new observation is available,
the abductive proof procedure is started, parameterizeti@nurrent theory, the example and the cur-
rent set of past abductive assumptions. If the procedureesds, the resulting set of assumptions, that
were necessary to correctly classify the observation, de@do the example description before storing
it (of course, being it minimal by definition, if no assumptiss needed for the correct classification,
the example description is not affected). Otherwise thealusfinement procedure (generalization or
specialization) is performed.

7. Conclusions

This paper presented a survey of relevant research in #dratlire aimed at studying the possibile inte-
gration of different inference strategies, in order to gaut a broader approach teductive learning
than the classical single-strategy framework. Indeedgtban be a rich ground of interaction between
different operators, both as regards the semantic speificand their computation.

In particular, two important problems of inductive leampinave been considered, namely the prob-
lem of relevance within a language bias and the shift of laggubias. Initially, an abductive proof
procedure has been discussed that aims at attacking therf@moblem by hypothesizing likely facts
that are not explicitly stated in the observations. Sudeelys a way for extending the framework with
the integration of deductive operators based on abstratizs been presented, allowing to switch to
more suitable description languages when the adopted omegunable to express the target concept(s)
to be learnt.

Finally, a framework in which these methodologies have @enght to cooperation has been men-
tioned. It is implemented in an inductive learning systemektending it with features that make it
able to handle observation descriptions both by elimigatietails that are not significant to the learning
process, and by adding unseen information that can be ¢tenityshypothesized or deduced.
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