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Abstract

Real-world tasks often involve a continuous flow of new information
that affects the learned theory, a situation that classical batch (one-step)
learning systems are hardly suitable to handle. On the contrary, incremen-
tal (also called “on-line”) techniques are able to deal with such a situation
by exploiting refinement operators. In many cases deep knowledge about
the world is not available: Either incomplete information is available at
the time of initial theory generation, or the nature of the concepts evolves
dynamically. The latter situation is the most difficult to handle since time
evolution needs to be considered. This work presents a new approach to
learning in presence of concept drift, and in particular a special version
of the incremental system INTHELEX purposely designed to implement
such a technique. Its behavior in this context has been checked and ana-
lyzed by running it on two different datasets.

1 Introduction

The recent, enormous growth in available computational power, and the corre-
sponding reduction of hardware components expensiveness, allowed researchers
in the Artificial Intelligence (AI) field to develop and tune methods, techniques
and systems that are able to cope with increasingly difficult tasks and environ-
ments with ever-increasing performance and effectiveness.

At the same time, the spread and development of computer technology in
almost every concern of human activities has generated a great demand for
information systems that can deal with a number of tasks, whose knowledge-
intensive nature and whose exploitation in changing and/or not fully under-
stood environments pose new challenges to the computer science researchers
and practitioners. A prototypical example can be obtained by considering how
the Internet technology has caused big changes in the Computer Science disci-



pline. Such changes are partly related to the interest of organizations and firms,
publishing their business and information on-line, in capturing their (potential)
users interests and expectations, in order to be able to comply with their needs
and fulfill their demands.

Mixing together these two development directions, the result is improved
AT systems that are capable of facing a wide range of real-world tasks. In
this landscape, a central role is played by Machine Learning (ML) techniques,
that are fundamental when an automatic system must adapt itself to unknown
settings and environments. In particular, real-world tasks often involve a con-
tinuous flow of new information that affects the learned theory, a situation that
classical batch (one-step) learning systems are hardly suitable to handle, since
changes in the learned information can be only carried out by withdrawing the
available theory and starting from scratch a new learning session that takes
into account both the old and the new observations available. On the contrary,
incremental (also called “on-line”) techniques are able to deal with such a sit-
uation by exploiting refinement operators that can adjust the learned theory,
without completely rejecting it, by generalizing/specializing the incorrect defi-
nitions according to the new available information. Obviously, the incremental
setting implicitly assumes that the information (observations) gained at any
given moment is incomplete, and thus that any learned theory is (could be) po-
tentially susceptible of changes. This, in turn, prevents the possibility of taking
unchangeable decisions and definitively cutting away, regarding them as useless,
portions of the search space that seem to be outside the correct (target) concept
definition region at a given time.

Another characteristic of real-world tasks and situations, that is worth point-
ing out, is that they are typically more complex than controlled ones, such as
those occurring in artificial datasets purposely designed to test learning systems
performance. In cases in which such a complexity grows significantly, a greatly
enhanced flexibility and expressive power of the representations is needed, in
order for them to be correctly and significantly handled. Such an expressive
power sometimes cannot be provided by classical propositional, attribute-value
or numeric representations, but requires the use of relations in order to describe
observations whose shape and boundary cannot be predicted and fixed a priori.
Classical examples are the Mutagenesis domain [28], or the paper document
classification/understanding one, the family one and so on. Hence, the need
of first-order logic as a representation language, and, as a consequence, the
increasing interest in techniques and systems that can deal with such a setting.

The problem is, handling first-order descriptions requires a great compu-
tational effort, hence, again, the need for computational models, techniques
and/or operators that can explore the search space in a more effective and ef-
ficient way, by reducing the combinatorial explosion of the allowed paths and
focusing on the portion of the space that is more likely to contain the target
solution. One example of desirable property is ideality [30], according to which
refinement operators must be locally finite (i.e., they have to give their outcome
exploiting finite time and space resources), proper (i.e., they should not loop
on a solution that is equivalent to the starting point of the search space) and



complete (i.e., they should find a solution whenever it exists). The definition
of such kind of operators is a fundamental problem in a logic framework for
the inductive synthesis of theories from facts. Indeed, when the aim is to de-
velop incrementally a logic program, that should be correct with respect to its
intended model at the end of the development process, the ideality of the re-
finement operators plays a key role if the efficiency and the effectiveness of the
design process is a non-negligible requirement. Unfortunately, when full Horn
clause logic is chosen as representation language and either 6-subsumption or
implication is adopted as generalization model, there exist no ideal refinement
operators [32, 31, 30]. Thus, weaker models have to be found with a fair tradeoff
between mechanizability and expressive power.

A further desirable property is inherent and full incrementality, i.e. the
ability to learn correctly even when only one observation at a time is provided,
and no previous version of the theory is available.

If a number of difficulties are related to learning concepts for which obser-
vations become available incrementally, still more complex is learning concepts
whose definition may change in time. Indeed, such a case encompasses incre-
mentality, in that examples of the different versions of the concept during its
evolution must be given in the different stages (and times) the changing concept
goes through. Additional difficulties with respect to the case of simple incre-
mentality include deciding which, and how many, of the past examples should
still constrain the exploration of the search space at a given moment. Indeed,
according to the amount, “direction” and spread of the change, a number of
different solutions should be exploited. In this paper, we will assume that the
system trainer can trace concept drifts and provide examples accordingly. Thus,
our focus of attention will be on how to handle drifting rather than on how to
recognize it in a continuous flow of examples.

In the following we will first present our framework, based on Object Iden-
tity. Then, Section 3 will describe the architecture of the incremental learning
system INTHELEX, followed in Section 4 by a deeper insigth into its refinement
mechanisms. Successively, Section 5 will introduce our proposal on how to deal
with the phenomenon of concept drift in an online learning setting, providing
the algorithm that was embedded in INTHELEX in order to implement such a
technique. In order to assess the quality of the proposed solution, two datasets
were purposely designed on which to apply the resulting system, whose perfor-
mance is reported and commented. Lastly, Section 6 will conclude the paper.

2 The Object Identity Framework

The presented research was carried out in the First-Order logic framework
(see [17] as a reference to all the notions concerning logic programming). Specif-
ically, a modification of Datalog [3], the function-free fragment of pure Pro-
log, was used as a representation language. Such a modification is obtained
by imposing a further bias, based on the notion of Object Identity (OI for
short) [5, 25].



Definition 2.1 (Object Identity) Within a clause, terms (even variables)
denoted with different symbols must be distinct.

Such an assumption leads to a new representation language, called Datalog®?,
that is an instance of constraint logic programming [13]. It is also the basis
for the definition of both an equational theory for Datalog clauses and a quasi-
ordering upon them. In Datalog, the adoption of the Object Identity assumption
can be viewed as a method for building an equational theory onto the ordering
as well as onto the inference rules of the calculus (resolution, factorization and
paramodulation) [20]. Such equational theory is very simple, since it consists
of just one rewrite rule, in addition to the set of the axioms of Clark’s Equality
Theory (CET) [17], and specifically:

t # s € body(C) for each clause C in £ and
for all pairs t, s of distinct terms that occur in C (0I1)
where £ denotes the language that consists of all the possible Datalog clauses
built from a finite number of predicates.

The (OI) rewrite rule can be viewed as an extension of both Reiter’s unique-
names assumption [22] and axioms (7), (8) and (9) of CET to the variables of
the language. Under the Object Identity assumption, the Datalog clause

C :p(X) P Q(XvX)v(I(Yva)
is an abbreviation for the Datalog®! clause
Cor =p(X) : —q(X, X),q(Y,a) | [X #Y],[X #a],[Y #d

where p, ¢ denote predicate letters, X, Y are variables, a is a constant and
the inequations attached to the clause can be seen as constraints on its terms.
These constraints are generated in a systematic way by the (OI) rewrite rule.
In addition, they can be dealt with in the same way as the other literals in
the clause. Therefore, under Object Identity, any Datalog clause C' generates a
new DatalogOI clause Coy consisting of two components, called core(Cor) and
constraints(Cor), where core(Cor) = C and constraints(Cor) is the set of the
inequalities generated by the (OI) rewrite rule, that is to say,

constraints(Cor) = {t # s | t, s € terms(C),t, s distinct}

Therefore, Datalog®! is a sublanguage of Datalog” (the extension of Datalog
allowing inequality predicates in the body of clauses). Formally, a Datalog®’
program is made up of a set of Datalog®’ clauses of the form

q(X]_,XQ,...,Xn) 2 ” I

where ¢ and ¢ are as in Datalog, I is the set of inequations generated by the
(OI) rule and n > 0. The symbol “||” means and just like “”, but is used for
the sake of readability, in order to separate the predicates coming from the (OI)
rewrite rule from the rest of the clause. In spite of the Object Identity bias,
Datalog®! has the same expressive power as Datalog as shown in the following
propositions and proved in [25].



Proposition 2.1 VC € Datalog 3C" = {C1,Cs,...,C,} C Datalog®! :
TeTw=Tc Tw

that is, for each Datalog clause we can find a set of Datalog®! clauses equivalent
to it. It follows that:

Corollary 2.2 VP C Datalog 3P’ C Datalog®! : Tp 1w =Tp: T w.

that is, for any Datalog program we can find a Datalog®! program equivalent
to it.

Now, it is possible to introduce the ordering relation defined by applying the
notion of Object Identity upon the classical relation of #-subsumption, called
Oor-subsumption [5, 25]. The following definition extends to Datalog the defini-
tion given in [6, 26] for constant-free (other than function-free) logic languages.

Definition 2.2 (6p;-subsumption ordering) Let C, D be two Datalog clauses.
We say that D 0-subsumes C under object identity (D 0or-subsumes C') if and
only if (iff) there exists a substitution o such that (s.t.) Dor.c C Coy.

In such a case, we say that D is more general than or equivalent to C (D is
an upward refinement of C' and C' is a downward refinement of D) under ob-
ject identity and we write C' <o; D. We write C <o; D when C <o; D and
not(D <opr C) and we say that D is more general than C' (D is a proper up-
ward refinement of C') or C is more specific than D (C is a proper downward
refinement of D) or D properly Opr-subsumes C. We write C' ~or D, and we
say that C' and D are equivalent clauses under object identity, when C' <o; D
and D <o C.

Like #-subsumption, 8o;-subsumption induces a quasi-ordering upon the space
of the Datalog clauses, as stated by the following result [27].

Proposition 2.3 Let C, D, E be Datalog clauses. Then:
1. C<por C
2.C<orDand D<o E=C<pr FE

that is, 8p-subsumption is both reflexive and transitive just like #-subsumption.
However, it is not anti-symmetric, hence the resulting space is not a lattice
and, as a consequence, the lub and glb of two clauses could be not unique. A
characterization of the notion of 6pr-subsumption is:

Proposition 2.4 Let C, D be two Datalog clauses, C' <o;r D <
Jdos.t.core(Dor).c C core(Cor) and constraints(Dor).c C constraints(Cor)

An interesting fact is the existence, under such a weaker, but more mechanizable
and manageable ordering, of ideal refinement operators, whose definition follows.

Definition 2.3 Let C be a Datalog clause.

o Downward refinement operator poy:
D € po;(C) when exactly one of the following conditions holds:



1. D € C.0, where 6 ={X/a}, a ¢ consts(C), X € vars(C)
i.e 0 is a substitution, a is a constant not occurring in C and X is a
variable occurring in C;

2. D =CU{~l}, wherel is an atom s.t. =l ¢ C.

e Upward refinement operator §oj:
D € 601(C) when exactly one of the following conditions holds:

1. D € Cy, where vy ={a/X}, a € consts(C), X ¢ vars(C)
i.e 7y is an anti-substitution, a is a constant occurring in C' and X is
a variable not occurring in C;

2. D = C\{~l}, where l is a n atom s.t. =l € C.

In other words, a specialization of a clause can be obtained by substituting
a variable with a (new) constant or by adding a literal to its body. Conversely,
a generalization of a clause can be obtained by substituting a constant with a
(new) variable or by eliminating a literal from its body.

Proposition 2.5 [5, 25] The refinement operators in Definition 2.3 are ideal
for Datalog clauses ordered by 0or-subsumption.

3 INTHELEX

INTHELEX (INcremental THEory Learner from EXamples) is a learning sys-
tem for the induction of hierarchical theories from positive and negative exam-
ples which focuses the search for refinements by exploiting the Object Identity
bias on the generalization model. It is fully and inherently incremental: this
means that, in addition to the possibility of taking as input a previously gen-
erated version of the theory, learning can also start from an empty theory and
from the first available example; moreover, at any moment the theory is guar-
anteed to be correct with respect to all of the examples encountered thus far.
This is a fundamental issue, since in many cases deep knowledge about the
world is not available. Incremental learning is necessary when either incomplete
information is available at the time of initial theory generation, or the nature
of the concepts evolves dynamically. The latter situation is the most difficult
to handle since time evolution needs to be considered (see Section 5 for more
details). In any case, it is useful to consider learning as a closed loop process,
where feedback on performance is used to activate the theory revision phase [2].
INTHELEX can learn simultaneously various concepts, possibly related to each
other, and is based on a closed loop architecture — i.e. the learned theory
correctness is checked on any new example and, in case of failure, a revision
process is activated on it, in order to restore completeness and consistency.
INTHELEX learns theories expressed as sets of Datalog®! clauses (function
free clauses to be interpreted according to the Object Identity assumption —
see the previous section). It adopts a full memory storage strategy — i.e., it
retains all the available examples, thus the learned theories are guaranteed to be
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Figure 1: Inthelex Architecture

valid on the whole set of known examples — and it incorporates two inductive
operators, one for generalizing definitions that reject positive examples, and the
other for specializing definitions that explain negative examples. Both these
operators, when applied, change the answer set of the theory, i.e. the set of
examples it accounts for. Therefore, it is a system for theory revision rather
than for theory restructuring, according to the definition of theory restructuring
as a process that does not change the answer set of a theory [38].

3.1 Theory Revision

The process of theory revision, as performed by the system, is now briefly sum-
marized. Figure 1 presents its logical architecture.

In order to perform its task, the system exploits a previous theory (if any)
and a historical memory of all the past (positive and negative) examples that
led to the current theory. It is important to note that a positive example for
a concept is not considered as a negative example for all the other concepts
(unless it is explicitly stated).

A set of examples of the concepts to be learned is provided by the Ezxpert,
possibly selected from the Environment. Examples are definite ground Horn
clauses, whose body describes the observation by means of only basic non-
negated predicates of the representation language adopted for the problem at
hand, and whose head is the tag that defines the class to which the observed
object belongs if it is a positive one. In case of a negative example, i.e. a
description of an object that does not belong to a class, the head is negated.
When learning many concepts, a single observation may stand as an example or a
counterexample for more than one concept: The system allows the specification
in the head of a list of all the classifications that can be associated to the
observation described in the body. This does not affect the system’s inherent



incrementality. Indeed, single classifications are processed separately, in the
order they appear in the list, so that the teacher can still decide which concepts
should be taken into account first and which should be taken into account later.
Whenever a new example is taken into account, it is also stored in the historical
memory.

The whole set of examples can be subdivided into three subsets, namely
training, tuning and test examples, according to the way in which examples are
exploited during the learning process. Specifically, training examples (if any),
previously classified by the Expert, are exploited by the Rule Generator to build
a theory that is able to explain them. The initial theory can also be provided
by the Expert. Subsequently, such a theory, plus the Background Knowledge,
are checked by the Rule Interpreter against new available examples. The Rule
Interpreter takes the set of inductive hypotheses and a tuning/test example as
input, and produces a decision. The decision is compared to the correct one
and, in case of incorrectness, the cause of the wrong decision can be located.

Test examples are exploited only to check the predictive capabilities of the
theory on new observations. Conversely, tuning examples are exploited incre-
mentally by the Rule Refiner to modify incorrect hypotheses according to a
data-driven strategy. The Rule Refiner consists of two distinct modules, a Rule
Specializer and a Rule Generalizer. In particular, when a positive example is
not covered, the Rule Generalizer produces a revised theory obtained in one
of the following ways (listed by decreasing priority) such that completeness is
restored:

e replacing a clause in the theory with one of its Least General Generaliza-
tions under Object Identity against the problematic example;

e adding a new clause to the theory, obtained by properly turning constants
into variables in the problematic example;

e adding the problematic example as a positive exception.

When, on the other hand, a negative example is covered, the Rule Specializer
outputs a revised theory that restores consistency by performing one of the
following actions (by decreasing priority):

e adding positive literals that are able to characterize all the past positive
examples of the concept (and exclude the problematic one) to the clauses
that concur to the example coverage (starting from the lowest possible
level);

e adding a negative literal that is able to discriminate the problematic ex-
ample from all the past positive ones to the top-level clause in the theory
by which the problematic example is covered;

e adding the problematic example as a negative exception.

An exception contains a specific reference to the observation it represents, as
it occurs in the tuning set; new incoming observations are always checked with



respect to the exceptions before the rules of the related concept. This does not
lead to rules which do not cover any example, since exceptions refer to specific
objects, while rules contain variables, so they are still applicable to other objects
than those in the exceptions. Section 4 will present a more detailed explanation
of these processes.

Algorithm 1 shows the procedure implementing the Rule Refiner. It con-
cerns the tuning phase of the system, where M = M™ U M~ represents the set
of all negative (M) and positive (M) processed examples, F is the exam-
ple currently examined, T represents the theory generated so far according to
M plus the background knowledge. The Generalize and Specialize procedures
implement the Rule Generalizer and Rule Specializer, respectively, used by the
Rule Refiner.

Algorithm 1 Tuning Procedure

Procedure Tuning (E: example; T: theory; M: historical memory);
if E is a positive exampe AND - covers(T,E) then
Generalize(T,E,M ™)
else
if E is a negative example AND covers(T,E) then
Specialize(T,E,M ™)
M := M U{E}

It is worth noting that INTHELEX never rejects examples, but always refines
the theory. Moreover, it does not need to know a priori what is the whole set of
concepts to be learned, but it learns a new concept as soon as examples about
it are available.

3.2 Multistrategy Learning

This purely inductive procedure has been further developed by providing it
with additional multistrategy capabilities, according to the Inferential Theory
of Learning framework [18], in order to improve effectiveness and efficiency of
the learning task. Namely, deduction exploits the provided Background Knowl-
edge (i.e. some partial concept definitions known to be correct, and hence not
modifiable) to recognize known objects in an example description. Abstraction
can be cast as the process of focusing on what is relevant in an observation.
Indeed, ignoring the details about the objects belonging to a class may facili-
tate the generation of rules for that class. Abduction is used to complete the
observations, whenever possible, in such a way that the examples they represent
are explained (if positive) or rejected (if negative). This prevents the refinement
operators from being applied, as long as possible, leaving the theory unchanged.

For deduction the system exploits a dependency graph, describing the de-
pendence relationships among the concepts to be learned (see Figure 2 for a
graphical example concerning the vehicle domain). The relations among the
concepts represented in such a graph are expressed as a set of clauses like the
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Figure 2: Dependencies graph

following:

car(X) « engine(X), wheel(X).
engine(X) « piston(X).
bicycle(X) « wheel(X), mechanics(X,Y).

mechanics(X,Y) « bicycle_chain(X,Y,Z), front_gear(X,Y),
rear_gear(X,Y).

“concept car/1 depends on concepts engine/1 and wheel /2”; “concept engine/1
depends on concept piston/1”; “concept bicycle/1 depends on concepts wheel /1
and mechanics/2”; “concept mechanics/2 depends on concepts bicycle_chain/3,
front_gear/2 and rear_gear/2”. Note that in the graph the variables are used
as placeholders to indicate the arity of concepts. Whenever a new example is
taken into account, and before it is stored in the historical memory, if necessary,
it undergoes a saturation phase. If any of its sub-concepts in the dependency
graph can be recognized in its description according to the definitions learned by
the system up to that moment and the Background Knowledge, literals concern-
ing those concepts are added (properly instantiated) to the example description.

The background knowledge is expressed in the same way as the rules of the
theory (i.e., Horn function-free clauses in Prolog form), but the body of its
clauses starts with a “true” predicate in order to recognize them and prevent
them from being modified by the refinement operators. An example of such a
clause is:

wheel(X) « true, circular(X), hasrim(X,C), has_tire(X,T).

and is to be interpreted as “An object X is a wheel if it is circular, it has a rim
C and a tire 7”. Given the above setting, and the following example:

bicycle(bb) <+ has_saddle(bb,s), has_pedals(bb,p), has frame(bb,f),
part_of (bb,wl), circular(wl), has rim(wl,rl),
has_tire(wl,tl), part_of (bb,w2), circular(w2),
has_rim(w?2,r2), has_tire(w?2,t2).

10



since concept ‘bicycle’ depends on concept ‘wheel’, and in the description for
bicycle bb it is possible to recognize two wheels (wl and w2), according to the
definition in the background knowledge, the example can be saturated in order
to explicitly represent such a situation in the following way:

bicycle(bb) «+ has pedals(bb,p), has saddle(bb,s), has frame(bb,f),
part_of (bb,wl), wheel(wl), part_of (bb,w2), wheel(w2),
circular(wl), has_rim(wl,rl), has_tire(wl,tl),
circular(w2), has_rim(w2,r2), has_tire(w2,t2).

In a similar fashion, an abstraction phase, performed by a proper module,
is able to preprocess the examples in order to describe them in a higher-level
language, by eliminating superfluous details according to a given Abstraction
Theory. Specifically, the implemented abstraction operators [39] allow to elim-
inate superfluous details, group specific component patterns into compound
objects, reduce the number of object attributes, ignore the number of instances
of a given object and obtain a coarser grain-size for attribute values. Again,
the abstraction operators are represented as clauses, such that whenever their
body is recognized in an example, the corresponding literals are dropped from
the example and replaced by those in the head (properly instantiated). Unlike
the background knowledge, the body of clauses that represent the abstraction
theory does not start with a “true” predicate, and there is no reference to the
dependency graph in the application of abstraction. Referring again to the pre-
vious example about bicycle bb, and supposing that the background knowledge
clause is now in the Abstraction Theory, the example can be abstracted in the
following way:

bicycle(bb) < has_pedals(bb,p), has_saddle(bb,s), has_frame(bb, ),
part_of (bb,wl), wheel(wl), part_of (bb,w2), wheel(w2).

Lastly, INTHELEX is also able to exploit a special abductive proof pro-
cedure to manage situations in which not only the set of all observations is
partially known, but each observation could be incomplete too. In particular,
an algorithm by Kakas and Mancarella [14], modified by Esposito et al. [7], has
been adopted for hypothesizing unknown facts to be added to an observation,
provided they are consistent with given integrity constraints. Specifically, to be
able to abduce literals, the system needs to know the set of integrity constraints
(IC) that the hypothesized information must fulfill, and the list of predicates on
which abductions can be made, called abducibles (A). For instance, supposing
to have the following set of abducibles:

A = {circular(X), has-rim(X, R), has_pedals(X,Y)}

an integrity constraint stating that “an object X is either circular or square
(but it cannot be both at the same time)”:

IC : [circular(X), square(X)]

and the following example:

11



bicycle(bb) «+ has_saddle(bb,s), has _frame(bb, f), part_of (bb,wl),
has rim(wl,rl), has_tire(wl,tl), part_of(bb,w2),
circular(w?2), has_tire(w2,t2).

the abduction procedure is able to complete the example description according
to the following hypothesis (previously generated by the system or contained in
the background knowledge):

bicycle(X) « has_saddle(X,Y), has_pedals(X,Z), has frame(X,W),
part of (X,A), circular(A), has rim(A,R), has_tire(A4,S5),
part_of(X,B), circular(B), hasrim(B,T), has_tire(B,V).

by adding the predicates: has_pedals(bb,s0), has rim(wl,t1), circular(w?2).

Algorithm 2 shows the tuning procedure, augmented with such functionality,
where AbsT is the abstraction theory provided by the user; SatE and AbsE are,
respectively, the example generated by the saturation and abstraction phases
from the original example E; D is the set of literals returned by the abductive
derivation of example AbsE in theory T (that also includes the background
knowledge).

Algorithm 2 Theory Tuning

Procedure Tuning (E: example; T: theory; M: historical memory);
AbsE := Abstract(E,AbsT)
D := AbsE
if 3 Abductive_Derivation(AbsE,T,D) then
Add to D the abduced literals
Add D to body(AbsE)
else
SatE := Saturate(AbsE,T)
if SatE is a positive example AND - covers(T,SatE) then
Generalize(T,AbsE,M ™)
else
if SatE is a negative example AND covers(T,SatE) then
Specialize(T,AbsE, M)
M := MU AbsE

4 Inductive Refinement Operators in INTHELEX

Whenever a positive example is not explained by the currently available theory
(omission error), it is necessary to generalize the incomplete concept definition
(i.e., the set of clauses defining that concept). Conversely, when a negative
example is explained (commission error), it becomes necessary to specialize
all the inconsistent clauses. This points out that the process of diagnosis of
an incorrect theory is performed at different levels of granularity, according
to the type of error found. Specifically, if an omission error occurs, a single

12



clause cannot be blamed for not explaining the example, but the whole set
of clauses defining that concept is equally responsible; if a commission error
occurs, the diagnosis can be carried up to the level of specific clauses that
explain the example. Omission errors can be solved by exploiting an upward
refinement operator, while, dually, downward refinement operators can cope
with commission errors.

4.1 Upward refinement

The upward refinement operator extends the concept of least general general-
ization (lgg) introduced by Plotkin [21] to cope with the ordering induced by
0o r-subsumption.

Definition 4.1 (Least general generalization under Object Identity) A
least general generalization under 6o -subsumption of two clauses is a general-
ization which is not more general than any other such generalization, that is, it
is either more specific than or not comparable to any other such generalization.
Formally:
lg901(C1,C2) =
= {C | Ci;<orC,i=1,2and VD s.t. C; <po; D,i=1,2: —‘(D <or C)}

Note that the lgg is no longer unique under 65;-subsumption, since the space of
Datalog clauses is not a lattice when ordered by §or-subsumption [26, 27] while
it is when ordered by @-subsumption.

Example 4.1 Given:
Cy = bicycle(a) : — wheel(v,a), wheel(w, a), spikes(r,v), spikes(s, w).
Cy = bicycle(b) : — wheel(v,b), wheel(Y,b), spikes(R,Y).
we have:
lggo1(Cr,Cs) = {bicycle(X) : — wheel(v, X),wheel(Z, X), spikes(T, Z).}
while the clause
E = bicycle(X) : — wheel(v, X), wheel(Z, X).
18 a generalization but not a least general one.

Implementing the theoretical ideal generalization operator just as it is de-
fined would require to compute the Plotkin’s lgg, to generate all of its subsets
(if n is the number of literals in Plotkin’s lgg, this means generating 2" distinct
subsets) and, for each of them, to check them both internally (to ensure OI
and linkedness) and externally (comparing it with all the others to ensure min-
imality). Progressively generating and expanding the graph of generalizations,
starting from Plotkin’s one, until all lgg,; are found, would avoid the generation
of all possible subsets, but would also generate duplicates, thus not reducing the
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Algorithm 3 Generalization

Procedure Generalize (E: positive example, T: theory,
M~ : negative examples);
L := (non BK) clauses in the definition of the concept which E refers to
generalized := false; gen_lgg := 0
while ((— generalized) AND (L # ))) do
C':= choose_clause(L) ; L := L\{C'}
while ((3 another [ € lggp;(C, E)) AND (- generalized)
AND (gen_lgg < mazx_gen)) do
gen_lgg := gen_lgg + 1
if (consistent(T\{C}U{l},M~)) then
generalized := true ; T := T\{C} U {l}
if (- generalized) then
G := turn_constants_into_variables(E)
if consistent(T U {G}, M~) then
T:=TU{G}
else
T:=TU{E} {positive exception}

exponential complexity of the process. Both these solutions are too computa-
tionally expensive. Thus, our implementation works as follows: The lggy; is
initialized as the literal generalizing the two heads; then, literals in Plotkin’s lgg
are progressively added to the partial generalization as long as they are linked
to it and fulfill the OI requirement. When a generalization is found, it is tested
with respect to all the past negative examples. If none of them is explained,
then the generalized clause is replaced in the theory by the generalization. Oth-
erwise, an intelligent backtracking on the literals in Plotkin’s lgg is performed,
which yields the next generalization avoiding to build equivalent ones.

The generalization process, described in Algorithm 3, is started whenever a
positive example is not explained. Starting from the current theory, the mis-
classified example and the past negative examples, it ends with a new (revised)
theory. First of all, since (as already pointed out) there is no single clause re-
sponsible for not explaining the given example, the system must perform a step
of blame assignment, choosing a clause to be generalized among those making
up the involved concept description. This is done by the choose_clause function,
that currently just selects a clause at random.

Then, the system tries to compute one of the lgg,;’s of this clause and
the example (see Algorithm 4). If it is consistent (which is checked by the
boolean function consistent) with all the past negative examples, then it replaces
the chosen clause in the theory, or else another generalization in the lggo; is
generated and tested (if any). In case no consistent generalization of that clause
is found, a new clause is chosen to compute the lgg,;. For each clause, the
following bounds can be imposed, according to the degree of generalization to
be obtained and the computational budget allowed:
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e maximum number of elements in the lgg,; to be generated (mazx_gen in
Algorithm 3)

e maximum number of elements in the lgg,; to be discarded® (max_disc in
Algorithm 4)

e maximum number of literals allowed in the generalization? (maz_lits in
Algorithm 4)

e minimum number of literals allowed in the generalization (min_lits in
Algorithm 4)

If no clause in an incomplete definition can be generalized so that the resulting
theory is complete and consistent, the system checks if the example itself, with
the constants properly turned into variables (which is obtained by means of
a function turn_constants_into_variables), is consistent with the past negative
examples. Such a clause is added to the theory, or else the example itself is
added as an exception to the theory.

4.2 Downward refinement

In our framework, specializing means merely adding proper literals to an in-
consistent clause, in order to avoid it explaining a negative example. Revisions
performed by this operator are always minimal [37]: indeed, a specialization ob-
tained by turning a variable into a constant is not provided for since all clauses
in the theory contain only variables as arguments.

Starting from the current theory, the misclassified example and the past
positive examples, the specialization algorithm yields a new (revised) theory in
which the consistency property has been restored by adding proper literals to
inconsistent clauses, according to the ideal operator in Definition 2.3. The space
in which the literals to be added should be searched for is potentially infinite
and, in any case, its size is so large that an exhaustive search is not feasible.
The operator can focus the search into the portion of the space that contains
the solution of the diagnosed commission error, as a result of an analysis of its
algebraic structure. The search is firstly performed in the space of positive liter-
als, that contains information coming from positive examples used to synthesize
the current theory, but not yet exploited by it. If the search in this space fails,
the algorithm autonomously performs a representation change, that allows it to
extend the search to the space of negative literals, built by taking into account
the negative example that caused the commission error [27]. The pseudo-code
procedure is described in Algorithm 5.

First of all, the process detects all the clauses that caused the inconsistency
(i.e., those occurring in the SLD-derivation of the example). Then, the system
tries to specialize one at the lowest possible level (which corresponds to a clause

IWhich happens if it is not consistent with all the past negative examples or its construction
do not respect the generality limits imposed.
2A literal is discarded if it does not comply with the linkedness and OI requirements.
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Algorithm 4 lgg

Function lgg oi(E: positive example, C: clause): clause;
Sneg = Spos := L 1= Substygy := 0; disc_lits := 0
for all n € negative literals of C' do
S:={0|nb € E} ; Speg := {0 =607|0 € Speq, v € S}
for all p € positive literals of C' do
if 30 s.t. pf € E then
T:={0|pd € E}; Spos:={0=07|0€ Spos,y€T};L:=LU{p}
else
disc_lits := disc_lits + 1
lggor:= head(C) ; Subst;qq =0 s.t. head(C)0 = head(E)
K :={k e L s.t. vars(lggpo;) C vars(K) }
lggor=lggor A K}; L := L\ {K}
Substygg = {0 =106 ] 6 € Subtyy,, 6 € {§' | Ké' C E}};
while (( | lggo;|< maz_lit) AND (L # 0) AND (disc_lits < min_lit)
AND (disc_clauses < maz_disc)) do
c:=1¢€ L st linked({I}V lggp;)
if (lggorU{c}) fulfills the OI requirements then
M :={l € L |vars(l) C vars(lggo;I{c}) }; L:= L\ {M}
lggor= lggorV{ct U{M}
Substigg == {00y | 0 € Substygq, 6 € {0' | 0’ € E}, v {7 | My C E}}
else
disc_lits := disc.lits + 1
if L:= L\ {c} linked wrt negative literals of C' then
disc_clauses := disc_clauses + 1
if ((| lggor| > max_lit) AND (Substiqq is compatible with Speq)) then

return (lggor)

defining a concept whose level is the lowest in the dependency graph), in order
to refine more “basic” concepts. Indeed, they may appear in the definition
of many higher level concepts; the underlying heuristic is that the latter will
hopefully benefit from the revised/better definition of the former. Since the
downward refinements we are looking for must satisfy the property of maximal
generality, this suggests to search for one (or more) positive literal(s) which
can discriminate all the past positive examples from the current negative one.
Specifically, if there exists one (or a combination of) literal(s) that, when added
to the body of the clause to be specialized, is able to discriminate from the
negative example that caused the inconsistency, then the downward refinement
operator should be able to find it. If the derivation of an example in a theory
is not unique, a single specialization step could be insufficient to restore the
consistency of the theory. For such a reason, when a specialization of a clause is
reached, the example is tested again to check if another SLD-derivation, different
from the previous one, exists for it. If so, the process is iterated until no more
derivations of the example are found. Note that only one step of specialization
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Algorithm 5 Specialization

Procedure Specialize(E: negative example; T: theory; M*: positive
examples);
specialized := false ; gen_spec := 0
while 3 a (new) derivation D of E from T do
L := Input program clauses in D sorted by decreasing depth in derivation
while ((— specialized) AND (3C € L) and (gen-spec < maz_gen)) do
while ((3 another S € por-pos(C, E)) AND (- specialized)) do
gen_spec 1= gen_spec + 1
if (complete(T \ {C}U{S}, M ™)) then
T:=T\{C}U{S}
if (- specialized) then
C := first clause in the derivation of E
while ((3 another S € por-neg(C, E)) AND (- specialized)) do
if (complete(T \ {C}U{S}, M ™)) then
T:=T\{C}u{S}
if (- specialized) then
T :=T U{E} {negative exception}

is needed whenever the SLD-derivation of the example involves just one clause.
Such a process can be formalized in Algorithm 6.

If no clause in the SLD-derivation of the example can be specialized by
adding literals coming from the positive examples, an attempt is made to add
a negative literal to the first clause of the SLD-derivation (the one related to
the concept the example is an instance of). Specifically, the literals present in
the negative example that caused the commission error, but not in the clause
to be specialized, are taken into account. Indeed, if any, their negation added
to the clause would be able to discriminate the negative example from all the
past positive ones. Algorithm 7 shows this process in more detail.

A set of parameters for limiting the search are considered:

e maximum number of positive literals to be added (max_lit in Algorithm 6)

e maximum number of specialization to be generated (max_gen in Algo-
rithm 5)

If none of the clauses obtained makes the theory complete and consistent
again, then the system adds the negative example to the theory as an excep-
tion. In such a case is not necessary to iterate the specialization step since an
exception specifically refers to the example it represents. Hence, it cannot be
derived in any other way.

5 Incremental Learning and Concept Drift

So far we have discussed how the system performs online learning through re-
finement operators. The underlying assumption was that there exists a target
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Algorithm 6 rho_pos

Function rho_oi_pos(C: clause; E negative example): clause;
Pos := past positive examples 0pj-subsumed by C'
P := shortest example in Pos
c'=C
A :=  {list of literals added to C so far}
while ((30 s.t. C0 C P) AND (added_lit < max_lit)) do
Subst := {0 | CO C P} ; A_Subst := {o~! | 0 € Subst}
NewP := PO s.t. 0 € A_Subst
Res_pos := body(C) \ body(NewP)
while ((Res_pos # ) AND (added_lit < max_lit)) do
Path :={L C A | linked(L) } ; Res_pos := Res_pos \ Path
p:=1€ Res_pos s.t. linked({l} UC")
Res_pos := Res_pos\ {p} ; A:=AU{p}; C":=C"U{p}
if (explains(T U {C"}, E)) then
added_lit := added_lit + 1
else
return C’

Algorithm 7 rho_neg

Function rho_oi_neg(C: clause; E negative example): clause;
Subst := 0 s.t. CO C E ; Res_neg := body(E§~1) \ body(C)
while Res neg # 0 do

n =1 € Resneg s.t. vars(l) C vars(C)

Res_neg := Res_neg \ {n}

¢’ :=C U {not(n)}

if (- explains(C’, E)) then

return C’

meaning of the concepts to be learned which is stable with respect to its con-
text, i.e. external conditions that may influence the observation of examples.
Extending the applicability of the learning framework by discarding this as-
sumption makes incremental learning an even more complex task. Indeed, it is
possible to identify at least three main subproblems of learning in the presence
of changing conditions [29]: detection, adaptation and characterization. First,
changes must be detected since they may yield changes in the current concept
definitions. Then a proper adaptation of the concept characterization (i.e., of
its model) must take place in order to comply with the change occurred.

The context of learning is represented by any information that is relevant
to this process. Yet, providing all relevant aspects of a concept is often beyond
the means of a teacher and, even though all the required features are included,
complications may still arise in applications where the training examples do
not permit the learning agent to detect their relevance to the learning problem
[36]. Then, it is necessary to understand which specific hypotheses have to
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be made for adapting with respect to a given change. These problems have
been tackled so far by exploiting abstraction and abduction. As mentioned in
Section 3, abstraction operators can focus learning towards the target concept
on the ground of relevant items while abduction can be a means for trying to
complete the observations, hypothesizing the sources of incompleteness.

However, the context of learning can change due to hidden factors whose
most likely, yet not exclusive, representative is often the passing of time. Then,
the accuracy of an incremental learner, that has been trained on examples from
a single context, might turn out to be poor when the context changes. In the
reversed perspective, a decay in the accuracy of the induced hypotheses may
imply that a context change has happened. Detecting hidden changes of context
has been tackled by techniques such as contextual clustering [10], which solve
the problem of grouping observations that share the same context.

Problems arise when examples are collected in batches that belong to dif-
ferent contexts, such as different time periods. Indeed, gradual or also abrupt
changes take place in the form of concept drift [24]. A typical example from the
user modelling domain can be the case of using logs of customers’ transactions
in order to discover preferences, interests and/or behavioral patterns, all subject
to changes along time. Tracking the change may be dramatically important for
customization and modelling issues. The same happens in the case of informa-
tion filtering problems, when both user interests and document contents may
change over time. Even more so, in some domains, such as financial prediction
or dynamic control, changes of context can be assumed to recur [35]. The learn-
ing systems should be able to detect the situations of discontinuity and adapt
to the changed conditions. Moreover, suitable diagnostics may be employed to
describe the nature of the changes that occurred. This could be exploited at
a meta-level to discover recurring patterns and understand the causes (or just
clues) for the change [34].

Tracking concept drift in incremental learning requires the system to con-
tinually audit the accuracy of the hypotheses produced in the past and adjust
them whenever necessary. Most likely it may also be necessary to forget the
oldest and outdated information. The process should turn out to be, at the
same time, flexible and robust enough not to be misled by noise [33]. As re-
gards the problem of collisions between the classification of similar examples,
it has been investigated on discarding an example when a newer observation is
available located in a similar region of the search space [23].

A solution to all such different problems posed by learning in changing do-
mains would require a complete framework and algorithms for learning at dif-
ferent levels. This goes beyond the scope of the present work. The approach
adopted in this paper does not address the problem of detecting the changes:
rather, we want to adapt to the drift along the time, assuming that a change has
taken place when the Expert judges the accuracy of the latest hypotheses to be
poor; then, a set of new examples is made available to the system so that it can
revise the current concept definitions accordingly. The system is not asked to
forget all about the past observations, yet it should assume a decaying degree of
reliability from the latest to the oldest ones. Turning to our previous case from
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user modelling, the Expert (or the online system itself) may sense deficiencies
in the performance of the current descriptions (the induced theory) that are
employed for tracking user interests and explain how to detect them. In such a
case, he should decide to provide a new group of training observations so that
the system can update the theory.

In the following sections, we illustrate in more detail this approach to manag-
ing the concept drift in the context of online learning and present the algorithm
that implemented this model in the system INTHELEX, showing several exper-
iments of its usage.

5.1 Evolving Concept Definitions

The common way for adapting to the concept drift is to use a window of recent
instances [19][9][35][15]. This has allowed even batch learners to be adapted
to online learning tasks such as this one. In this context, the most important
factor to be decided is the window size. For a window of constant size, the
choice of its width spans from small windows, implying fast adaptivity, up to
larger ones giving good generalizations in periods where the concepts has not
changed. A compromise is trying to adapt the size of the window to the extent
of the concept drift (that is proportional to the probability of a disagreement of
two hypotheses on the same example). This extent is to be limited to a certain
size to have the concept learnable [11]. A proper window on the training data
should include those examples which are close enough to the target concepts.
Previous approaches either determine the window size (which is always a strong
commitment) or adopt complex heuristics based on several parameters, often to
be tweaked depending on the specific application. The principal shortcoming of
both approaches is that examples that are excluded from the selected window
will not play a role in learning/refining the next hypothesis.

In our approach concept drift can be tracked by allowing the system to
partially forget some examples that were previously taken into account (past
contexts). Rather than trying to detect window widths and applying the online
learning algorithm therein, we assume the change happened with the provision of
a new batch of examples, which triggers the refinement of the current hypotheses
based on both these new examples and the old ones, although less and less
confidence is placed in the latter as long as they are more outdated.

It seems plausible to assume that, with the passing of time, some of the
examples that were employed for training the learner may loose their pregnancy
with respect to the evolving concept. This decay can be modelled by requir-
ing that the online learner, although endowed with a complete memory of the
training examples, should ensure the explanation of the past cases with a de-
creasing effectiveness which is proportional to their age. Indeed only the newer
set would require a total fulfillment of correctness (full completeness and consis-
tency) whereas older sets of examples would have to be treated as less adequate
to the evolved concept, thus one would gradually require less correctness of the
hypotheses with respect to them. We will suppose that the degree of forgetful-
ness of the learner towards the past examples may change along with functions

20



Algorithm 8 Hypothesis Refinement with respect to Concept Drift

Function Drift(E, Hyp, TrainingSets, n, alpha, beta): newHyp
{ E: New example
Hyp: current hypothesis
TrainingSets: array of training sets
n: number of training sets
alpha: decrease factor for completeness
beta: decrease factor for consistency
newHyp: new hypothesis }
completenessRate := 1; {hypothesis complete wrt 100% of exs}
consistencyRate := 1; {hypothesis consistent wrt 100% of exs}
repeat
newHyp := refine(E, Hyp, TrainingSet[1]);
k:=1; ok := true
while ok AND k£ <n do
ok := (completeness(newHyp,TrainingSets[k]) > completenessRate)
AND (consistency(newHyp, TrainingSets[k]) > consistencyRate))
completenessRate := alpha * completenessRate;
consistencyRate := beta * consistencyRate;
k:=k+1;
until ok
return newHyp;

whose decay can be determined by setting proper parameters.

5.2 Implementation in INTHELEX

The algorithm that implements the approach explained above, as realized in the
incremental learning system INTHELEX, is depicted in Algorithm 8. The two
parameters « and [ in the algorithm, ranging in [0, 1], represent the variation
of degree of forgetfulness towards the past training examples measured, respec-
tively, in terms of completeness and consistency. The standard behavior of the
system (full completeness and consistency with respect to the entire memory)
is obtained with o = 8 = 1. A simplifying assumption is made that the decay
varies exponentially. Yet, a different function forms could be adopted know-
ing more information about the way the concept drift is taking place. We are
currently investigating also on specific methods for estimating the parameters.

The whole set of learning examples that are (incrementally) made available
by the Expert in different moments can be ideally grouped according to the ver-
sion of the drifting concept they refer to. Let us call TrainingSets the sequence
of all these groups, and let us refer by and index to each single group therein (the
Expert can specify when a drift occurs, this way causing the current group to be
completed and a new one to be created). Thus, TrainingSets[i] contains the set
of examples that refer to the i-th version of the drifting concept. For the sake of
readability, let us suppose that, at any moment, lower indexes represent more
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recent versions of the concept. TrainingSets[1], which is the latest group, also
determines the search of refined versions of the hypotheses in procedure refine()
through the mechanisms described in the previous sections. Each new example
provided by the Expert causes an update of the TrainingSets (by adding it to
the latest group or, if it immediately follows a drift mark, by creating a new
group made up of just this example), and, in case it is misclassified, this proce-
dure may generate several plausible hypotheses newHyp that are able to explain
it. The choice among these versions is carried out as follows.

The outer loop produces different hypotheses by always requiring full com-
pleteness and consistency with respect to the examples in TrainingSets[1], which
yields the most recent information about the drifting concept. Each generated
hypothesis is checked, by the inner loop, on the other (older) groups, by progres-
sively adjusting the new rates of completeness and consistency as they will be
required for each of them according to the exponential decay function referred to
above. Indeed, as previously mentioned, we suppose that the new hypotheses,
although induced from the latest group, should guarantee at least a limited rate
of correctness with respect to the older ones. If the required threshold is not
passed in any of them, then the control returns to the other loop that generates
a new hypothesis, otherwise the algorithm ends by returning the computed re-
finement. In this way, the constraining effect of the past groups decays as long
as older groups are taken into account. Hence, the returned hypothesis guar-
antees full correctness with respect to the latest group and partial correctness
with respect to the others.

The actual implementation requires the inner loop to be repeated only for
a limited number of the latest groups, until a minimal threshold of correctness
is reached, since the following (older) groups would not be extremely constrain-
ing and thus become less important. Note that the inherent incrementality of
INTHELEX is preserved, since the Expert must not specify all at once the entire
history of data, but examples can be provided singularly and the system will
properly add them to TrainingSets, automatically updating both the sequence
(before handling it) and the current model (without completely rejecting it)
accordingly. Note, also, that old data (previous groups) influence the behavior
of the system in that the proper correctness threshold must be passed on each
of them (inner loop of the algorithm) for the refined hypothesis to be accepted,;
thus, it would not be the same learning the theory only on the latest group,
without regard to the others. Obviously, running a learning system only on
the latest group would certainly yield a theory which is correct with respect to
the current version of the drifting concept, but, differently from the proposed
algorithm, no information on previous instances and models would be reused,
which was one of the motivations for the use of incrementality to handle concept
drifting.

5.3 Recent Related Methods

Recently, the research has come focusing on the problem of mining open-ended
data streams entered in large and constantly growing databases (an example
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source of millions of records per day), e.g. those containing website logs, bank
transactions, telecommunication logs. Indeed, in these situations, maintaining
the memory of all the examples becomes difficult (even in the presence of tertiary
storage systems). Extracting datasets by sampling these databases cannot be
interpreted as drawing from a stationary distribution, as assumed by many
statistical learning algorithms. Indeed, when the examples can be assumed to
come from an unbound stream rather than a limited (representative) set, saving
memory becomes a crucial point. Then, it may be important to store summaries
or synopses of the past examples, i.e. forms of retaining a partial memory of the
past data, or sampling the stream in an intelligent way, trying to preserve the
statistical properties of the sample with respect to the whole stream [1].

The solution appears to be the employment of anytime and incremental
methods so that the risk loosing potentially valuable information be minimized.
The shortcoming of these methods is that they often cannot guarantee that
the quality of the learned model be the same as that of model learned on the
same examples in batch mode. Hence, the need arises for systems that grant
a limited, often fixed, amount of time and memory per each example for its
processing [4] (such as the system CVFDT [12]). These approaches are able to
emulate learning within a moving window with a lower complexity per example
(almost constant).

Our method is similar, in the sense that incremental learning can affect
those parts of the induced candidate theory which appear to be weaker with
respect to the incoming examples. Besides, learning in a richer representation
such as FOL, the main difference is the complexity in terms of space. Our
method is full memory and thus appears to be unfit to scale with very large
bases of examples. In our setting the incremental refinement involves the latest
version of the theory (a form of partial memory) and most recent group of
examples. Thus the complexity is bounded by the cardinality of this group,
even though the candidate hypotheses produced are checked for correctness
against the past examples. However it should be recalled that the consistency
and completeness parameters can be tweaked so that the older examples give
a smaller contribution in the induction of the newer candidate versions of the
model. Moreover, the use of the threshold limits the number of examples that
are taken into account in the tests required by the algorithm. An improvement
might be that of exploiting a sort of partial memory. This could store those past
examples which triggered the refinement process and/or the past versions of the
theories that can act as synopses of the past examples and use this memory
instead of them.

Outside the scope of supervised methods, other incremental learning algo-
rithms for data streams have appeared in recent years (e.g. in clustering [8] or in
mining association rules). However, most of the literature on online algorithms
focuses on weak learners [16] because of the hardness of proving theoretical re-
sults about stronger learners, especially when a FOL representation is adopted,
as in our case.
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5.4 Experimentation of the Proposed Approach

The behavior of INTHELEX when dealing with concept drifting according to
the previously exposed strategy has been checked and analyzed by running the
system on two purposely designed datasets.

One dataset is a completely artificial one, inspired to that proposed in [24]
and exploited also in [35], but extended in order to raise the level of difficulty.
Specifically, instead of 3 attributes with 3 values each (for a total of 27 combi-
nations), here each observation is described by means of 4 different descriptors
(namely size, color, shape and position), each ranging between 4 possible values:

e size: small, medium, large, very large;

e color: black, red, green, blue;

e shape: square, rectangular, circular, oval;
e position: up, down, left, right.

The resulting domain refers to a world made up of 256 objects (instead of the 27
in [24]), to be partitioned into positive and negative examples according to the
target concepts to be learned. Three artificial target definitions were generated
as made up of two descriptors with a fixed value, so that each of them splits the
whole set into 16 positive instances and 240 negative ones. For each definition
the whole set was partitioned into 8 subsets, each made up of 2 positive and
30 negative examples chosen at random. Then, INTHELEX was run on these
subsets in sequence, so that the corresponding examples were accumulated in
the historical memory. The predictive accuracy of the intermediate theories (i.e.,
the theories obtained after processing each subset) was checked on the whole
set and tracing the evolution of the predictive accuracy as long as more and
more examples were processed. After processing all the examples referring to a
given concept (which ensures a 100% accuracy for that concept, according to the
system characteristics), the new example set for the next concept was considered
and employed, according to proper parameters for the required accuracy on past
groups®.

3Let us explain this in other words. INTHELEX was first run on the subset 1 of the
first concept, and the resulting theory was tested on the whole set of examples for the first
concept; then it was incrementally refined according to the subset 2 of the first concept (whose
examples were added to the previous ones in the system’s historical memory), and the resulting
theory was again tested on the whole set of examples for the first concept; and so on until the
subset 8 for the first concept was taken into account. At this stage, the drift occurred, and
the historical memory contained all the examples for the first concept, that also constitute
Group 1 for the drift-handling algorithm. The system was then provided with the subset 1 of
examples for the second concept, by requiring 100% accuracy on them and less accuracy on
those of the first concept, and the resulting theory was tested on the whole set of examples for
the second concept; then such a theory was incrementally refined according to the subset 2 of
the second concept (whose examples were added to all those considered so far in the system’s
historical memory), and the resulting theory was again tested on the whole set of examples
for the second concept; and so on until the subset 8 for the second concept was taken into
account. At this moment, another drift occurred: Group 2 for the drift-handling algorithm
was complete, and the same procedure was applied to the third concept.
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A first experimentation concerned three randomly generated concepts, each
having a description that is completely different from that of the preceding
one. In this case, parameters a and § were obviously set to 0, thus allowing
the system to completely ignore previous examples. The resulting theories,
and their evolution (reported in Figure 3), reveal that, independently of the
parameter settings, the system is somewhat biased by the previous definitions,
and cannot completely and abruptly withdraw them. This happened because
the system setting allowed it only to modify learned clauses, without having the
possibility of dropping any of them. This results in theories that initially show
a natural drop in accuracy in correspondence to the first few examples of each
drift (because the concept has changed but the theory has not yet accounted
for it). After, as more and more subsets of examples for the new version of
the concept are considered, they are progressively able to correctly catch the
evolved concept, but with the additional use of “spurious”, superfluous clauses
inherited from the previous definitions. Such clauses actually do not cover any
example, since all possible values for a given property (and, noticeably, only
values for that property) are avoided by means of negated literals, and hence
act as indicators of something ‘strange’ happening in the concept definition.
This is not completely surprising, nor undesirable. Indeed, even if not still
constrained by previous examples, a concept is hardly expected to completely
and abruptly change in time, and hence a learned theory, supported by previous
experience, should not be too easily thrown away or radically changed.

Hence, to check if the proposed technique was sound, a second experiment
was carried out, in which the three concepts were generated by “chaining” them
so that each definition keeps one of the two descriptors of the previous one,
and changes the other. According to such a bias, the exact number of exam-
ples that do not change their class label across two consecutive hypotheses was
computed, and found equal to 4 for positive examples and 218 for negative ones
(which maps onto o = .25 and 8 = .95, respectively). It is interesting to note
that, in this case, the evolution of the induced theory (reported in Figure 4) was
much cleaner (i.e., the theory does not carry on in successive stages “spurious”
clauses inherited from previous states of the drifting concept). Moreover, each
definition quickly (always after processing just the first subset, which is why no
performance graph is provided in this case) evolved towards the correct one (i.e.,
the induced definitions exactly correspond to the true — underlying — ones).
This completely confirmed and validated our expectations, and specifically the
fact that if the concept goes through a normal and acceptable (i.e., neither
abrupt nor drastic) evolution, and if such evolution were mathematically char-
acterizable, then the proposed technique is perfectly able to follow the concept
evolution and to correctly and plainly assimilate it in the learned definitions.

Lastly, another experiment, although less controlled, was carried out, with
the aim of testing the proposed technique on a more real-world domain, in which
the concepts are assumed not to completely and suddenly change along the time,
and in addition the exact amount of evolution is not known and can only be
estimated. Specifically, the considered problem concerned the evaluation of tests
in University courses. The concepts to be learned are Passed (corresponding

25



10 S —— J——
/ / a —
8 / i a | /
i / | /
% i / i o
I [
94 i i fooeif
& 15 /‘i 1y
£ q o I
\/ \/
g @ / b
® i/ b
8 H‘f ¥
86
84
82
80
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Concepts
Stage 1 Stage 2 Stage 3
target(A) :- sizesmall(A), | target(A) :- size_small(A), | target(A) :- size_small(A),
color_red(A). color_red(A), color_red(A),
not(shape_rect(A)), not(shape_rect(A)),

not(shape_oval(A)),
not(shape_circular(A)),
not(shape_square(A)).

target(A):-  color_green(A),
shape_circular(A).

not(shape_oval(A)),
not(shape_circular(A)),
not(shape_square(A)).

target(A):-  color_green(A),
shape_circular(A),
not(size_medium(A)),
not(size_large(A)),
not(size_small(A)),
not(size_very_large(A)).
target(A) :- size_large(A),
color_blue(A).

Figure 3: Evolution towards Completely Different Artificial Concepts

to marks 6-10 in a 10-valued scale), Not passed (corresponding to marks 0-4)
and Borderline (corresponding to mark 5), where it is clear that the evaluation
may slightly change across different tests in order to reflect the average quality
of the students and the difficulty of the test itself. An artificial dataset was
built, by randomly creating 40 hypothetical examination paper descriptions for
each simulated test. It is worth pointing out that just the descriptions were
generated, without any intended model and without labeling them with any
mark. Parameters for describing each paper were the following;:

e Number of exercises done (0-5);

e Amount of serious errors (0-5);

e Amount of other errors (0-5);

e Amount of time spent (3 values);

26




Stage 1 Stage 2 Stage 3

target(A) :- sizesmall(A), | target(A) :- colorred(A), | target(A) :- colorred(A),
color_red(A). shape_circular(A). size_large(A).

Figure 4: Progressive Evolution of Artificial Concept

| | Passed | Borderline | Non-passed |

I test 15 4 21
IT test 19 3 18
III test 10 7 23

Table 1: Mark Distribution across 3 University tests

e Presence of comments (Yes/No);
e Presence of references (Yes/No);
o Level of detail (3 values).

Three tests were generated, and then each of the corresponding observations
was evaluated by the Professor according to the above parameters in order to
assign it one of the marks according to the previously exposed guidelines. Thus,
this experiment can well be considered as a real-world one, except that the ex-
amination paper descriptions were randomly generated rather than representing
actual tests carried out at the University. Table 1 reports the distribution of
examples in the tests. It is easy to note that the second test resulted easier to
be solved by the students than the first one (because the number of passed is
greater than in the first test), while the third turned out to be the most difficult
of all (because it has the largest number of non-passed). Accordingly, it could
be expected that the requirements for passing the exam are tighter in the second
test, while the passing threshold should be lower in the others, and particularly
in the third one. Another useful remark is that, in some cases, identical de-
scriptions in different tests received a different mark, which further stresses the
drift-handling algorithm. The results for different parameter settings are sum-
marized in Table 2. The values for a and 3 are close to each other, and are both
very high in order to obtain a conservative behavior (according to the intuition
that a professor’s marks, although sufficiently flexible to take into account the
peculiarities of the different tests, should anyway follow a general guideline that
does not change very much from a test to another). This probably explains why
the total number of clauses in the resulting theories does not change, while, on
the other hand, as the requirements for preservation of previous inductions and
for consideration of previous examples become more demanding, the number of
specializations by means of negative literals increases, indicating (according to
the system behavior) a greater effort to reach the desired refinements.

Table 3 traces each concept along its evolution, reporting for each concept
the number of clauses in the corresponding definition after each test (I, IT and III
stand for the first, second and third test, respectively). The parameter settings
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| « | I6] | new clauses | lgg | pos spec | neg spec |
80 | 80 16 30 12 5
90 | 90 16 30 10 6

Table 2: Statistics on Learning University Test Marks

I|1II]|III
Not passed [ 5| 6 | 6
Passed 3|15 5
Borderline || 3 | 3 5

Table 3: Evolution of the Number of Clauses in University Marks Theories

are not reported, since Table 2 has shown that it did not affect the addition
of new clauses in this experiment. It is possible to note that the number of
clauses in the definitions always increases, due to our choice of allowing only to
change clauses, dropping none of them, in order to ensure continuity with the
past stages of the concept. In particular, there are fewer clauses for concept
borderline, which can be explained with the intuition that it represents only one
mark, while the other two represent 5 marks each: hence, its definition might
be simpler because it has to explain a narrower spectrum of cases. The need
of additional clauses to express the intended concepts appears earlier in the
definitions for Not passed and Passed, that since the second test switch from 5
to 6 and from 3 to 5 clauses, respectively; on the contrary, simple refinements
were sufficient for Borderline after the second test, and only after the third one
two more clauses were needed.

Lastly, after discussing the global evolution of the learned concepts, let us
now look more closely at the evolution of single definition items. This is possible
because INTHELEX allows to trace every single clause along its life. Each
hypothesis is made up, in addition to definitions that change, also of stable parts,
which suggests that the system does not indiscriminately change the concept
definitions, but is able to limit evolutions to the proper items. For instance,
since the beginning and throughout the three tests, the clauses saying that only
0 or 1 exercises done are not sufficient to pass the exam are always present in
the definition of not passed. Similarly, a number of other clauses are stable only
across two consecutive tests. In particular, borderline seemed the best concept
to be traced, since it is presumably the most affected when concepts drift (for
the same reasons explained above). Specifically, we traced changes in the second
clause learned for such a concept with parameters oo = 3 = 80%, obtaining the
following result. After the first test:

borderline(A) « exercises_done_3(A), serious_errors_5(A),
other_errors_3(A), comments(A), references(4),
detail 2(A), time_1(A).

After the second test:
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borderline(A) <+ serious_errors_5(A), references(A), detail_2(A),
no_comments (4) .

After the third test:
borderline(A) <« references(A),exercises_done_2(A),serious_errors_1(4).

A more detailed interpretation of such a result is possible by comparing it to
our expectations coming from the knowledge of both the evaluation parameters
and the change in tests difficulty. After the first test we have a very specific def-
inition, including examination papers with about half exercises done but many
errors, which overrides the presence of comments, references and details. Some
drift is already present after the second test, where many literals were dropped
and, most interestingly, the condition comments was changed into its opposite
no_comments (which would not have been possible under normal conditions be-
cause of the consistency preservation requirement). Indeed, we would expect
that, because the test is easier, also the presence of comments on exercises de-
velopment becomes relevant to pass. For the same reasons, being the third
test the most difficult overall, the requirements for passing it should be looser.
Actually, this happens, in that now just 2 exercises with few serious errors are
sufficient for a student to reach the borderline.

6 Conclusions

In this work we have concentrated our effort on the problem of incremental
learning, also in the presence of a known concept drift. A technique for handling
such situations has been proposed, and an implementation in an incremental
learning system has been carried out. Experiments in different domains reveal
that such a technique can effectively deal with the induction of concepts whose
definition might change over time.

We have considered the Expert responsible for detecting the drift and pro-
viding of the new group of examples. As mentioned, other algorithms try to
detect the drift from the data and adjust learning windows accordingly. Our
algorithm could be improved by registering a time-stamp for each example, so
that the function measuring the decay of correctness would be exploited more
precisely in the determination of the strength of the constraint by each group.
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