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Abstract

The availability of large, heterogeneous repositories of
electronic documents is increasing rapidly, and the need for
flexible, sophisticated document manipulation tools is grow-
ing correspondingly. This work presents DOMINUS a sys-
tem for automated electronic documents processing charac-
terized by the intensive exploitation of intelligent techniques
in each step of the process from document acquisition in
electronic format to document indexing for categorization
and information retrieval purposes. It embeds incremental
learning techniques useful in the context of web libraries
where documents are acquired in an incremental fashion.
Since the system is general and flexible, it can be embed-
ded as a document management engine into many different
domain-specific applications. Here, we present the exploita-
tion of the system on the Conference Management domain,
and show how DOMINUS can usefully support some of the
more critical and knowledge-intensive tasks involved by the
organization of a scientific conference.

1. Introduction and Motivation

Knowledge distribution and preservation in time has al-
ways been a fundamental issue in the history of cultural de-
velopment. Since knowledge can be conveyed by many dif-
ferent kinds of documents, document management assumed
a key role in this perspective. Since several centuries up to
a few decades ago, the only support available for dumping
and spreading information was paper, which caused nearly
the totality of our legacy material to be in the form of printed
paper documents, often in few copies stored in archives
and libraries. This obviously represents a serious obstacle
to wide access and distribution of the information content
they bear, which caused the need for document processing
techniques aimed at ensuring preservation and access of the
available material.

A significant support to such a concern has been pro-
vided thanks to the power and flexibility offered by auto-
matic techniques developed by computer science. The cur-
rent spread of computer systems throughout all human ac-
tivities has been in the last years a source for both the need
and the opportunity that a significant amount of documents
are available in electronic form. Indeed, having the docu-
ments in the form of computer files, thanks to the Inter-
net, makes it far easier and cheaper (in terms of time and
money) their sending, transportation, exchange, storage and
retrieval. Specifically, in the last decades, the great diffusion
of computers on one side, and of the Internet on the other,
caused a migration or duplication of many documents from
the paper support to the digital one. This greatly facilitates
copy, distribution and accessibility of the documents them-
selves, and hence clearly fulfils the preservation require-
ments. As a consequence, a huge amount of documents in
digital format are spread throughout the World Wide Web
in the most diverse websites, and a whole research area fo-
cused on principles and techniques for setting up and man-
aging document collections in the form of Digital Libraries
has started and quickly developed. The result of such a sit-
uation is the development of Digital Libraries, intended as
distributed collections of textual or multimedia documents,
whose main concerns and problems consist in the acquisi-
tion and organization of the information contained therein.

However, this is in itself not sufficient to solve the whole
problem of content-based access: on the contrary, it also
poses new challenges to the computer science researchers,
and raises a number of problems for their effective han-
dling, which in turn require the development of different ap-
proaches and techniques that are able to deal with their pe-
culiarities and characteristics. More precisely, the question
is, given collections of digitized documents, how is it pos-
sible to discover among them useful knowledge to be used
as meta-information to support their retrieval and manage-
ment. This encompasses several sub-problems, involving is-
sues that range from the analysis of the document layout,



to the identification of the document type and of the role
played by its components, up to the exploitation of tech-
niques for document content indexing. The obvious solution
of manually creating and maintaining an updated index (in
the form of a database of extracted information) is clearly
infeasible, due to the potentially huge amount of data to be
handled, tagged and indexed. This causes a strong motiva-
tion for the research concerned with methods that can pro-
vide solutions for automatically acquiring new knowledge.

An easy solution for the legacy material has been digi-
tization. As a side-effect, this has caused the need to dig-
itize a huge amount of documents in paper format, which
has typically been obtained through image scanning, pos-
sibly followed by tout-court application of Optical Char-
acter Recognition techniques. However, such an approach
turns out to be computationally quite expensive, and is not
of use for identifying specific interesting parts of the doc-
ument, and hence great amounts of research have been de-
voted to improve the efficiency and effectiveness of such
a process, in order to go beyond simple image representa-
tion, exploiting the different components in different ways
and tagging them according to their semantic role [22]. Also
our research group devoted in the past great effort towards
the application of machine learning techniques as a support
for the automatic management of paper documents. Such
techniques were successfully applied to different domains,
among which cultural heritage material [15].

More recently, the situation has significantly changed,
although paper has not lost its predominance as a means
for conveying information. Indeed, the perspective has rad-
ically changed as well: documents are no more simply dig-
itized images of an original paper counterpart, but are com-
posed and produced directly in electronic form, of which
the paper printout is just a facility that improves physical
handling and readability. Thus, almost all documents nowa-
days are generated natively in digital format by means of
word processors, text editors and similar, thus obtaining
their paper-printed counterpart only as a side-effect that can
be delayed until the actual need of such a physical support
because of law or practical requirements (which often does
not happen at all).

Here, differently from the past techniques that work on
scanned image documents, we focus on electronic doc-
uments in PostScript (PS) or Portable Document Format
(PDF), that represent the current de facto standard for doc-
ument interchange and hence cover the greatest part of the
available material. The specific problem we will deal with in
the following consists in the application of intelligent tech-
niques to a system for the management of a collection of
electronic documents (specifically, we will focus on the do-
main of scientific papers) on the Internet, aimed at auto-
matically extracting significant information from the docu-
ments themselves in order to organize them in a way that

can be useful to properly store, retrieve and manage them
in a Semantic Web [6] perspective. Indeed, organizing the
documents on the grounds of the knowledge they contain is
fundamental for being able to correctly access them accord-
ing to particular needs in various situations. In particular,
in our application domain, to identify the subject of a pa-
per and its scientific context, an important role is played by
the information available in components such as Title, Au-
thors and Abstract and Bibliographic references. This last
component in particular, with respect to others, is a source
of problems both because it is placed at the end of the pa-
per, and hence it requires the ability to handle multi-page
documents, and because it in turn is made up of different
sub-components carrying different kinds of information, to
be handled and exploited in different ways.

Three processing stages are typically needed to identify a
document significant components. Layout Analysis consists
in the perceptual organization process that aims at identify-
ing the single blocks that make up a document and at de-
tecting relations among them, expressed by the so-called
layout structure. Hence, the association of the proper log-
ical role to each of such components of the document yields
the so-called logical structure. Since the logical structure is
obviously different according to the kind of document, two
steps are in charge of identifying such a structure. Docu-
ment Image Classification aims at associating the document
to a class that expresses its type (e.g., scientific paper). Doc-
ument Image Understanding aims at identifying the signif-
icant layout components for that class and at associating to
each of them a tag that expresses its role (e.g., title, author,
abstract, etc.). A large amount of knowledge is required to
this purpose [3, 11] and in the literature a great effort is
made to hand-code such a knowledge [22, 18, 27]. We pro-
pose to exploit Machine Learning techniques to carry out
these two steps on electronic documents. In particular, the
need for expressing relations among layout components re-
quires the use of symbolic first-order techniques. Indeed,
the classical attribute-value language is not sufficiently ex-
pressive to describe the relations. For example, to formal-
ize the sentence “A is the title of the book B” we have to
use an atom: title book B = A. But now let us consider the
sentence “C is the title of the book D”. Again, it must be
formalized as another atom and the obvious similarities be-
tween these two sentences (they both mention the same re-
lation) cannot be expressed. Hence, we need a more ex-
press language that satisfies the following requirements: It
should be able to distinguish between objects (such as A
and C) and relations about objects. Secondly, the same ob-
ject should be denoted everywhere by the same symbol (for-
malizing the sentence “A is a title” and “A is a part of a doc-
ument”, the two formalization should both contain the same
symbol denoting A). In the same way the relation “is the ti-
tle” should be denoted by the same symbol everywhere. Fi-



nally, we would like to use variables denoting different ob-
jects. These requirements are satisfied by the first-order lan-
guage.

Furthermore, the continuous flow of new documents,
which is a typical feature in Digital Libraries, calls for in-
cremental abilities that can revise a faulty knowledge previ-
ously acquired for identifying the logical structure of a doc-
ument. Traditional application of machine learning to in-
telligent systems development involves collecting a set of
training examples, expressed by means of a representation
language in a representation space that facilitates learning,
and using a learning algorithm to induce a set of concepts
from the codified training examples. These induced con-
cepts are subsequently validated and incorporated into an
inferential system and deployed into an environment. How-
ever, classical approaches to learning task require that all
the information needed for the task is available at the be-
ginning of the induction step. Learning systems that use
such an approach are known as batch or one-step systems.
Hence, the batch approach at learning is clearly not suit-
able for the knowledge assimilation process that requires
the ability to incrementally revise a domain theory as new
data are encountered. Indeed, real-world applications, and
Digital Libraries in particular, require autonomous or semi-
autonomous operation and adaptation to changes in the do-
main, the environment, or the user. If any of these factors
changes, the classical approach requires that the entire the-
ory development process is restarted to produce a model ca-
pable of coping with the new scenario. Such requirements
suggest that incremental learning, as opposed to batch one,
is needed whenever either incomplete information is avail-
able at the time of initial theory generation, or the nature
of the concepts evolves dynamically. Indeed, incremental
processing allows for continuous responsiveness to the en-
vironment, can potentially improve efficiency and has the
ability to deal with concept evolution. Obviously, the in-
cremental setting implicitly assumes that the information
(observations) gained at any given moment is incomplete,
and thus that any learned theory is (could be) potentially
susceptible of changes. This, in turn, prevents the possibil-
ity of taking unchangeable decisions and definitively cut-
ting away, regarding them as useless, portions of the search
space that seem to be outside the correct (target) concept
definition region at a given time.

This work presents the current version of the prototype
DOMINUS (DOcument Management INtelligent Universal
System), a system for automated electronic documents pro-
cessing characterized by the intensive exploitation of intel-
ligent techniques in each step of the process from document
acquisition to document indexing for categorization and in-
formation retrieval purposes. Since the system is general
and flexible, it can be embedded as a document manage-
ment engine into many different domain-specific applica-

tions. Here, we focus on the Conference Management do-
main, and show how DOMINUS can usefully support some
of the more critical and knowledge-intensive tasks involved
by the organization of a scientific conference, such as the
assignment of the submitted papers to suitable reviewers.

The paper is organized as follows. The next Section
presents the layout analysis step performed by DOMINUS
on electronic documents along with the improvements im-
plemented in the system by means of the kernel-based ap-
proaches. Then, the incremental first-order techniques for
the layout correction, classification and understanding of
the document, aiming at the meta data extraction step, are
analyzed. Successively, the latent semantic analysis tech-
nique for the efficient document indexing and retrieval is
presented along with its peculiarity. Finally, we present the
evaluation of the system DOMINUS on a real world appli-
cation domain, the conference management one.

2. Layout Structure Recognition

Any document can be progressively partitioned into a hi-
erarchy of abstract representations, called its layout struc-
ture. The leaves of the corresponding layout tree (lowest
level of the abstraction hierarchy) are the basic layout com-
ponents, such as words or images, while the root represents
the whole document. In multi-page documents, the root rep-
resents a set of pages. A page may group together several
layout components, called frames, which are rectangular
areas of interest in the document page. The perceptual or-
ganization process that aims at detecting structures among
blocks is called the layout analysis. An ideal layout analy-
sis should produce a set of frames, each of which can be as-
sociated with a distinct logical component, such as title and
author of a scientific paper.

Here we describe an approach implemented for discover-
ing a full layout hierarchy in digital documents available in
PostScript (PS) or Portable Document Format (PDF), based
primarily on layout information. The PostScript [1] lan-
guage is a simple interpretative programming language with
powerful graphical capabilities that allow it to precisely de-
scribe any page. The PDF [2] language is an evolution of
PostScript that is rapidly gaining acceptance as a promis-
ing file format for electronic documents. Like PostScript,
it is an open standard, enabling integrated solutions from
a broad range of vendors, which is the reason why we ini-
tially focused on these two languages.

Our layout analysis process starts with a preliminary pre-
processing step based on a method, named WINE (Wrap-
per for the Interpretation of Non-uniform Electronic doc-
ument formats), that takes as input a PDF or a PS docu-
ment and produces a corresponding description of the doc-
ument in vector format, expressed in XML. A similar al-
gorithm is PSTOEDIT [16], that translates PostScript and



PDF graphics into other vector formats. In particular, WINE
is a rewriting of basic PostScript operators that turns the in-
structions into objects. For example, the PostScript instruc-
tion to display a text becomes an object describing a text
with attributes for the geometry (location on the page) and
appearance (font, color, etc.). WINE represents the first step
that transforms a PostScript document into its correspond-
ing XML basic representation describing the initial digital
document as a set of pages, each of which is composed of
basic blocks. Here we present the descriptors used by WINE
for the document representation:

1. box(id,x0,y0,x1,y1,font,dimension,RGB,row,string) -
The text made up the document is represented by the
bounding box that contains its;

2. stroke(id,x0,y0,x1,y1,RGB,thickness) - The graphical
(horizontal/vertical) lines of the document;

3. fill(id,x0,y0,x1,y1,RGB) - Closed areas filling with
one color;

4. image(id,x0,y0,x1,y1) - Raster images;

5. page(n,w,h) - Page information;

where: id is the identifier of the block; (x0, y0) and (x1, y1)
are respectively the upper-left/lower-right coordinates of the
block (note that x0 = x1 for vertical lines and y0 = y1 for
horizontal line); font is the the type font; dimension repre-
sents the dimension of the text; RGB is the color of the text,
of the line or of the area in #rrggbb format; row is the index
of the row in which the text appears; string is the text of the
document contained in the block; thickness is the thickness
of the line; n represents the page number; w is the width of
the page; h is the height of the page.

2.1. A kernel-based method to group basic blocks

The first step in the document layout analysis concerns
the identification of rules to automatically shift an electronic
document description from the basic one to an higher level
description. Indeed, by analyzing the PS or PDF source, it
is possible to identify the “elementary” blocks that make
up the document. Often such blocks do not correspond to
whole words, lines or paragraphs in the documents but just
to fragments of words, thus a first aggregation based on
their overlapping or adjacency is needed in order to obtain
blocks surrounding whole words (word-blocks). Iteratively,
a further aggregation starting from the word-blocks could
be performed to have blocks that group words in lines (line-
blocks), and finally the line-blocks could be merged to build
a paragraph (paragraph-blocks). To do this, our system ex-
ploits a kernel-based method to learn rewriting rules able
to perform the bottom-up construction of the whole docu-
ment starting from the basic (word) blocks up to the lines.

Figure 1. Block Features

Indeed, since grouping techniques based on the mean
distance between blocks proved unable to correctly handle
the case of multi-column documents, we turned to the ap-
plication of Machine Learning approaches in order to au-
tomatically infer rewriting rules that could suggest how to
set some parameters in order to group together rectangles
(words) to obtain lines. Specifically, such a learning task
was cast to a Multiple Instance Problem and solved ex-
ploiting the kernel-based algorithm proposed in [12]. In our
setting, each elementary block is described by means of a
feature-vector of the form:

[Block Name, Page No,Xi, Xf , Yi, Yf , Cx, Cy, H,W ]

made up of parameters interpreted according to the repre-
sentation in Figure 1, i.e.:

• Block Name: the identifier of the considered block;

• Page No: the number of page in which the block
Block Name is positioned;

• Xi and Xf : the x coordinate values, respectively, for
the start and ending point of the elementary block;

• Yi and Yf : the y coordinate values, respectively, for the
start and ending point of the elementary block;

• Cx and Cy: the x and y coordinate values, respectively,
for the centroid of the block Block Name;

• H,W : the distances (height and width) between start
and ending point of, respectively, x and y coordinate
values.

Starting with this basic description of the elemen-
tary blocks, the corresponding example descriptions, from
which rewriting rules have to be learned, are built consider-
ing each block along with its Close Neighbor blocks: Given
a block On and the Close Neighbor blocks CNOnk, with
their own description:

[On, Page No,Xni, Xnf , Yni, Ynf ,

Cnx, Cny, Hn,Wn]
[CNOnk, Page No,Xnki, Xnkf , Ynki,

Ynkf , Cnkx, Cnky, Hnk,Wnk]



we represent an example E by means of the template
[On, CNOnk], i.e.:

[New Block Name, Page No,

Xni, Xnf , Yni, Ynf , Cnx, Cny,

Xnki, Xnkf , Ynki, Ynkf , Cnkx, Cnky,

Dx, Dy]

where the information about the name of the block
New Block Name is a new name for the block in which
is made in consideration the original names of both the orig-
inal blocks, the information about the x and y positions are
the original ones. The new parameters Dx and Dy con-
tain the information about the distances between the two
blocks.

Fixed a block On, the template [On, CNOnk] is used to
find, among all the word blocks in the document, every in-
stance of close neighbors of the considered block On. Such
an example (set of instances) will be labelled by an ex-
pert as positive for the target concept “the two blocks can
be merged” if and only if the blocks On and CNOnk are
adjacent and belong to the same line in the original docu-
ment, or as negative otherwise. Figure 2 reports an example
of the selected close neighbor blocks for the block b1. All
the blocks represented with dashed lines could eventually
be merged, and hence they will represent the positive in-
stances for the concept merge, while dotted lines have been
exploited to represent the blocks that could not be merged,
and hence will represent the negative instances for the tar-
get concept. It is worth noting that not every adjacent block
has to be considered an instance of positive examples, since
they could be adjacent blocks but they could belong to a dif-
ferent frame than that of the considered block according to
the original document. Such a situation is reported in Fig-
ure 3. Indeed, typical cases in which a block is adjacent to
the considered block but actually belongs to another frame
are, e.g., when they belong to adjacent columns of a multi-
column document (right part of Figure 3) or when they be-
long to two different frames of the original document (for
example, the Title and the Authors frame - left part of Fig-
ure 3).

Figure 2. Close Neighbor blocks for block b1

In such a representation, a block On has at least
one close neighbor block and at most eight (CNOnk

with k ∈ {1, 2, . . . , 8}) (from top to bottom, from left
to right - top left corner, top, top right corner, right,
down right corner, down, down left corner, left); the im-
mediate consequence of the adopted representation is that
each single example is actually made up of a bag of in-
stances and, hence, the problem can be clearly cast as a
Multiple Instance Problem (MIP) to be solved by apply-
ing the Iterated-Discrim algorithm [12] in order to dis-
cover the relevant features and their values in this way
obtaining rules made up of numerical constraints allow-
ing to automatically set parameters to group together
words in lines. In this way, the XML line-level descrip-
tion of the document, that represents the actual input to
the next step in the layout analysis of the document is ob-
tained.

In the following, an example of the representation is pro-
vided. Given the representation shown in Figure 2 for the
identification of positive and negative blocks, and the tem-
plate for the example description, a possible representation
for the positive example (a set of instances) expressing the
description “the block b35 can be merged with the blocks
b36,b34, b24, b43 if and only if such blocks have the re-
ported numeric features (dimensions and position in the
document)” is:
ex(b35) :-
istance([b35, b36,

542.8, 548.3, 447.4, 463.3, 553.7, 594.7,
447.4, 463.3, 545.6, 455.3, 574.2, 455.3,
5.5, 0]).

istance([b35, b34,
542.8, 548.3, 447.4, 463.3, 529.2, 537.4,
447.4, 463.3, 545.5, 455.4, 533.3, 455.3,
5.5, 0]).

istance([b35, b24,
542.8, 548.3, 447.4, 463.3, 496.3, 583.7,
427.9, 443.8, 545.5, 455.3, 540.1, 435.9,
0, 3.5]).

istance([b35, b43,
542.8, 548.3, 447.4, 463.3, 538.5, 605.4,
466.9, 482.8, 545.5, 455.3, 571.9, 474.8,
0, 3.5]).

2.2. Discovery of the background structure of the
document

The objects that made up a document are spatially or-
ganized in frames, defined as collections of objects com-
pletely surrounded by white space. It is worth noting that
there is no exact correspondence between the layout notion
of a frame and a logical notion such as a paragraph: two
columns on a page correspond to two frames, while a para-



Figure 3. Selection of positive and negative blocks according the original document: one-column
document on the left, two column document on the right

graph might begin in one column and continue into the next
column.

The next step towards the discovery of the document log-
ical structure, after transforming the original electronic doc-
ument into its basic XML representation and grouping the
basic blocks into lines, consists in performing the layout
analysis of the document by applying an algorithm named
DOC (Document Organization Composer), a variant of that
reported in [9] for addressing the key problem in geomet-
ric layout analysis. DOC analyzes the whitespace and back-
ground structure of documents in terms of rectangular cov-
ers, and it is efficient and easy to implement.

Once DOC has identified the whitespace structure of the
document, thus yielding the background, it is possible to
compute its complement, thus obtaining the document con-
tent blocks. When computing the complement, two levels
of description are generated. The former refers to single
blocks filled with the same kind of content, the latter con-
sists in rectangular frames that may be made up of many
blocks of the former type. Thus, the overall description of
the document includes both kinds of objects, plus informa-
tion on which frames include which blocks and on the ac-
tual spatial relations between frames and between blocks in
the same frame (e.g., above, touches, etc.). This allows to
maintain both levels of abstraction independently. The out-
put of DOC is the XML layout structure (Figure 4 reports
the graphic representation of the generated XML) of the
original document, obtained through a process that is not
a merely syntactic transformation from PS/PDF to XML.

It is wort to note that the exploitation of the pure al-
gorithm reported in [9] in real document domains results
unfeasible due to the great number of basic blocks dis-
covered by the WINE tool. Indeed, by analyzing the docu-
ment source, using WINE, it is possible to identify the basic
blocks that make up the document. Often such blocks corre-
spond to fragments of words, so that a first preliminary ag-
gregation based on their overlapping or adjacency is needed

in order to obtain blocks surrounding whole words. A fur-
ther aggregation could be performed to have blocks that
group words in lines by means of the procedure reported
in Section 2.1. This procedure allows the DOC algorithm to
be more efficient and effective. Moreover, some modifica-
tions to the algorithm on which DOC is based deserve atten-
tion. First of all, any horizontal/vertical line in the layout is
considered as a natural separator, and hence is already con-
sidered as background along with all the white space sur-
rounding it before the algorithm starts. Second, any white
block whose height or width is below a given threshold is
discarded as insignificant (this should avoid returning inter-
word or inter-line spaces). Lastly, since the original algo-
rithm tries to find iteratively the maximal white rectangles,
taking it to its natural end and then computing the comple-
ment would result again in the original basic blocks coming
from the previous steps and provided as input. This would
be useless, and hence raised the problem of identifying a
stop criterion to end this process.

Such a criterion was empirically established as the mo-
ment in which the area of the new white rectangle retrieved,
W (R) represents a percentage of the total white area in the
document W (D) (computed by subtracting the sum of all
the areas of the basic blocks from the whole area of the doc-
ument A(D)) less than a given threshold δ, i.e.:
Let A(Ri), i = 1, . . . , n be the areas of basic blocks iden-
tified thus far in the document and W (D) = A(D) −∑

i=1,...,n A(Ri), then the stop criterion s is established as:

s =
W (R)

W (D)
< δ

The empirical study was performed applying the algo-
rithm in full on a set of documents of three different cat-
egories, and it took into account the values of three vari-
ables in each step of the algorithm: number of new white
rectangles (black line in Figure 5) normalized between 0
and 1, percentage of the last white area retrieved with re-



Figure 4. Line and final layout analysis representations of the generated XML structure of a docu-
ment

spect to the total white area of the current page of the docu-
ment (bold line in Figure 5), percentage of the white area re-
trieved so far with respect to the total white area of the cur-
rent page of the document (dashed line in Figure 5). The
percentage of the white area retrieved, the dashed line, is
never equal to 1 (the algorithm does not find all the white
area), but it becomes stable before reaching the 1/4 of the
total steps of the algorithm. Such a consideration is gener-
ally valid for all the documents except for those that have
a scattered appearance. Such a point, highlighted in the fig-
ure with a black rhomboidal shape, is the best stop point
for the algorithm since before the layout is not very detailed
while after it finds white spaces that are useless as shown
with the black line in the graphic. Indeed, this is the point in
which all the useful white spaces in the document, such as
those between words, have been identified. Such a consider-
ation is confirmed by analyzing the trend of the percentage
of the last white area retrieved with respect to the total white
area of the current page of the document (bold line) that de-
creases up to 0 in such a point. This suggests to stop the
execution of the algorithm in such a point. It is worth not-
ing that this value is reached very early, and before the size
of the structure containing the blocks to be processed starts
growing dramatically, thus saving lots of time and space re-
sources.

3. Metadata Extraction

The availability of large, heterogeneous repositories of
electronic documents is increasing rapidly, and the need
for flexible, sophisticated document manipulation tools is
growing correspondingly. These tools can usefully exploit

Figure 5. Stop Criterion Analysis

the logical structure, a hierarchy of visually observable
organizational components of a document, such as para-
graphs, lists, sections, etc. Knowledge of this structure can
enable a multiplicity of applications, including hierarchical
browsing, structural hyperlinking, logical component-based
retrieval and style/format translation.

The organization of the document collection and the ex-
traction of the interesting text is a fundamental issue for a
more efficient storage and retrieval process in a digital li-
brary. To perform such tasks, one has to firstly identify the
correct type of the document to file it in the correspondent
record, i.e. if the document is a magazine, or a book, or
a scientific paper. Then, the significant components of the



document have to be identified in order to extract the infor-
mation needed to categorize it. Due to the huge amount of
documents, carrying out such process manually is unfeasi-
ble. Here we suggest the use of a concept learning system
to infer rules able to correctly classify the document type
along with its significative components. The inborn com-
plexity of document domain, and the need to represent rela-
tions among components, suggests the exploitation of sym-
bolic first-order logic as a powerful representation language
to handle such a situation. Specifically, based on the be-
lief that in typical digital libraries on the Internet new doc-
uments continuously become available over time and are to
be integrated in the collection, we considered incremental-
ity as a fundamental requirement for the techniques to be
adopted. Even more difficult, it could be the case that not
only single definitions turn out to be faulty and need revi-
sion, but whole new document classes are to be included
in the collection as soon as the first documents of those
new classes become available. This represents a problem
for most existing systems, that require the set of classes for
which definitions are to be learnt to be completely defined
since the beginning.

Such considerations, among others on the learning sys-
tems available in the literature, led to the exploitation of
INTHELEX (INcremental THEory Learner from EXam-
ples) [14], whose most characterizing features are in its in-
cremental nature, in the reduced need of a deep background
knowledge, in the exploitation of negative information and
in the peculiar bias on the generalization model, which re-
duces the search space and does not limit the expressive
power of the adopted representation language.

3.1. The Learning System

INTHELEX is an Inductive Logic Programming [21]
system that learns hierarchical logic theories from positive
and negative examples: it is fully incremental (in addition
to the possibility of refining a previously generated version
of the theory, learning can also start from an empty the-
ory), and adopts a representation language (DatalogOI [26])
based on the Object Identity assumption, that ensures effec-
tiveness of the descriptions and efficiency of their handling,
while preserving the expressive power of the unrestricted
case. It can learn simultaneously multiple concepts, possi-
bly related to each other; it can retain all the processed ex-
amples, so to guarantee validity of the learned theories on
all of them.

3.1.1. The Inductive Core. INTHELEX is a closed loop
learning system (i.e., a system in which feedback on perfor-
mance is used to activate the theory revision phase [5]). The
learning cycle it performs can be described as follows. A set
of examples of the concepts to be learned, possibly selected
by an expert, is provided by the environment. This set can

be subdivided into three subsets, namely training, tuning,
and test examples, according to the way in which examples
are exploited during the learning process. Specifically, train-
ing examples, previously classified by the expert, are stored
in the base of processed examples, then they are exploited to
obtain a theory that is able to explain them. Such an initial
theory can also be provided by the expert, or even be empty.
Subsequently, the validity of the theory against new avail-
able examples, also stored in the example base, is checked
by taking the set of inductive hypotheses and a tuning/test
example as input and producing a decision that is compared
to the correct one. In the case of incorrectness on a tuning
example, the cause of the wrong decision can be located and
the proper kind of correction chosen, firing the theory revi-
sion process. Specifically, INTHELEX incorporates two in-
ductive refinement operators to revise the theory, one for
generalizing definitions that reject positive examples, and
the other for specializing definitions that explain negative
examples. In this way, tuning examples are exploited incre-
mentally to modify incorrect theories according to a data-
driven strategy. Test examples are exploited just to check
the predictive capabilities of the theory, intended as its be-
havior on new observations, without causing a refinement
of the theory in the case of incorrectness.

Whenever a new example is taken into account, it is
stored in the historical memory of all past examined ex-
amples and the current theory is checked against it. If it is
positive and not covered, the system first tries to general-
ize one of the available definitions of the concept the exam-
ple refers to, so that it covers the new example and is con-
sistent with all the past negative examples. In such a case
it replaces the chosen definition in the theory, or else a new
clause is chosen to compute generalization. If no definition
can be generalized in a consistent way, the system checks
if the example itself can represent a new alternative (con-
sistent) definition of the concept. If so, such a definition is
added to the theory, or else the example itself is added as an
exception. If the example is negative and covered, special-
ization is needed. Among the theory definitions that con-
cur in covering the example, INTHELEX tries to specialize
one by adding to it one or more conditions which character-
ize all the past positive examples and can discriminate them
from the current negative one. In case of failure, the sys-
tem tries to add the negation of a condition, that is able to
discriminate the negative example from all the past posi-
tive ones. If this fails too, the negative example is added to
the theory as an exception. New incoming observations are
always checked against the exceptions before applying the
rules that define the concept they refer to.

3.1.2. Multistrategy Features. Another peculiarity in
INTHELEX is the integration of multistrategy opera-
tors that may help in the solution of the theory revision
problem by pre-processing the incoming information, ac-



cording to the theoretical framework for integrating
different learning strategies known as Inferential The-
ory of Learning [20]. Deduction refers to the possibility of
better representing the examples and, consequently, the in-
ferred theories. INTHELEX exploits deduction to recognize
known concepts that are implicit in the examples descrip-
tion and explicitly add them to the descriptions. The system
can be provided with a Background Knowledge, sup-
posed to be correct and hence not modifiable, containing
(complete or partial) concept definitions to be exploited dur-
ing deduction. Differently from abstraction (see next), all
the specific information used by deduction is left in the ex-
ample description. Hence, it is preserved in the learn-
ing process until other evidence reveals it is not significant
for the concept definition, which is a more cautious be-
havior. Abduction was defined by Peirce as hypothesizing
some facts that, together with a given theory, could ex-
plain a given observation, and aims at completing possibly
partial information in the examples (adding more de-
tails). According to the framework proposed in [17],
this can be done by exploiting a set of abducibles (con-
cepts about which assumptions can be made, that carry all
the incompleteness of the domain: if it were possible to
complete their definitions then the theory would be cor-
rectly described) and a set of integrity constraints (each
corresponding to a combination of conditions that is not al-
lowed to occur, that provide indirect information about
abducibles). Abstraction is a pervasive activity in hu-
man perception and reasoning, and aims at removing
superfluous details from the description of both the exam-
ples and the theory. Thus, the exploitation of abstraction
results in the shift from the language in which the the-
ory is described to a higher level one. According to the
framework proposed in [28], in INTHELEX abstrac-
tion takes place by means of a set of operators that replace
a number of components by a compound object, or de-
crease the granularity of a set of values, or ignore whole
objects or just part of their features, or neglect the num-
ber of occurrences of some kind of object.

3.2. Representation Language

In order to exploit the learning system, a first-order logic
representation of the document suitable for it must be pro-
vided. Thus, once the layout components of a document are
automatically discovered as explained in the previous sec-
tion, the next step concerns the automatic description of the
pages, blocks and frames according to their size, spatial [24]
and membership relations. Dealing with multi-page docu-
ments, we need to enrich the document description with
page information such as: page number, whether the page
is at the beginning, in the middle or at the end of the docu-
ment, whether the page is the last one, total number of pages

in the document. As pointed out, the automatic process ends
with a set of rectangles in which each single page is divided.
Such rectangles are described by means of their dimensions,
their type (text, graphic, line) and their horizontal and ver-
tical position in the document. Furthermore, the algebraic
relations ⊂ and ⊃ are exploited to express the inclusion be-
tween page and frame, e. g. contain(pagei, framej), and
between block and frame, e.g. contain(framej , blockk).

Another possible relation between rectangles is the spa-
tial one. Fixed a rectangle r, one can ideally divide the plan
containing it in 25 parts (see Figure 6). Then, the relation
between r and the other rectangles is described in terms
of the occupied plans with respect to r. It is applied to all
the blocks belonging to the same frame and to all the adja-
cent frames (The set of rectangles A that are adjacent to
a rectangle r is made up of all the ri ∈ A such that ri

is the nearest rectangle of r in the same plan.). Moreover,
such kind of representation of the plans allows the intro-
duction in the example description of the topological rela-
tions [13, 24], including closeness, intersection and overlap-
ping between rectangles. However, the topological informa-
tion can be deduced by the spatial relationships, and thus
it can be included by the system during the learning pro-
cess by means of deduction and abstraction. For instance,
the following fragment of background knowledge could be
provided to the system to infer the topological relations be-
tween two blocks or frames:

over_alignment(B1,B2):-
occupy_plane_9(B1,B2),
not(occupy_plane_4(B1,B2)).

over_alignment(B1,B2):-
occupy_plane_10(B1,B2),
not(occupy_plane_5(B1,B2)).

under_alignment(B1, B2) :-
occupy_plane_19(B1, B2),
not(occupy_plane_24(B1, B2)).

under_alignment(B1, B2) :-
occupy_plane_20(B1, B2),
not(occupy_plane_25(B1, B2)).

left_alignment(B1,B2):-

Figure 6. Representation Plans according to
[24]



occupy_plane_17(B1,B2),
not(occupy_plane_16(B1,B2)).

left_alignment(B1,B2):-
occupy_plane_22(B1,B2),
not(occupy_plane_21(B1,B2)).

right_alignment(B1, B2) :-
occupy_plane_19(B1, B2),
not(occupy_plane_20(B1, B2)).

right_alignment(B1, B2) :-
occupy_plane_24(B1, B2),
not(occupy_plane_25(B1, B2)).

touch(B1,B2):-
occupy_plane_14(B1,B2),
not(occupy_plane_13(B1,B2)).

touch(B1,B2) :-
occupy_plane_17(B1,B2),
not(occupy_plane_13(B1,B2)).

touch(B1,B2) :-
occupy_plane_18(B1,B2),
not(occupy_plane_13(B1,B2)).

touch(B1,B2):-
occupy_plane_19(B1,B2),
not(occupy_plane_13(B1,B2)).

Thus, given the representation of the two blocks reported
in figure 7, form the initial representation that is made up,
among other descriptors, by:

......
occupy_plane_18(b2, b1),
occupy_plane_19(b2, b1),
occupy_plane_20(b2, b1),
occupy_plane_23(b2, b1),
occupy_plane_24(b2, b1),
occupy_plane_25(b2, b1),
......

the system is able to recognize the topological relations
above reported giving the following:

..., touch(b2,b1), ....

In this language unary predicate symbols, called at-
tributes, are used to describe properties of a single layout
component (e.g. height and length), while n-ary predicate
symbols, called relations, are used to express spatial rela-

Figure 7. Block representation

tionships between layout components. A complete list of
attributes and relations is reported in Table 1.

3.3. Layout Correction

Due to the fixed stop threshold (see section 2.2), it could
be the case that after the layout analysis step some blocks
are not correctly recognized, i.e. background areas are con-
sidered as content ones and/or vice versa. In such a case a
phase of layout correction would be desirable.

A first correction of the automatically recognized lay-
out can be performed by allowing the system user to man-
ually force further forward and backward steps in the algo-
rithm with respect to the stop threshold. This process is pos-
sible since the system maintains three structures that keep
track of: all white rectangles found (W ), all black rectan-
gles found (B) and all rectangles that it has not analyzed
yet (N : if no threshold is given all the rectangles are ana-
lyzed and N will be empty at the end of processing). Hence,
when the user is not satisfied by the discovered layout be-
cause some background is missing, he can decide to go for-
ward, and the system will take and process further rectan-
gles from N . Conversely, if the user notes that the system
has found insignificant background pieces, he can decide to
go back and the system will correspondingly move blocks
between W , B and N .

However, such a solution is not always effective in case
of lost significant background rectangles (e.g., small areas
that represent the cut point between two frames), since they
could be very small and hence it would be necessary to per-
form many forward steps (during which the system would
probably restore insignificant white rectangles) before be-
ing able to retrieve them. Even worse, the system could be
completely unable to retrieve the needed background just
because it is too small to satisfy the constraints.

To solve both problems, we decided to apply machine
learning to automatically infer rules for recognizing inter-
esting background rectangles among those discarded or not
yet analyzed by the layout analysis algorithm, according
to their size and position with respect to the surrounding
blocks. Specifically, we first processed a number of doc-
uments, then we showed to the user all the blocks in the
N structure and asked him to force as background some
rectangles that the system had erroneously discarded (even
if such rectangles do not satisfy the constraints), and to
remove insignificant rectangles erroneously considered as
background by the system. These blocks were then con-
sidered as examples for the learning system in order to in-
fer rules to automatically perform this task during the next
layout analysis process. To this aim, a first-order descrip-
tion language and learning system were required, due to
the need of expressing many relationships among blocks.
Specifically, each example described the block to be forced



Page Descriptors
page number(d,p) p is the number of page in the document d
last page(p) true if the page p is the last page of the document
in first pages(p) true if the page p belongs to the first n pages of the document

(n < 1/3 total number of the pages in the document)
in middle pages(p) true if the page p is in the middle n pages of the document

(1/3 < n < 2/3 total number of the pages in the document)
in last pages pagine(p) true if the page p belongs to the last n pages of the document

(n > 2/3 total number of the pages in the document)
number of pages(d, n) n is the total number of pages that made up the document d
page width(p,w) w is the width of the page (a value normalized in [0,1])
page height(p,h) h is the height of the page (a value normalized in [0,1])
Frame/Block Descriptors
frame(p,f) f is a frame of the page p
block(p,b) b is a block of the page p
type(b,t) t is the type of the block content

(text,graphic,mixed,empty,vertical line,horizontal line,oblique line)
width(b,w) w is the width of the block in pixel
height(b,h) h is the height of the block in pixel
x coordinate rectangle(r,x) x is the coordinate of the start point of the rectangle (frame or block) r in horizontal sense
y coordinate rectangle(r,y) y is the coordinate of the start point of the rectangle (frame or block) r in vertical sense
Topological Relation Descriptors
belong(b, f) the block b belongs to the frame f
pos upper(p, r) the rectangle r is positioned in the upper part of the page p (in vertical sense)
pos middle(p, r) the rectangle r is positioned in the middle part of the page p (in vertical sense)
pos lower(p, r) the rectangle r is positioned in the lower part of the page p (in vertical sense)
pos left(p, r) the rectangle r is positioned in the left part of the page p (in horizontal sense)
pos center(p, r) the rectangle r is positioned in the center part of the page p (in horizontal sense)
pos right(p, r) the rectangle r is positioned in the right part of the page p (in horizontal sense)
touch(b1,b2) the block b1 touches the block b2 and vice versa
on top(b1,b2) the block b1 is positioned on the block b2
to right(b1,b2) the block b1 is positioned on the right of the block b2
over alignment(b1, b2) the block b1 is over the block b2
down alignment(b1, b2) the block b1 is under the block b2
left alignment(b1, b2) the block b1 is on the left of the block b2
right alignment(b1, b2) the block b1 is on the right of the block b2

Table 1. Attributes/Relations used to describe the documents

plus all the blocks around it, along with their size and posi-
tion in the document, both before and after the manual cor-
rection.

3.4. Classification

After having detected the document layout structure, it
is possible to associate a logic role with some of its com-
ponents. In particular, this represents meta-information that
could be exploited to tag the document and help its filing
and management within the digital library. The logical com-
ponents can be arranged in another hierarchical structure,
which is called logical structure. The logical structure is
the result of repeatedly dividing the content of a document
into increasingly smaller parts, on the basis of the human-
perceptible meaning of the content. The leaves of the logi-
cal structure are the basic logical components, such as au-

thors and title of a magazine article or the date and signa-
ture in a commercial letter. The heading of an article encom-
passes the title and the author and is therefore an example
of composite logical component. Composite logical compo-
nents are internal nodes of the logical structure. The root of
the logical structure is the document class. The problem of
finding the logical structure of a document can be cast as the
problem of associating some layout components with a cor-
responding logical component.

The first component that can be tagged is the document
itself, according to the class it belongs to (document image
classification step). Indeed, in general many different kinds
of documents can be present in one library, and they have
to be exploited in different ways according to their type. In
turn, the type of a document is typically reflected by the
layout structure of its first page: e.g., humans can imme-
diately distinguish a bill from an advertisement or a letter



or a (newspaper or scientific) paper without actually read-
ing their content, but just based on their visual appearance.

For this reason, we decided to apply machine learning
to infer rules that allow to automatically classify new in-
coming documents according to their first-page layout, in
order to determine how to file them in the digital repos-
itory and what kind of processing they should undergo
next. Here, the assumption is that documents belonging to
the same class have a set of relevant and invariant layout
characteristics (page layout signature). Again, the differ-
ent and complex relationships that hold between the lay-
out component of a document suggested the use of a first-
order representation language and learning system. Addi-
tionally, the possibility of continuously extending the repos-
itory with new classes of documents, in addition to new in-
stances of available classes, asked for incremental abilities
that INTHELEX provides.

Classification of multi-page documents is performed by
matching the layout structure of the first page against mod-
els of classes of documents. These models capture the in-
variant properties of the images/layout structures of docu-
ments belonging to the same class. They are rules expressed
in a first-order logic language, so that the document classi-
fication problem can be reformulated as a matching test be-
tween a logic formula that represents a model and another
logic formula that describes the image/layout properties of
the first page. The choice of a first-order logic language an-
swers to the requirement of flexibility and generality.

3.5. Understanding

Once the class of a document has been identified on the
basis of its first page, its logical components that are present
in all pages can be located and tagged by matching the
layout structure of the each page against models of logi-
cal components. Indeed, if we assume that it is possible to
identify logical components by using only layout informa-
tion, just as humans, these models capture the invariant lay-
out properties of the logical components of documents in
the same class.

This is the task of the document image understanding
phase, that must necessarily follow document image clas-
sification since the kind of logical components that can
be expected in a document strongly depend on the docu-
ment class (e.g., in a commercial letter one expects to find
a sender, possibly a logo, an address, an object, a body, a
date and a signature, whereas in a scientific paper one could
be interested in its title, authors and their affiliations, ab-
stract and bibliographic references). Once again, they are
expressed as rules in a first-order logic language. However,
differently from document classification, the document un-
derstanding problem cannot be effectively reformulated as
a simple matching test between logic formulae. The associ-

ation of the logical description of pages with logical com-
ponents requires a full-fledged theorem prover, since it is
typical that one component is defined and identified in rela-
tion to another one.

4. Categorization, Filing and Indexing

One of the most important task in a digital library man-
agement concerns the categorization of the documents. The
effectiveness in performing this task represents the success
factor in retrieval process of the documents that are really
interesting for the users. Indeed, a problem of most exist-
ing word-based retrieval systems consists of their ineffec-
tiveness in finding interesting documents when the users do
not use the same words by which the information they seek
has been indexed. This is due to a number of tricky features
that are typical of natural language: different writers use dif-
ferent words to describe the same idea (synonymy), thus, a
person issuing a query in a search engine may use a differ-
ent word than the one that appears in a document, and may
not retrieve the document; The same word can have mul-
tiple meanings (polysemy), so a searcher can get unwanted
documents with the alternate meanings.

The solution to such problems is represented by the La-
tent Semantic Indexing (LSI) technique [10] that tries to
overcome the weaknesses of term-matching based retrieval
by treating the unreliability of observed term-document as-
sociation data as a statistical problem. Indeed, LSI assumes
that there exists some underlying latent semantic structure
in the data that is partially obscured by the randomness of
word choice with respect to the retrieval phase and that can
be estimated by means of statistical techniques. We exploit
the LSI in both the indexing and retrieval processes as in the
following explained.

In the indexing process, LSI uses a term-document ma-
trix which describes the occurrences of terms in documents;
it is a sparse matrix, since not all the terms are present
in all documents, whose rows correspond to documents
and whose columns correspond to terms, typically stemmed
words that appear in the documents, specifically, the ele-
ments of the matrix represent the frequency of the times the
terms appear in each document. Obviously, the absence of a
term in a document is represented by the 0 value in the ma-
trix. The next step concerns the weighting of the matrix that
allows to create a correspondence between the local (fre-
quency of the term i in the document j (TF), tfij) and the
global (frequency of the term i in the whole set of docu-
ments (IDF), gfi) relevance for each term.

A good weighting function is obtained by the combina-
tion of both the local and global relevance of the term:

wij = L(i, j) ∗ G(i)



where L(i, j) represents the local relevance of the term i in
the document j and G(i) represents the global value of the
term i. A good way to relation such values is represented by
the log entropy function, where:

L(i, j) = log(tfij + 1)

G(i) = 1 −
∑

j=1,...,N

pij ∗ log(pij)

log(N)

N represents the number of the documents and pij =
tfij

gfi
.

This way, the logarithmic value of the local factor L(i, j)
mitigates the effects due to great variations in term frequen-
cies, while the entropy function of the global factor G(i)
mitigates the noise that could be present in the documents.

After the construction of the weighted occurrence ma-
trix, LSI finds a low-rank approximation to the term-
document matrix. The reasons for the approximations can
have two explanations: The original term-document ma-
trix is supposed to be too large for the computing re-
sources; The original term-document matrix is supposed
to be noisy: for instance, anecdotal instances of terms
are to be eliminated. From this point of view, the ma-
trix is interpreted as a de-noisified matrix (a better ma-
trix than the original). Concretely, the downsizing of the
matrix is achieved through the use of singular value de-
composition (SVD): the set of all the terms is then
represented by a vector space of lower dimensional-
ity than the total number of terms in the vocabulary.
The consequence of the rank lowering is that some di-
mensions get ‘merged’: {(car), (truck), (flower)} →
{(1,3452 ∗ car + 0,2828 ∗ truck), (flower)} This mit-
igates polysemy, as the rank lowering is expected to
merge the dimensions associated to terms of similar mean-
ings.

The success of the retrieval step results strictly related to
the choice of the parameter k that represents the best new
rank, lower than the original one, to reduce the matrix. In
our system, it is set as the minimum number of the docu-
ments needed to cover the whole set of terms.

As concerns the retrieval phase, in similar way, firstly,
it is built a vector for the query which describes the occur-
rences of terms, previously identified for the documents, in
the query. Once the vector is created, a weighting function
is applied to each element e of the vector in order to cre-
ate, for the query too, the correspondence between the local
and global factor:

qij = (0.5 +
0.5 ∗ tfi

maxtf
) ∗ log

N

n

where tfi is the frequency of term i in the query; maxtf

is the maximum value among all the frequencies; N repre-

sents the whole set of documents and n is the number of
documents in which the term i appears.

As regards the reduction of the query to a k-dimension
vector, it is performed by exploiting the SVD decompo-
sition of the term-document matrix previously computed.
This process is carried out for each vector representing the
document in the weighting term-document matrix too. At
the end of these steps both the query and the documents are
k-dimension vectors. It is worth noting that this step is nec-
essary in order to make comparable the query and the docu-
ments vectors that will be performed by means of a similar-
ity function. In our system the cosine similarity function [4]
was exploited to perform the comparison between the query
vector and each document vector. The documents that have
a high degree of similarity according to the value computed
are the documents interesting for the user query.

However, the large amount of items that a document
management system has to deal with, and the continuous
flow of new documents that could be added to the initial
database, require an incremental methodology to update the
initial LSI matrix. Indeed, applying from scratch at each
update the LSI method, taking into account both the old
(already analyzed) and the new documents, would become
computationally inefficient. Two techniques have been de-
veloped in the literature to update (i.e., add new terms
and/or documents to) an existing LSI generated database:
Folding-In [7] and SVD-Updating [23]. The former is a
much simpler alternative that uses the existing SVD to rep-
resent new information but yields poor-quality updated ma-
trices, since the information contained in the new docu-
ments/terms is not exploited by the updated semantic space.
The latter, that is exploited in our system, represents a trade-
off between the former and the recomputation from scratch.

5. Exploitation and Evaluation

The system for automated electronic documents process-
ing was evaluated in each step, from document acquisition
to document indexing for categorization and information re-
trieval purposes. Since the system can be embedded as a
document management engine into many different domain-
specific applications, in this section we focus on the Confer-
ence Management scenario. As we will see DOMINUS can
usefully support some of the more critical and knowledge-
intensive tasks involved by the organization of a scientific
conference, such as the assignment of the submitted papers
to suitable reviewers.

Organizing scientific conferences is a complex and
multi-faceted activity that often requires the use of a
web-based management system to make some tasks a lit-
tle easier to carry out, such as the job of reviewing papers.
Some of the features typically provided by these pack-
ages are: submission of abstracts and papers by Authors;



submission of reviews by the Program Committee Mem-
bers (PCMs); download of papers by the Program Commit-
tee (PC); handling of reviewers preferences and bidding;
web-based assignment of papers to PCMs for review; re-
view progress tracking; web-based PC meeting; notifica-
tion of acceptance/rejection; sending e-mails for notifica-
tions.

In this scenario the first step concerns the document im-
age classification and understanding of the submitted doc-
uments by Authors. In order to evaluate the system on this
phase, experiments were carried out on a dataset made up
of 108 documents (scientific papers) coming from online
repositories and formatted according to the Springer-Verlag
Lecture Notes in Computer Science (LNCS) style, the El-
sevier journals style (ELSEVIER), the International Con-
ference on Machine Learning (ICML) and European con-
ference on artificial intelligence (ECAI) proceedings style.
Specifically, 31 papers were formatted according to LNCS
style, 32 according to ELSEVIER style, 20 according to
ICML style and 25 according to ECAI style.

We chose papers formatted according to different styles
to show the ability of the incremental system in learning dif-
ferent concept definitions at the same time. Indeed the sys-
tem is able, at any moment, to learn the layout description
of a new class of document style preserving the correct def-
inition of the others. In this way we may build a global the-
ory, containing the definitions of different document styles,
that should be used for many conferences.

Each document was pre-processed and automatically de-
scribed in a first-order logic language, along the features
reported in previous section. Each document instance ob-
tained in such a way was considered a positive example for
the class it belongs to, and as a negative example for all the
other classes to be learned. The system performance was
evaluated according to a 10-fold cross validation methodol-
ogy, ensuring that all the learning and test sets contained the
same proportion of positive and negative examples. Further-
more, the system was provided with background knowledge
expressing topological relations (see Section 3.2), and ab-
straction was exploited to discretize numeric values of size
and position. In the following an extract of the abstraction
rules for rectangles width discretization are given.

width_very_small(X):-
rectangle_width(X, Y),
Y >= 0, Y =< 0.023.

width_small(X):-
rectangle_width(X, Y),
Y > 0.023, Y =< 0.047.

width_medium_small(X):-
rectangle_width(X, Y),
Y >= 0.047, Y =< 0.125.

width_medium(X):-
rectangle_width(X, Y),
Y > 0.125, Y =< 0.203.

Class Revisions RunTime (sec.) Accuracy %

LNCS 15 165.70 93.1
ICML 8.5 51.86 98
ELSEVIER 9.8 118.34 98
ECAI 11 3108.98 97

Table 2. Learning System Performance: infer-
ring rules for class paper identification

Label Revisions RunTime (sec.) Accuracy %

title 11.29 33.467 95.93
author 12.27 47.88 95.39
abstract 16.48 133.706 93.06
references 13.29 50.94 95.24

Table 3. Learning System Performance: infer-
ring rules for the identification of logical com-
ponents of LNCS

In general, due to the different layout components that
could be interesting for a specific class of documents but
not for others, the image understanding phase must be pre-
ceded by a classification process in order to recognize the
correct class the document belongs to. Hence, a first exper-
iment on the inference of rules to be exploited during the
classification step was run, showing good system perfor-
mance in terms of execution time, predictive accuracy and
number of theory revisions, as reported in Table 2. The low-
est accuracy refers to LNCS, which could be expected due
to the less strict check for conformance to the layout stan-
dard by the editor.

The second experiment, concerning the image under-
standing phase, aimed at learning rules able to identify the
layout components, was performed on the title, authors, ab-
stract and references layout components of the documents
belonging to the LNCS class. This class was chosen since
it represent the layout of the 264 papers submitted to the
18th Conference on Industrial & Engineering Applications
of Artificial Intelligence & Expert Systems (IEA/AIE 2005)
used for further experiments in the following reported. In
Table 3 the averaged results of the 10 folds along with the
execution time, predictive accuracy and number of theory
revisions are reported. As we can note, the system showed
good performance, specifically as regards the references on
which we intend to base additional processing steps.

One of the hardest and most time-consuming tasks in
Scientific Conferences organization is the process of assign-
ing reviewers to submitted papers. Due to the many con-



straints to be fulfilled, carrying out manually such a task
is very tedious and difficult, and does not guarantee to re-
sult in the best solution. This complex real-world domain
can take advantage of the proposed document management
system as concerns both the indexing and retrieval of the
documents and their associated topics. In the following we
present an experiment carried out on a dataset composed by
the 264 papers submitted to the 18th Conference on Indus-
trial & Engineering Applications of Artificial Intelligence
& Expert Systems (IEA/AIE 2005), whose Call for Papers
identified 34 topics of interest.

Firstly, the layout of each paper in electronic for-
mat was automatically analyzed in order to recognize the
significant components. In particular, the abstract and ti-
tle were considered the most representative of the doc-
ument subject, and hence the corresponding text was
extracted. On such a text the LSI technique was ex-
ploited as in the following reported. The words contained
therein were stemmed according to the technique pro-
posed by Porter [25], resulting in a total of 2832 word
stems, on which the LSI technique was applied in order
to index the whole set of documents. Then, the same pro-
cedure was applied to index the reviewers, resulting in
2204 stems. In this case, the titles of their papers appear-
ing in the DBLP Computer Science Bibliography reposi-
tory (http://www.informatik.uni-trier.de/
∼ley/db/) were exploited. With respect to exploit-
ing their homepages’ information on research interests, this
ensured a more uniform description. Compared to man-
ually selecting the title of their publications, this ensured
more completeness, even if at the cost of not having the ab-
stracts available as well.

In both cases, the LSI parameters were set in such a way
that all the conference topics were covered as different con-
cepts. The experiment consisted in performing 34 queries,
each corresponding to one conference topic, on both the pa-
pers and the reviewers in the database previously indexed,
and then in associating to each paper/reviewer the topics for
which it/he appears among the first l results. Specifically,
the results on document topic recognition showed that 88
documents per query had to be considered, in order to in-
clude the whole set of documents. However, returning just
30 documents per query, 257 out of 264 documents (97.3%)
were already assigned to at least one topic, which is an ac-
ceptable trade-off (the remaining 7 documents can be eas-
ily assigned by hand). Thus, 30 documents were considered
a good parameter, and exploited to count the distribution of
the topics between the documents. Interestingly, more than
half of the documents (54.7%) concern between 2 and 4 top-
ics, which could be expected both for the current interest of
the researchers in mixing together different research areas
and for the nature of the topics, that are not completely dis-
joint (some are specializations of others). Evaluated by the

conference organizers, the result showed a 79% accuracy on
average. As to the reviewers, even if taking l = 6 already
ensured at least one topic for each of them, we adopted a
more cautious approach and took l = 10, in order to bal-
ance the possible inaccuracy due to considering only the ti-
tles of their publications. The resulting accuracy was 65%.

Lastly, the topics automatically associated to papers and
reviewers were fed to the expert system GRAPE [19] in or-
der to perform the associations, with the requirement to as-
sign each paper to 2 reviewers. GRAPE (Global Review As-
signment Processing Engine), is an expert system, for solv-
ing the reviewers assignment problem, that takes advantage
of both the papers content (topics) and the reviewers exper-
tise and preferences (biddings). It could be used by exploit-
ing, in addition to the papers topics, the reviewers expertise
only, or both the reviewers expertise and biddings.

In order to have an insight on the quality of the results, in
the following we present some interesting figures concern-
ing GRAPE’s outcome. In solving the problem, the system
was able to complete its task in 2 minutes. GRAPE was al-
ways able to assign papers to reviewers by considering the
topics only, except in two cases. In particular, except for
those reviewers that explicitly asked to review less than 10
papers (MaxReviewsPerReviewer constraint), it assigned 10
papers to 40 reviewers, 9 to 2 reviewers, 8 to 3 reviewers, 7
and 6 to one reviewer. The experts considered the final as-
sociations made by GRAPE very helpful, since they would
have changed just 7% of them.

6. Conclusion

The huge amount of documents available in electronic
form and the flourishing of digital repositories raises prob-
lems concerning document management, aimed at effective-
ness and efficiency of their successive retrieval, that cannot
be faced by manual techniques. This paper proposed the in-
tensive application of intelligent techniques as a support to
all phases of automated document processing, from docu-
ment acquisition to document indexing and retrieval. Ex-
periments in the real-world sample application domain of
automatic Scientific Conference Management prove the vi-
ability of the proposed approach.

Different future work directions are planned for the pro-
posed system. First of all, the automatic processing of the
bibliographic references that can improve the identification
of the subject and context of the document. In this respect,
some initial research is already present in the literature [8],
and we are currently working on the improvement of such
methods, and on the development of new, knowledge-based
ones. More future work will concern the use of ontologies
for improving matching effectiveness.
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