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Abstract. In the Internet era, huge amounts of data are available to
everybody, in every place and at any moment. Searching for relevant
information can be overwhelming, thus contributing to the user’s sense
of information overload. Building systems for assisting users in this task
is often complicated by the difficulty in articulating user interests in a
structured form - a profile - to be used for searching. Machine learning
methods offer a promising approach to solve this problem. Our research
focuses on supervised methods for learning user profiles which are pre-
dictively accurate and comprehensible.
The main goal of this paper is the comparison of two different approaches
for inducing user profiles, respectively based on Inductive Logic Program-
ming (ILP) and probabilistic methods. An experimental session has been
carried out to compare the effectiveness of these methods in terms of clas-
sification accuracy, learning and classification time, when coping with the
task of learning profiles from textual book descriptions rated by real users
according to their tastes.

1 Introduction

The ever increasing popularity of the Internet has led to a huge increase in
the number of Web sites and in the volume of available on-line data. Users
are swamped with information and have difficulty in separating relevant from
irrelevant information. This leads to a clear demand for automated methods able
to support users in searching the extremely large Web repositories in order to
retrieve relevant information with respect to users’ individual preferences. The
problem complexity could be lowered by the automatic construction of machine
processable profiles that can be exploited to deliver personalized content to the
user, fitting his or her personal interests.

Personalization has become a critical aspect in many popular domains such
as e-commerce, where a user explicitly wants the site to store information such
as preferences about himself or herself and to use this information to make
recommendations. Exploiting the underlying one-to-one marketing paradigm is
essential to be successful in the increasingly competitive Internet marketplace.



Recent research on intelligent information access and recommender systems
has focused on the content-based information recommendation paradigm: it re-
quires textual descriptions of the items to be recommended [6].

In general, a content-based system analyzes a set of documents rated by an
individual user and exploits the content of these documents to infer a model or
profile that can be used to recommend additional items of interest.

The user’s profile is built and maintained according to an analysis that is
applied to the contents of the documents that the user has previously rated.
For example, a user profile can be a text classifier able to distinguish between
interesting and uninteresting documents. In recent years, text categorization,
which can be defined as the content-based assignment of one or more predefined
categories to text, has emerged as an application domain to machine learning
techniques. Many approaches that suggest the construction of classifiers using
induction over preclassified examples have been proposed [13]. These includes
numerical learning, such as Bayesian classification [4] or symbolic learning like
in [8]. In [5] are presented empirical results on text categorization performance
of two inductive learning algorithms, one based on Bayesian classifiers and the
other on decision trees. They attempt to study the effect that characteristics
of text have on inductive learning algorithms, and what are the performance of
purely learning-based methods. They found that feature selection mechanisms
are of crucial importance, due to the fact that the primary influence on induc-
tive learning applied to text categorization is the large number of features that
natural language provides. In this paper we present a comparison between two
different learning strategies to infer models of users’ interests from text: an ILP
approach and a näıve bayes method. Motivation behind our research is the real-
ization that user profiling and machine learning techniques can be used to tackle
the relevant information problem already described.

The application of text categorization methods to the problem of learning
user profiles is not new: the LIBRA system [7] makes content-based book recom-
mending by applying a näıve Bayes text categorization method to product de-
scriptions in Amazon.com. A similar approach, adopted by Syskill & Webert [10],
tracks the users browsing to formulate user profiles. The system identifies infor-
mative words from Web pages to be used as boolean features and learns a näıve
Bayesian classifier to discriminate interesting Web pages on a particular topic
from uninteresting ones. The authors compare six different algorithms from ma-
chine learning and information retrieval on the task and they find that the näıve
Bayesian classifier offers several advantages over other learning algorithms. They
also show that the Bayesian classifier performs well, in terms of both accuracy
and efficiency. Therefore, we have decided to use the näıve Bayesian classifier as
the default algorithm in our Item Recommender system because it is very fast
for both learning and predicting, which are crucial factors in learning user pro-
files. The learning time of this classifier is linear in the number of examples and
its prediction time is independent of the number of examples. Moreover, our re-
search aims at comparing this technique with a symbolic approach able to induce
profiles that are more readable from a human understandability viewpoint.



Experiments reported in this paper evaluated the effects of the ILP and
the Bayesian methods in learning intelligible profiles of users’ interests. The
experiments were conducted in the context of a content-based profiling system
for virtual bookshop on the World Wide Web. In this scenario, a client side utility
has been developed in order to download documents (book descriptions) for a
user from the Web and to capture users feedback regarding his liking/disliking
on the downloaded documents. Then this knowledge can be exploited by the two
different machine learning techniques so that when a trained system encounters
a new document it can intelligently infer whether this new document will be
liked by the user or not. This strategy can be used to make recommendations to
the user about new books. The experiments reported here investigate also the
effect of using different representations of the profiles.

The structure of the remainder of the paper is as follows: Section 2 describes
the ILP system INTHELEX and its main features, while the next section in-
troduces Item Recommender, the system that implements a statistical learning
process to induce profiles from text. Then a detailed description of the exper-
iments is given in Section 4, along with an analysis of the results by means
of a statistical test. Section 5 presents how user profiles can be exploited for
personalization purposes. Finally, Section 6 draws some general conclusions.

2 INTHELEX

INTHELEX (INcremental THEory Learner from EXamples) [3] is a learning
system for the induction of hierarchical theories from positive and negative ex-
amples which focuses the search for refinements by exploiting the Object Iden-
tity [14] bias on the generalization model (according to which terms denoted
by different names must be distinct). It is fully and inherently incremental: this
means that, in addition to the possibility of taking as input a previously gener-
ated version of the theory, learning can also start from an empty theory and from
the first available example; moreover, at any moment the theory is guaranteed
to be correct with respect to all of the examples encountered thus far. This is a
fundamental issue, since in many cases deep knowledge about the world is not
available. Incremental learning is necessary when either incomplete information
is available at the time of initial theory generation, or the nature of the concepts
evolves dynamically, which are unnegligible issues for learning user profiles. In-
deed, generally users’ accesses to a source of information are distributed in time,
and the system is not free to choose when to start the learning process because
a theory is needed since the first access of the user. Hence, for each new access
the system tries to assess the validity of the theory (if available) with respect
to this new observation. INTHELEX can learn simultaneously various concepts,
possibly related to each other, and is based on a closed loop architecture — i.e.
the learned theory correctness is checked on any new example and, in case of
failure, a revision process is activated on it, in order to restore completeness and
consistency.



INTHELEX learns theories expressed as sets of DatalogOI clauses (function
free clauses to be interpreted according to the Object Identity assumption). It
adopts a full memory storage strategy — i.e., it retains all the available examples,
thus the learned theories are guaranteed to be valid on the whole set of known
examples — and it incorporates two inductive operators, one for generalizing
definitions that reject positive examples, and the other for specializing definitions
that explain negative examples. Both these operators, when applied, change the
set of examples the theory accounts for.

The logical architecture of INTHELEX is organized as in Figure 1. A set of
examples of the concepts to be learned, possibly selected by an Expert, is pro-
vided by the Environment. Examples are definite ground Horn clauses, whose
body describes the observation by means of only basic non-negated predicates of
the representation language adopted for the problem at hand, and whose head
lists all the classes for which the observed object is a positive example and all
those for which it is a negative one (in this case the class is negated). Single
classifications are processed separately, in the order they appear in the list, so
that the teacher can still decide which concepts should be taken into account
first and which should be taken into account later. It is important to note that
a positive example for a concept is not considered as a negative example for
all the other concepts (unless it is explicitly stated). The set of all examples
can be subdivided into three subsets, namely training, tuning, and test exam-
ples, according to the way in which examples are exploited during the learning
process. Specifically, training examples, previously classified by the Expert, are
abstracted and stored in the base of processed examples, then exploited by the
Rule Generator to obtain a theory that is able to explain them. Such an initial
theory can also be provided by the Expert, or even be empty. Subsequently, the
Rule Interpreter checks the validity of the theory against new available exam-
ples, also abstracted and stored in the example base, taking the set of inductive
hypotheses and a tuning/test example as input and producing a decision. The
Critic/Performance Evaluator compares such a decision to the correct one. In
the case of incorrectness on a tuning example, it can locate the cause of the
wrong decision and choose the proper kind of correction, firing the theory re-
vision process. In this way, tuning examples are exploited incrementally by the
Rule Refiner to modify incorrect hypotheses according to a data-driven strat-
egy. The Rule Refiner consists of two distinct modules, a Rule Specializer and
a Rule Generalizer, which attempt to correct hypotheses that are too weak or
too strong, respectively. Test examples are exploited just to check the predictive
capabilities of the theory, intended as the behavior of the theory on new observa-
tions, without causing a refinement of the theory in the case of incorrectness on
them. Both the Rule Generator and the Rule Interpreter may exploit abduction
to hypothesize facts that are not explicitly present in the observations.

The Rule Generalizer is activated when a positive example is not covered,
and a revised theory is obtained in one of the following ways (listed by decreasing
priority) such that completeness is restored:



Fig. 1. INTHELEX architecture

– replacing a clause in the theory with one of its generalizations against the
problematic example;

– adding a new clause to the theory, obtained by properly turning constants
into variables in the problematic example;

– adding the problematic example as a positive exception.

While as regards the Rule Specializer, on the other hand, when a negative
example is covered, the system outputs a revised theory that restores consistency
by performing one of the following actions (by decreasing priority):

– adding positive literals that are able to characterize all the past positive
examples of the concept (and exclude the problematic one) to one of the
clauses that concur to the example coverage;

– adding a negative literal that is able to discriminate the problematic example
from all the past positive ones to the clause in the theory by which the
problematic example is covered;

– adding the problematic example as a negative exception.

An exception contains a specific reference to the observation it represents, as
it occurs in the tuning set; new incoming observations are always checked with
respect to the exceptions before the rules of the related concept. This does not
lead to rules which do not cover any example, since exceptions refer to specific
objects, while rules contain variables, so they are still applicable to other objects
than those in the exceptions.

It is worth noting that INTHELEX never rejects examples, but always refines
the theory. Moreover, it does not need to know a priori what is the whole set of
concepts to be learned, but it learns a new concept as soon as examples about
it are available.



2.1 Learning user profiles with INTHELEX

We were led by a twofold motivation to exploit INTHELEX on the problem
of learning user profiles. First, its representation language (First-Order Logic)
is more suitable than numeric/probabilistic approaches to obtain intuitive and
human readable rules, which are a highly desirable feature in order to understand
the user preferences. Second, incrementality is an undeniable requirement in the
given task, since new information on a user is available each time he issues a
query, and it would be desirable to be able to refine the previously generated
profile instead of completely rejecting it and learning a new one from scratch.
Moreover, a user’s interests and preferences might change in time, a problem
that only incremental systems are able to tackle.

INTHELEX is specifically designed to learn first-order logic theories. In par-
ticular, it is suitable when the descriptions of the concepts to be learned are not
flat, i.e. they include not only the properties of the objects but also relations
between them. However, as we will see later, in the given environment a user
profile is described by a list of attributes with an associated value, which corre-
sponds to a propositional representation rather than a first-order one. Hence, in
this case the full potentiality of INTHELEX is not entirely exploited, and this
should be taken into account when evaluating results.

A further problem that arises in this type of learning task is due to the
lack of precise mental schemas in the user for rating a book. Indeed, in many
cases, the choice of a book relies on the presence of details appearing in only
a few descriptions (e.g., the name of the favourite author). In such a situation,
learning a definition for the mental schema of a user becomes more difficult and
the resulting profile will be imprecise. This problem is more evident when the
system is provided with few users’ preferences. On the contrary, when the user’s
accesses are more frequent, it should (hopefully) be easier to find what is the
main trend of the user.

Since INTHELEX is not currently able to handle numeric values, it was not
possible to learn preference rates in the continuous interval [0, 1] like in the
probabilistic approach. Thus, a discretization was needed. Instead of learning a
definition for each of the 10 possible votes, we decided to learn just two possible
classes of interest: “likes”, describing that the user likes a book, and its opposite
“not(likes)”. Specifically, the former (positive examples) encompasses all rates
ranging from 6 to 10, while the latter (negative examples) included all the oth-
ers (from 1 to 5). It is worth noting that such a discretization step is not in
charge of the human supervisor, since a proper abstraction operator embedded
in INTHELEX can be exploited for carrying out this task. Moreover, it has a
negligible computational cost, since each numeric value is immediately mapped
onto the corresponding discretized symbolic value.

2.2 Representation of Profiles

Each book description is represented in terms of three components by using pred-
icates slot title(b,t), slot author(b,au), and slot annotation(b,an), in-



dicating, respectively, that the book ‘b’ contains a title, an author and an anno-
tation, where the objects ‘t’, ‘au’ and ‘an’ are, respectively, the title, author and
annotation of the book ‘b’. Any word in the book description is represented by
a predicate corresponding to its stem, and linked to both the book itself and the
single slots in which it appears. For instance, predicate prolog(slot title,stp)
indicates that object ‘stp’ has stem ‘prolog’ and is contained in slot ‘slot title’;
in such a case, also a literal prolog(book) is present to say that stem ‘prolog’
is present in the book description.

Also the number of occurrences of each word in each slot was represented
by means of the following predicates: occ 1, occ 2, occ m, occ 12, occ 2m. A
predicate occ X(Y) indicates that term Y occurs X times, while a predicate
occ XY(Z) indicate that the term Z occurs from X to Y times. Again, such
a ‘discretization’ was needed because numeric values cannot be dealt with in
INTHELEX. Note that all the predicates representing intervals to which the
value to be represented belongs must be used to represent it; thus, many such
predicates can be needed to represent the occurrences of a term. For instance, if a
term occurs once, then it occurs also from 1 to 2 (occ 12) times and from 1 to m
(occ 1m) times. Figure 2 shows an example for the class likes. Given the specific
value in the example, all the intervals to which it belongs are automatically
added by the system by putting this information in the background knowledge
and exploiting its saturation operator. Predicates describing intervals are needed
to obtain generalizations based also on the number of word’s occurrences in a
book. In particular, if a word w occurs once in a description d and twice in
a description d′, the possible generalizations of the number of occurrences are
occ 12, occ 1m.

3 Item Recommender

ITR (ITem Recommender) [2] is a system able to recommend items based on
their textual descriptions. It implements a probabilistic learning algorithm to
classify texts, the näıve Bayes classifier. Näıve Bayes has been shown to perform
competitively with more complex algorithms and has become an increasingly
popular algorithm in text classification applications [10, 7].

The prototype is able to classify text belonging to a specific category as
interesting or uninteresting for a particular user. For example, the system could
learn the target concept ”textual descriptions the user finds interesting in the
category Computer and Internet”.

Bayesian reasoning provides a probabilistic approach to inference. It is based
on the assumption that the quantities of interest are governed by probabilistic
distributions and that optimal decision can be made by reasoning about these
probabilities together with observed data.

In the learning problem, each instance (item) is represented by a set of slots.
Each slot is a textual field corresponding to a specific feature of an item.



likes(book_501477998) :-

slot_title(book_501477998, slott),

practic(slott, slottitlepractic),

occ_1(slottitlepractic),

occ_12(slottitlepractic),

occ_1m(slottitlepractic),

prolog(slott, slottitleprolog),

occ_1(slottitleprolog),

occ_12(slottitleprolog),

occ_1m(slottitleprolog)

slot_authors(book_501477998, slotau),

l_sterling(slotau, slotauthorsl_sterling),

occ_1(slotauthorsl_sterling),

occ_12(slotauthorsl_sterling),

occ_1m(slotauthorsl_sterling),

slot_annotation(book_501477998, slotan),

l_sterling(book_501477998),

practic(book_501477998),

prolog(book_501477998).

Fig. 2. First-Order Representation of a Book

The text in each slot is a collection of words (a bag of word, BOW ) processed
taking into account their occurrences in the original text. Thus, each instance is
represented as a vector of BOWs, one for each slot.

Moreover, each instance is labelled with a discrete rating (from 1 to 10)
provided by a user, according to his or her degree of interest in the item.

According to the Bayesian approach to classify natural language text docu-
ments, given a set of classes C= {c1, c2, . . . , c|C|}, the conditional probability
of a class cj given a document d is calculated as follows:

P (cj |d) =
P (cj)
P (d)

P (d|cj)

In our problem, we have only 2 classes: c+ represents the positive class (user-
likes, corresponding to ratings from 6 to 10), and c− the negative one (user-
dislikes, ratings from 1 to 5). Since instances are represented as a vector of
documents, (one for each BOW), and assumed that the probability of each word
is independent of the word’s context and position, the conditional probability of
a category cj given an instance di is computed using the formula:

P (cj |di) =
P (cj)
P (di)

|S|∏
m=1

|bim|∏

k=1

P (tk|cj , sm)nkim (1)

where S= {s1, s2, . . . , s|S|} is the set of slots, bim is the BOW in the slot sm of
the instance di, nkim is the number of occurrences of the token tk in bim.



In (1), since for any given document, the prior P (di) is a constant, this factor
can be ignored if the only interest concerns a ranking rather than a probability
estimate. To calculate (1), we only need to estimate the probability terms P (cj)
and P (tk|cj , sm), from the training set, where each instance is weighted according
to the user rating r :

wi
+ =

r − 1
9

; wi
− = 1− wi

+ (2)

The weights in (2) are used for weighting the occurrence of a word in a document.
For example, if a word appears n times in a document di, it is counted as
occurring n·wi

+ in a positive example and n·wi
− in a negative example. Weights

are used for estimating the two probability terms according to the following
equations:

P̂ (cj) =

|TR|∑
i=1

wi
j

|TR| (3)

P̂ (tk|cj , sm) =

|TR|∑
i=1

wi
jnkim

|TR|∑
i=1

wi
j |bim|

(4)

In (4), nkim is the number of occurrences of the term tk in the slot sm of the
ith instance, and the denominator denotes the total weighted length of the slot
sm in the class cj . Therefore, P̂ (tk|cj , sm) is calculated as a ratio between the
weighted occurrences of the term tk in slot sm of class cj and the total weighted
length of the slot.

The final outcome of the learning process is a probabilistic model used to
classify a new instance in the class c+ or c−. The model can be used to build a
personal profile including those words that turn out to be most indicative of the
user’s preferences, according to the value of the conditional probabilities in (4).

In the specific context of book recommendations, instances in the learning
process are the book descriptions. ITR represents each instance as a vector of
three BOWs, one BOW for each slot. The slots used are: title, authors and tex-
tual annotation. Each book description is analyzed by a simple pattern-matcher
that extracts the words, the tokens to fill each slot. Tokens are obtained by
eliminating stopwords and applying stemming. Instances are used to train the
system: occurrences of terms are used to estimates probabilities as described in
Equations (3) and (4). An example ITR profile is given in figure 3.



Fig. 3. An example of ITR user profile

4 Experimental Sessions

In this section we describe results from experiments using a collection of textual
book descriptions rated by real users according to their tastes. The goal of the ex-
periment has been the comparison of the methods implemented by INTHELEX
and ITR in terms of classification accuracy, learning and classification time,
when coping with the task of learning user profiles.

The presented experiments are preliminary and should be seen as a baseline
study. A new, intensive experimental session will be performed on the Each-
Movie data set (http://research.compaq.com/SRC/eachmovie/), that con-
tains 2811983 numeric ratings (entered by 72916 users) for 1628 different movies.

4.1 Design of the experiments

Eight book categories were selected at the Web site of a virtual bookshop. For
each book category, a set of book descriptions was obtained by analyzing Web
pages using an automated extractor and stored in a local database. Table 1
describes the extracted information. For each category we considered:

– Book descriptions - number of books extracted from the Web site belonging
to the specific category;



Table 1. Database information

Category Book Books with Avg.
descr. annotation annotation

length

Computing & Int. 5378 4178 (77%) 42.35
Fiction & lit. 5857 3347 (57%) 35.71
Travel 3109 1522 (48%) 28.51
Business 5144 3631 (70%) 41.77
SF, horror & fan. 556 433 (77%) 22.49
Art & entert. 1658 1072 (64%) 47.17
Sport & leisure 895 166 (18%) 29.46
History 140 82 (58%) 45.47

Total 22785 14466

Table 2. Number of books rated by each user in a given category

UserID Category Rated books

37 SF, Horror & Fantasy 40
26 SF, Horror & Fantasy 80
30 Computer & Internet 80
35 Business 80
24c Computer & Internet 80
36 Fiction & literature 40
24f Fiction & literature 40
33 Sport & leisure 80
34 Fiction & literature 80
23 Fiction & literature 40

– Books with annotation - number of books with a textual annotation (slot
annotation not empty);

– Avg. annotation length - average length (in words) of the annotations;

Several users have been involved in the experiments: each user were requested
to choose one or more categories of interest and to rate 40 or 80 books (in the
database) in each selected category, providing 1-10 discrete ratings. In this way,
for each user a dataset of 40 or 80 rated books was obtained (see Table 2).

On each dataset a 10-fold cross-validation was run and several metrics were
used in the testing phase. In the evaluation phase, the concept of relevant book is
central. A book in a specific category is considered as relevant by a user if his or
her rating is greater than 5. This corresponds in ITR to having P (c+|di) ≥ 0.5,
calculated as in equation (1), where di is a book in a specific category. Symmet-
rically, INTHELEX considers as relevant books covered by the inferred theory.
Classification effectiveness is measured in terms of the classical Information Re-
trieval (IR) notions of precision (Pr), recall (Re) and accuracy (Acc), adapted
to the case of text categorization [11]. Precision is the proportion of items clas-
sified as relevant that are really relevant, and recall is the proportion of relevant



Table 3. Performance for ITR and INTHELEX on 10 different users

Precision Recall Accuracy
UID ITR INTHELEX ITR INTHELEX ITR INTHELEX

37 0,767 0,967 0,883 0,5 0,731 0,695
26 0,818 0,955 0,735 0,645 0,737 0,768
30 0,608 0,583 0,600 0,125 0,587 0,488
35 0,651 0,767 0,800 0,234 0,725 0,662
24c 0,586 0,597 0,867 0,383 0,699 0,599
36 0,783 0,9 0,783 0,3 0,700 0,513
24f 0,785 0,9 0,650 0,35 0,651 0,535
33 0,683 0,75 0,808 0,308 0,730 0,659
34 0,608 0,883 0,490 0,255 0,559 0,564
23 0,500 0,975 0,130 0,9 0,153 0,875

Mean 0,679 0,828 0,675 0,4 0,627 0,636
(0,699) (0,811) (0,735) (0,344) (0,68) (0,609)

Table 4. Learning and Classification times (msec) for ITR and INTHELEX on 10
different users

Learning Time Classification Time
UID ITR INTHELEX ITR INTHELEX

37 3,738 3931,0 0,851 15,0
26 5,378 8839,0 0,969 20,0
30 8,561 51557,0 1,328 53,0
35 9,289 30338,0 1,423 55,0
24c 7,502 29780,0 1,208 44,0
36 5,051 12317,0 0,894 19,0
24f 4,532 18448,0 0,848 19,0
33 5,820 14482,0 0,961 25,0
34 7,592 73708,0 1,209 42,0
23 4,951 1859,0 0,845 20,0

Mean 6,2414 24525,9 1,0536 31,2

items that are classified as relevant; accuracy is the proportion of items that are
correctly classified as relevant or not.

As regards training and classification times, we tested the algorithms on a
2.4 GHz Pentium IV running Windows 2000.

4.2 Discussion

Table 3 shows the average precision, recall and accuracy of the models learned
in the 10 folds for each user. The last row reports the mean values, averaged
on all users. Since the average performance for ITR is very low for user 23, we
decided to have a deeper insight into the corresponding training file, and noted
that all examples were positive, thus indicating possible noise in the data. This
led us to recompute the metrics neglecting this user, thus obtaining the results
reported in parentheses.



likes(A) :-

learn(A),

mach(A),

intellig(A),

slot_title(A, F),

slot_authors(A, G),

slot_annotation(A, B),

intellig(B, C),

learn(B, D),

occ_12(D),

mach(B, E),

OCC_12(E).

Fig. 4. Rule learned by INTHELEX

In general, INTHELEX provides some performance improvement over ITR.
In particular, it can be noticed that INTHELEX produces very high precision
even on the category “SF, horror & fantasy”, taking into account the shortness
of the annotations provided for books belonging to this category. This result is
obtained both for user 26, who rated 80 books, and for user 37, who rated only
40 books. Moreover, classification accuracy obtained by INTHELEX is slightly
better than the one reached by ITR. On the other hand, ITR yields a better
recall than INTHELEX for all users except one (user 23).

For pairwise comparison of the two methods, the nonparametric Wilcoxon
signed rank test was used [9], since the number of independent trials (i.e., users)
is relatively low and does not justify the application of a parametric test, such
as the t-test. In this experiment, the test was adopted in order to evaluate the
difference in effectiveness of the profiles induced by the two systems according
to the metrics pointed out in Table 3. Requiring a significance level p < 0.05,
the test revealed that there is a statistically significant difference in performance
both for Precision (in favor of INTHELEX) and for Recall (in favor of ITR), but
not as regards Accuracy.

Going into more detail, as already stated, ITR performed very poorly only
on user 23, whose interests turned out to be very complex to be captured by
the probabilistic approach. Actually, all but one rates given by such a user were
positive (ranging between 6 and 8), that could be the reason for such a behaviour.
With respect to the complete dataset of all users, the accuracy calculated on the
subset of all users except user 23 becomes statistically significant in favor of ITR.

Table 4 reports the results about training and classification time of both
systems. Training times vary substantially across the two methods. ITR takes
an average of 6,2414 msec to train a classifier for a user when averaged over all
10 users. Training INTHELEX takes more time than ITR, but this is not a real
problem because profiles can be learnt by batch processes without noise for users.
In user profiling application, it is important to quickly classify new instances,



Table 5. Interests of user 39 and user 40 in books belonging to the category ”Com-
puting and Internet”

UserID Interests

39 machine learning, data mining, artificial intelligence

40 web programming, XML, databases, e-commerce

for example to provide users with on-line recommendations. Both methods are
very fast in this regard.

In summary, the probabilistic approach seems to have better recall, thus
showing a trend to classify unseen instances as positive; on the contrary, the
first-order approach tends to adopt a more cautious behavior, and classify new
instances as negative. Such a difference is probably due to the approach adopted:
learning in INTHELEX is data-driven, thus it works bottom-up and keeps in the
induced definitions as much information as possible from the examples. This way,
requirements for new observations in order to be classified as positive are more
demanding, and few of them pass; on the other hand, this ensures that those
that fulfill the condition are actually positive instances.

Another remark worth noting is that theories learned by the symbolic system
are very interesting from a human understandability viewpoint, in order to be
able to explain and justify the recommendations provided by the system. Figure
4 shows one such rule, to be interpreted as “the user likes a book if its annotation
contains stems intellig, learn (1 or 2 times) and mach (1 or 2 times)”. Anybody
can easily understand that this user is interested in books concerning artificial
intelligence and, specifically, machine learning.

The probabilistic approach could be used in developing recommender sys-
tems exploiting the ranked list approach for presenting items to the users. In
this scheme, users specifies their needs in a form and the system presents a usu-
ally long list of results, ordered by their predicted relevance (the probability of
belonging to the class ). On the other hand, the ILP approach could be adopted
in situations when the system transparency is a critical factor and it is important
to provide an explanation of why a recommendation was made.

From what said above, it seems that the two approaches compared in this
paper have complementary pros and cons, not only as regards the representation
language, but also as concerns the predictive performances. This naturally leads
to think that some cooperation could take place between the two in order to reach
higher effectiveness of the recommendations. For instance, since the probabilistic
theories have a better recall, they could be used for selecting which items are to
be presented to the user. Then, some kind of filtering could be applied on them,
in order to present to the user first those items that are considered positive by
the symbolic theories, that are characterized by a better precision.



Fig. 5. Profile of user 39.

5 Exploiting profiles to personalize recommendations

In this section, we present an example of how the learned profiles can be exploited
to provide Web users with personalized recommendations, delivered using the
ranked list approach. In particular, we analyze a usage scenario of the ITR
system, in which two users with different interests in books belonging to the
category ”Computing and Internet” submit the same query to the ITR search
engine. Table 5 reports the explicit interests of the two users. Figure 5 and 6
depict the profiles of both users inferred by ITR, and shows some keywords in
the slot title, which are indicative of user preferences. When a user submits a
query q, the books bi in the result set Rq are ranked by the classification value
P (c+|bi), bi ∈ Rq, computed according to Equation (1). The exact posterior
probabilities are determined by normalizing P (c+|bi) and P (c−|bi), so that their
sum is equal to 1. The result set retrieved by ITR in response to the query q=
”programming”, submitted by user 39, is presented in Figure 7. The first book
displayed is ”Expert Systems in Finance and Accounting”, in accordance with
the interests contained in the user profile. In fact, the profile of user 39 contains,
in the slot title, stemmed keywords (”intellig”, ”artific”, ”system”) that reveal
the interest of the user in systems exploiting artificial intelligence methods, like
expert systems. Conversely, if another user submits the same query, the books
in the result set are ranked in a different way, due to the fact that this user
has a different profile (user 40 in Figure 6). In this case, the system recommends
”Java Professional Library” (the first book in the ranked list) (Figure 8), because
the stemmed keywords (”java”, ”databas”, ”xml”, ”program”, ”jdbc”) in the slot
title of the profile indicate well known technologies for web developers. Again, the



Fig. 6. Profile of user 40.

advice provided by the systems seems to be indicative of the interests supplied
by the users.

These scenarios highlight the effect of the personalization on the search pro-
cess, that is the dependence of the result set on the profile of the user who
issued the query. Although the query personalization scenarios presented here
suggest a use of the probabilistic profiles for content-based filtering of the search
results, thus adopting a passive recommendation strategy, they can be used also
for active recommendation. For example, the profile of a user could be used to
identify a set of N items that will be of interest to the user in each category of
the catalogue (top-N recommendation problem) [12]. Then, the N top-scored
items in a category could be recommended when the user is browsing items in
that category. As regards the rule-based profiles, since they do not provide a rec-
ommendation score, but only a binary judgement (likes/dislikes), they are more
suitable for refining the recommendations from among a candidate set, such as
a ranked list. To sum up, although this has been designed as a baseline study, it
is worth drawing attention to the key finding highlighted by the study: ILP and
probabilistic techniques are complementary for the task of learning user profiles
from text and could be combined for active or passive recommendation. In our
opinion, a cascade hybridization method [1] is the best way to integrate the
two approaches. In this technique, the probabilistic profile of a user is exploited
first to produce a coarse ranking of candidates, and then the symbolic profile
refines the recommendations from among the candidate set, also explaining and
justifying the recommendations provided by the system.



Fig. 7. Books recommended by ITR to user 39, who issued the query ”programming”.

Fig. 8. Books recommended by ITR to user 40, who issued the query ”programming”.

6 Conclusions

Research presented in this paper has focused on methods for learning user profiles
which are predictively accurate and comprehensible. Specifically, an intensive
comparison between an ILP and a probabilistic approach to learning models of
users’ preferences was carried out. Experimental results highlight the usefulness
and drawbacks of each one, that can suggest possible ways of combining the two
approaches in order to offer better support to users accessing e-commerce virtual
shops or other information sources. In particular, we suggest a simple possible
way of obtaining a cascade hybrid method. In this technique, the probabilistic
approach could be employed first to produce a coarse ranking of candidates and
the ILP approach could be used to refine the recommendations from among the
candidate set.



Currently we are working on the integration in INTHELEX of techniques able
to manage numeric values, in order to treat in a more efficient way numerical
features of instances, and hence to obtain theories with a more fine grain size.
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