
Machine Learning methods for automatically processing historical documents:
from paper acquisition to XML transformation

F.Esposito, D.Malerba, G.Semeraro, S.Ferilli, O. Altamura, T.M.A.Basile, M.Berardi, M.Ceci, N.Di Mauro
Dipartimento di Informatica – Università di Bari, Via E. Orabona, 4 - 70125 Bari

tel +39-080-5442140 fax +39-080-5443196
{esposito, malerba, semeraro, ferilli, altamura, basile, berardi, ceci, nicodimauro}@di.uniba.it

Abstract

One of the aims of the EU project COLLATE is to design
and implement a Web-based collaboratory for archives,
scientists and end-users working with digitized cultural
material. Since the originals of such a material are often
unique and scattered in various archives, severe
problems arise for their wide fruition. A solution would
be to develop intelligent document processing tools that
automatically transform printed documents into a web-
accessible form such as XML. Here, we propose the use
of a document processing system, WISDOM++, which
uses heavily machine learning techniques in order to
perform such a task, and report promising results
obtained in preliminary experiments.

1. Introduction

The preservation of cultural heritage is mainly based on
the possibility of saving, storing, accessing and
interpretating cultural objects such as documents, texts,
paintings and works of arts. Such objects are often unique,
very valuable, fragile, irreplaceable and locally preserved
in scientific collections at museums, in archives, or in
urban and historic areas. Archives, museums and other
cultural institutions also manage large collections of
documents in the form of photos, expertise’s papers,
records, scientific studies and analyses. Both the objects
themselves as well as the supplementary documentation
are often accessible only through physical contact.
Duplicates in the form of text (e.g., critical editions), or
images (facsimiles, photographs) on paper are extremely
expensive in terms of manpower, know-how and printing
costs, and often cannot be justified for a small scientific
audience. An answer to these problems might lie in the
creation of digital libraries, enhanced by the concept of an
annotation collaboratory, that are able to bundle

documents, interpretation knowledge, work processes and
an expert network in a flexible working environment.

The intrinsic nature of the document processing
procedures poses several constraints that require tailored
solutions. Intelligent Systems are becoming over the years
valuable working instruments for researchers involved in
humanistic sciences. The new challenge is to develop
tools that can facilitate the fruition and investigation of
the cultural heritage, to be used by non-experts or
communities of researchers both for their personal work
and for collaborative purposes. Technologically, the
World Wide Web can serve as a standard communication
platform for such communities as well as a gateway for
document-centered digital library applications. Yet, while
the Web may solve the problem of the diffusion and
access of this material in its digital form, new automated
tools are needed to allow a more intelligent processing
and a personalized utilization of this knowledge.

In the project COLLATE (Collaboratory for annotation,
indexing and retrieval of digitized historical archive
material IST-1999-20882) one of the aims is to design
and implement a Web-based collaboratory for people and
insitutions working with digitized cultural material. The
documents concern European films of the early 20th
century that are not accessible in digitized formats. The
need is to acquire and manage all the documents referring
to a unique subject in order to reconstruct an entity in the
knowledge base available on the Web. Documents are of
different nature, often on partially damaged supports, with
different standard and ancient typing characters. A
straightforward application of OCR technology produces
poor results because of the variability of the layout
structure of printed documents. A more advanced solution
would be to develop intelligent tools that automatically
transform a large variety of printed documents into a web-
accessible form. This requires a solution to several image
processing problems, such as the separation of textual and
graphical components in a document image (document
analysis), the recognition of the kind of document
(document classification), the identification of
semantically relevant components of the page layout

(document understanding), the extraction of sequences of
characters from portions of the document image (OCR),
and the transformation of the page into HTML/XML
format. A large amount of knowledge is required to this
purpose [1], [4]: While in the literature a great effort is
made to hand-code such a knowledge [15], we propose
the massive application of inductive learning techniques
throughout all the steps of document processing.

2. Wisdom ++

WISDOM (Windows Interface System for Document
Management) is the system used to process the documents
[6]. One of its distinguishing features is the use of a rule
base to support some tasks performed in the various steps.
The rule base is automatically built from a set of training
documents using different inductive machine learning
methods, which make the system highly adaptive.

Document images processed in the COLLATE project
(see Figure 1) are provided by three national film
archives: Deutsches Filminstitut (DIF), Filmarchiv Austria
(FAA) and Národní Filmový Archiv (NFA). Generally,
documents are multi-page, each page being an RGB 24bit
color image in TIFF format whose size can reach up to 50
MB. Since WISDOM++ can manage 300dpi black-and-
white images of at most A4-format documents, a
preliminary conversion is necessary. In this application
only some pages of each document are interesting for
document classification and understanding. Specifically,
only the first, second and last page have been processed.

Document preprocessing consists in the evaluation of
the skew angle, the rotation of the document, as well as
the computation of a spread factor. The evaluation of the
skew angle is essential, since the method used for the
subsequent step of document segmentation is generally

ineffective when applied to skewed documents. Once the
skew angle has been estimated the document image can be
corrected by means of an inverse rotation operator. The
spread factor of the document image is used to define
some parameters of the segmentation algorithm. At the
end of the preprocessing phase, the resolution of the
document image is reduced to 75 dpi (about 70 KB for an
A4-sized page), which is a reasonable trade-off between
accuracy and speed of the segmentation process and also
filters out noisy black specks on a white background.

If the primary goal of the document analysis process is
interpretation of text data, graphic data appearing in the
digitized document must be first separated from the text
so that subsequent processing stages may operate
exclusively on the textual information. This is obtained in
two steps: image segmentation and block classification.
WISDOM++ segments the reduced document image into
rectangular blocks by means of an efficient variant of the
Run Length Smoothing Algorithm (RLSA) [18]. In order
to facilitate subsequent processing steps, each block must
be classified according to the type of content: text,
horizontal line, vertical line, picture (i.e., halftone images)
and graphics (e.g., line drawings). Such a classification is
performed by means of a decision tree automatically built
from a set of training examples (blocks) of the five classes
whose performance has been reported in [2]. The result of
the segmentation process is a list of classified blocks,
corresponding to printed areas in the page image. Each
block is described by its top left-hand and bottom right-
hand corners’ coordinates, and its type.

The number of blocks is generally less than a hundred;
however, this representation is still too detailed for
learning document classification and understanding rules.
The perceptual organization process that aims at detecting
structures among blocks is called the layout analysis. The
result is a hierarchy of abstract representations of the

First page of a FAA censorship card Second page of a FAA
censorship card

First page of a DIF censorship card Last page of a DIF censorship
card

 First page of a DIF censorship decision Last page of a DIF censorship
decision

Figure 1. Examples of documents to be processed

document image, the layout structure. The leaves of the
layout tree are the blocks, while the root represents the
whole document. A page may group together several
layout components, called frames, which are rectangular
areas of interest in the document page image. The layout
analysis is done in two steps:

1. A global analysis in order to determine possible
areas containing paragraphs, sections, figures and
tables. This step is based on an iterative process, in
which the vertical and horizontal histograms of text
blocks are alternatively analyzed in order to detect
columns and sections/paragraphs, respectively.

2. A local analysis to group together blocks which
possibly fall within the same area. Perceptual criteria
considered in this step are: proximity (e.g. adjacent
components belonging to the same column/area are
equally spaced), continuity (e.g. overlapping
components) and similarity (e.g. components of the
same type, with an almost equal height).

Pairs of layout components that satisfy some of these
criteria may be grouped together. Each layout component
is associated with one of the following types: text,
horizontal line, vertical line, picture, graphic and mixed.
When the constituent blocks of a component are
homogeneous, the same type is inherited by the layout
component; otherwise, the associated type is set to mixed.

The layout structure extracted by WISDOM++ is a
hierarchy with six levels: basic blocks, lines, set of lines,
frame1, frame2, and pages (see Figure 2). If the user is
not satisfied with the result of the layout analysis he can
act directly on the results of the segmentation process by
deleting some blocks or he can modify the result of the
global analysis by performing three different operations:

a) Horizontal splitting: a column/section is cut
horizontally.

b) Vertical splitting: a column/section is cut
vertically.

c) Grouping: two sections/columns are merged.
After each operation, WISDOM++ recomputes the

result of the local analysis process, so that the user can
immediately perceive the final effect of the requested
corrections and can decide whether to confirm or reject it.
Once the user has completed the correction process,
WISDOM++ has the description of when and how the
user has modified the result of the global analysis, and
generates corresponding training observations in order to
automatically learn rules for the automated correction of
the layout analysis by means of one of the learning
systems WISDOM++ incorporates [13].

The splitting operations can be described by means of a
binary function, split(X,S), where X represents the
column/section to be split, S is an ordinal number
representing the step of the correction process, and the
range of the split function is the set {horizontal, vertical,
no_split}. The grouping operation can be described by a
ternary predicate group(A,B,S), where A and B are the
two grouped sections (columns) and S is the ordinal
number representing the step of the correction process.

3. Document classification

The logical components of the document, such as title,
authors, can be identified after having detected the layout
structure. They can be arranged in a hierarchical structure,
which is called logical structure, resulting by a division of

Figure 2. Layout components
shown at the following levels:
a) Basic blocks;
b) Lines;
c) Set of lines;
d) Frame 1;
e) Frame2.

 a)

the content of a document into increasingly smaller parts.
The leaves of the logical structure are the basic logical
components, such as authors of a paper. The heading of
an article, encompassing the title and the author, is
therefore a composite logical component. The root of the
logical structure is the document class. The discovery of
the logical structure of a document can be cast as the
problem of associating some layout components with a
correspondent logical component. In WISDOM++ it
consists in the association of a page with a document class
(document classification) and of second frames with basic
logical components (document understanding).

Classification is performed by matching the layout
structure of the first page against models of classes of
documents that are able to capture the invariant properties
of the images/layout structures of documents belonging to
the same class. They are expressed in a first-order logic
language, so that the classification problem can be
reformulated as a matching test between two logic
formulae: one that describes a model and another that
represents the image/layout properties of the first page. In
such a first-order logic language unary function symbols
(attributes) describe properties of a layout component,
while binary predicate and function symbols (relations)
express spatial relationships between layout components.
Table 1 reports a list of the attributes/relations used.

Table 1 . Attributes/Relations used to describe both
the models and the documents.

Attribute/relation name
(Extracted from) Definition

image_length(doc) (Image) Integer domain (1..5000)
image_width(doc)(Image) Integer domain (1..4000)
width(block) (Page layout) Integer domain (1..640)
height(block) (Page layout) Integer domain (1..890)
x_pos_centre(block)
(Page layout) Integer domain (1..640)

y_pos_centre(block)
(Page layout) Integer domain (1..875)

type_of(block)
(Page layout)

Nominal domain:
text, hor_line, image,
ver_line, graphic, mixed

part_of(page,block)
(Page layout)

Boolean domain:
true if page contains block

on_top(b1,b2)
(Page layout)

Boolean domain:
true if block b1 is above b2

to_right(b1,b2)
(Page layout)

Boolean domain: true if block
b2 is to the right of b1

alignment(block1,block2)
(Page layout)

Nominal domain:
only_left_col, only_right_col,
only_middle_col,
both_columns, both_rows
only_upper_row,
only_lower_row,
only_middle_row

The rules can be learned from a set of training examples
of documents classified by the user. Two different
strategies can be applied to learning tasks: batch and
incremental. The system embedded in WISDOM++ for
batch learning is ATRE [11]. The learning problem can
be formulated as:

Given: a set of concepts C1, C2, …, Cr to be learned, a
set of observations O described in a language LO, a
background knowledge BK described in a language LBK, a
language of hypotheses LH, a generalization model over
the space of hypotheses and a user’s preference criterion

Find: a (recursive) logical theory T for the concepts C1,
C2, …, Cr, such that T is complete and consistent with
respect to O and satisfies the user’s preference criterion.

As to the representation language, the basic component
is the literal in the two forms: f(t1, … ,tn)=Value where f
is an n-ary function symbol, i.e. a relation or attribute, ti’s
are constant terms, and Value is one of the possible values
of f's domain or f(t1, ……, tn) ∈∈ Range (set literal), where f
is function symbol called descriptor, ti's are terms, and
Range is a closed interval of possible values taken by f.

The language of observations LO allows an efficient
and comprehensible object-centered representation of
observations that are represented by ground multiple-head
clauses made up of a conjunction of simple literals in the
head. Indeed, in order to reduce the computational
complexity of the problem, the description of the
document is restricted to the properties of the frame2
layout components alone. A partial description of the page
layout of a document follows:
image_lenght(1)=3468, image_width(1)=2418,
part_of(1,2)=true, part_of(1,3)=true, …, part_of(1,25)=true,
width(2)=15, width(3)=20, …, width(25)=429,
height(2)=239, height(3)=4, …, height(25)=24,
type_of(2)=text, type_of(3)=text, …, type_of(25)=text,
x_pos_centre(2)=20, …, x_pos_centre(25)=334,
y_pos_centre(2)=420, …, y_pos_centre(25)=558,
on_top(3,9)=true, on_top(9,8)=true, …, on_top(19,20)=true,
to_right(2,7)=true, to_right(3,9)=true, …, to_right(2,4)=true,
alignment(3,13)=only_right_col,
alignment(7,8)=only_upper_row, ...
where the constant 1 denotes the whole page, and 2–25
the layout components at the frame2 level.
Examples can be considered as positive or negative.

The language of hypotheses, LH is that of linked, range-
restricted definite clauses [5] with simple set literals in
the body and one simple literal in the head.

The language of background knowledge LBK has the
same constraints as LH: this knowledge allows to reduce
the search space of the hypotheses with different biases.

ATRE’s theories can be transformed into Datalog
programs [3] with built-in predicates: a simple literal
f(t1,…,tn)=Value can be transformed into an (n+1)-ary
predicate f(t1,…,tn,Value), while a set literal f(t1, …,
tn)∈Range, where Range is an interval [a .. b], can be

transformed into f(t1, …, tn, Z), Z ≥ a, Z ≤ b. In such a
way, it is possible to extend notions and properties of
first-order logic to ATRE definite clauses.

Regardless of the chosen representation language, a key
role of the induction process is the search through a space
of hypotheses. A generalization model provides a basis
for organizing this search space, since it establishes when
a hypothesis covers a positive/negative example and when
an inductive hypothesis is more general/specific than
another. The generalization model adopted in ATRE is a
variant of Plotkin's relative generalization [16], named
generalized implication [11].

The learning algorithm in ATRE belongs to the family
of separate-and-conquer algorithms [14]: It is based on
the strategy of learning one clause at a time (conquer
step), removing the covered examples (separate step) and
iterating the process on the remaining examples.

Some preliminary experimental results on the task of
learning rules for classification of COLLATE documents
are reported. The dataset consisted of 89 documents: 18
of class FAA censorship card (faa_cen), 10 of A4-size
DIF censorship decision (dif_cen_decision), 5 of DIF
censorship card (dif_cen_card); other 56 of class Reject
(Newspaper Articles). Learned rules and runtime are in
the following Table 2.

Table 2 Rules for document classification

class(X1)=dif_cen_decision ←
 part_of(X1,X2)=true, type_of(X2)=text
 image_lenght(X1)∈[3389 .. 3507],
 y_pos_centre(X2)∈[670 .. 841]

400.883 s

class(X1)=dif_cen_card ←
 image_lenght(X1)∈[1211 .. 1227]

3.243 s

class(X1)=faa_cen ←
 image_lenght(X1)∈[1689 .. 1730],
 image_width(X1)∈[2417 .. 2483].

74.448 s

The first rule states that a document belongs to DIF
censorship decision if the image length of its first page is
between 3389 and 3507 pixels (as expected from A4 sized
documents) and the layout structure of its first page
contains a frame2 component of type text with a centroid
positioned vertically between row 670 and row 841.

The second rule emphasizes the importance of the
descriptor image_length, which is enough to discriminate
a DIF censorship card from a DIF censorship decision.

The third clause confirms the importance of handling
numerical descriptors in ATRE, since FAA censorship
documents are characterized by two conditions: length of
the document image between 1689 and 1730, and image
width between 2417 and 2483.

4. Document understanding

In document understanding, layout components are
associated with logical components. This association can
theoretically affect layout components at any level in the
layout hierarchy. However, in WISDOM++ only frame2
components are associated with some component of the
logical hierarchy. Moreover, only layout information is
used in document understanding. This approach differs
from that proposed by other authors [9] which
additionally make use of textual information, font
information and universal attributes given by the OCR.
This diversity is due to a different conviction on when an
OCR should be applied. We believe that only some layout
components of interest for the application should be
subject to OCR, hence document understanding should
precede text reading and cannot be based on textual
features. Two assumptions are made: documents
belonging to the same class have a set of relevant and
invariant layout characteristics; logical components can be
identified by using layout information only.

Document understanding of all pages is performed by
matching the layout structure of the each page against
models of logical components. An example of models for
the logical components running_head and paragraph in
the case of papers published in magazines might be:
logic_type(X)= running_head ←←

position(X)= top_left, type(X)=text, page_number(X)=even
logic_type(X)= running_head ←←

position(X)=top_righ, type(X)= text, page_number(X)=odd
logic_type(Y)= paragraph ←←

on_top(X,Y)=true, logic_type(X)=running_head,
type(Y)=text
These rules mean that a textual layout component at the

top left (right) hand corner of an even (odd) page is a
running head, while a textual layout component below a
running-head is a paragraph of the paper.

This example shows that the document understanding
problem cannot be effectively reformulated as a simple
matching test between logic formulae. The association of
the logical description of pages with logical components
requires a full-fledged theorem prover.

Attributes and relations used to describe the layout of
each page to be “understood”, partially overlaps with
those presented in Table 1. The two image attributes
image_length and image_width are no longer necessary,
while it is important to introduce a new attribute page
which specifies the position of the page to be understood
within the document (first, second, etc.). An example of
the page layout for document understanding purposes is:
page(1)=first,
part_of(1,2)=true, part_of(1,3)=true, …, part_of(1,25)=true,
width(2)=15, width(3)=20, …, width(25)=429,
height(2)=239, height(3)=4, …, height(25)=24,
type_of(2)=text, type_of(3)=text, …, type_of(25)=text,

x_pos_centre(2)=20, …, x_pos_centre(25)=334,
y_pos_centre(2)=420, …, y_pos_c entre(25)=558,
on_top(3,9)=true, on_top(9,8)=true, …, on_top(19,20)=true,
to_right(2,3)=true, to_right(2,5)=true,…,to_right(3,5)=true,
alignment(9,12)=only_right_col, …,
alignment(7,8)=only_upper_row.
where the constant 1 denotes the whole page, and 2–25
the layout components at the frame2 level.

There are three main differences with respect to
document classification: in document understanding each
document generates as many training examples as the
number of layout components at the frame2 level.
Furthermore, all pages of the document are of interest, not
only the first one as in document classification. Finally,
the number of learning problems equals the number of
document classes.

The incremental learning system adopted in document
understanding was INTHELEX (INcremental THEory
Learner from EXamples) which induces hierarchical
theories from examples [7]. INTHELEX is fully
incremental: this means that, in addition to the possibility
of taking as input a previously generated version of the
theory, learning can also start from an empty theory and
from the first available example. INTHELEX can learn
simultaneously multiple concepts; furthermore, it is a
closed loop learning system – i.e., a system in which the
learned theory is checked to be valid on any new example
and, in case of failure, a revision process is activated on it,
in order to restore completeness and consistency.
INTHELEX learns theories, expressed as sets of function-
free clauses [10], from positive and negative examples. It
assumes that, within a clause, different terms must denote
different objects [17]. According to a full memory storage
strategy, it retains all the processed examples, so that the
learned theories are guaranteed to be valid on the whole
set of known examples. It incorporates two refinement
operators, one for generalizing hypotheses that reject
positive examples, and the other for specializing
hypotheses that explain negative ones.

After having prepared a set of training documents for
each class, rules for document understanding can be
learned for each concept in that document class. The
user/trainer of WISDOM++ is asked to label layout
components of a set of training documents according to
their logical meaning. Those layout components with no
clear logical meaning are not labeled (undefined).
Therefore, each document generates a number of positive
and negative instances depending on the number of layout
components in the documents which constitute the set of
observations. The undefined play the role of
counterexamples for all the concepts to be learned.

Two experiments were carried out: the first on the set of
18 documents belonging to faa_cen class and the other on
the set of 10 documents belonging to dif_cen_decision

previously used for classification task. Each class of
documents has its own concepts, i.e. layout components
corresponding to meaningful logical components.
Concepts that can be found in a dif_cen_decision are:
assessors, cens_authority, cens_signature, cert_signature,
chairman, object_title, representative, rep_ producer,
session_data. In the faa_cen class, the logical components
that can be learned are: applicant, department,
registration_au, date_place, reg_numb and authorization.

Being the learning computational model conceptual and
fully incremental, also a restricted number of training
documents is sufficient for learning, provided that they
are appropriately selected by the trainer as the most
significant. Indeed, when learning labels for faa_cen
documents, INTHELEX worked with an average of 10
examples for each concept and generated 2 clauses for
applicant, registration_au, date_place and authorization
and just one for department and reg_numb.

A learned rule for cens_authority by the INTHELEX is:
logic_type_cens_authority(A) :-
 width_medium_large(A),type_of_text(A),
 pos_left(A),pos_upper(A),
 part_of(B,A),page_first(B),
 part_of(B,C),height_very_very_smal(C),
 type_of_text(C),pos_left(C),
 part_of(B,D),type_of_text(D),pos_upper(D)
 on_top(D,E),part_of(B,E),part_of(B,F),
 height_very_very_smal(F),type_of_text(F),
 part_of(B,G),part_of(B,H).
The meaning is: A block A is of kind cens_authority IF

“It appears at the top of the first page, in the left, is a
text block, has a medium or wide size and in the same
page there are other six components (C, D, E, F, G, H),
two of which (C and F) are very small and of text type,
being C on the left, and another component D, of text
type, is placed in the upper part of the page and over a
block E.”
Table 3 reports the testing results for understanding

image documents for the class dif_cen_decision.

Table 3 A4-size DIF censorship cards: testing results

CONCEPT Accuracy CONCEPT Accuracy

assessors 92 object title 100

 cens_authoriy 100 representative 92

cens_signature 74 rep_producer 100

cert_signature 96 session_data 100

chairman 96

5. OCR and transformation into
HTML/XML format

After the layout structure has been mapped into the
logical structure, OCR can be applied to some logical

components of interest. Text read by the OCR is then
associated to a layout component whose content type has
already been determined. Thus, all data of concerning the
result of document processing can be stored for future
retrieval purposes. Moreover, by transforming the
document into HTML/XML formats, it can be made
accessible via Web. The realization of this transformation
is explained in the following. An XML document has both
a logical and a physical structure. The logical structure
allows a document to be divided into named units and
sub-units (elements). The physical structure allows
components of the document (entities) to be named and
stored separately, sometimes in other data files, so that
information can be re-used, and non XML data (e.g.
images) can be included by reference.

The most significant feature of XML is the concept of
Document Type Definition (DTD), which provides a
formal set of rules to define a logical document structure,
defines the elements that may be used, and dictates where
they may be applied in relation to each other. The
declarations that comprise the DTD may be stored at the
top of each document that must conform to these rules
(internal DTD), or may be alternatively stored in a
separate data file (external DTD), which is referred to by
a special instruction at the top of each document.
WISDOM++ adopts the latter solution, which generates,
for each document class, a distinct DTD in which each
declaration conforms to the markup declaration format
<!…>. The keyword ELEMENT introduces an element
declaration and specifies its allowed content. An attribute
may be associated with an element in order to provide
refined information on it. Examples of attributes are the
URL, the format and the resolution of a document. All the
attributes are declared separately from the element, but
are usually declared together, in the attribute list
declaration. It is also noteworthy that the DTD generated
by WISDOM++ distinguishes the logical structure (logic)
from the layout structure (geometric). The layout structure
is used only for storing purposes: to render the document
similar in appearance to the original document, we will
use XSL specifications, as explained later.

Once the DTD has been defined, an instance of that
document type can be generated and stored in a .xml file
by respecting constraints defined by the set of rules in the
DTD. The first row specifies the set of characters, the
second row specifies the name of the style sheet file (with
extension .xsl), while the third row defines the DTD
associated to the document class (file with extension .dtd).
Then, the file reports the specification of the logical
structure. Text extracted with the OCR is intermixed with
tags that define its logical structure. The specification of
the geometric structure follows that of the logical one and
is reported level by level.

The XML specification includes a facility for physically
isolating and separately storing any part of a document.
Each unit of information is called an entity, and each
entity is assigned a name, so that it can be identified. The
only entity to which an entity name is not assigned is the
document entity. It is stored in a data file that is
considered as representing the entire document. In simple
cases, the document entity may be the only entity (main
program without sub-programs), in more complex cases
the document entity is used to position the call of other
entities (main program with only sub-programs). A
declaration <!ENTITY…> is required to announce the
existence of an entity. No such declaration is reported in
XML documents generated by WISDOM++, since they
contain only one entity (document entity). The content of
an XML element, such as abstract or paragraph, has no
explicit text style or format. Since XML language is not
concerned with visualization aspects, it is necessary to
specify the element rendering in a different language. XSL
(eXtensible Style Language) is a language used for
expressing style sheets. An XSL style sheet specifies the
presentation of a class of XML documents by describing
how an instance of the class is transformed into an XML
document that uses the formatting vocabulary.

An XSL style sheet processor accepts a document or
data in XML and an XSL style sheet and produces the
presentation of that XML source content that was
intended by the designer of that style sheet. The
presentation process involves two distinct steps: the
transformation of the original XML source file, and the
interpretation of the transformed file to produce formatted
results suitable for presentation. To sum up, several pieces
of information extracted by WISDOM++, i.e. the layout
and logical structures, the textual content of some logical
components, and the pictorial content of some graphical
layout components, are distributed into different files
(DTD, XML, XSL and JPG). Nevertheless, the document
conversion into structured formats (HTML/XML) is not
straightforward, since a number of factors should be
considered in order to render the converted document as
similar as possible to the original document image.
Layout-based conversion into HTML/XML format is
detailed described in [2].

7. Conclusions and future work

In this paper, we presented the application of the
document management system WISDOM++, already
widely tested in the domain of digital libraries [8], to the
problem of automatically processing documents available
in film archives for the project COLLATE. With the goal
of supporting complex working tasks such as historic film
documentation and reconstruction of surrogates of lost or

physically damaged films, the project aims at exploiting
the chances of the proceeding digitization of cultural and
historical document corpora by establishing innovative
models and techniques of content-based organisation,
handling and presentation of imperiled and precarious
historical materials. The philosophy of the COLLATE
project is mainly in its specific concept of a dynamic
annotation and retrieval, based on the use of automated
document processing techniques and content-based access
methods, in the domain of heterogeneous multimedia
repositories.

The transformation of documents into a digital format
appropriate for a Web browser, is a complex knowledge-
intensive process, involving document image analysis and
machine learning techniques as well as multimedia editing
techniques for rendering purposes. Machine learning is
proposed as a viable solution to the problem of specifying
the models used in text-graphics separation, layout
analysis, document classification and understanding.

Promising results obtained in preliminary experiments
on this kind of documents have been reported;
nevertheless, they have to be confirmed by a larger
experimentation. Moreover, there are problems that still
need to be resolved. First, the extension of WISDOM++
with many segmentation algorithms that work properly on
color images as well as on images of forms, where textual
content is typically surrounded by frames or by vertical
and horizontal lines. Second, we intend to perform a tight
integration of the OCR with WISDOM++, in order to
simplify the current user interaction and simultaneously
take advantage of the font information extracted by the
OCR during the HTML/XML rendering process.

8. References

[1] Aiello M., Monz C., Todoran L. and M. Worring (2002).
Document understanding for a broad class of documents.
International Journal on Document Analysis and
Recognition, vol 5.

[2] Altamura, O.; Esposito, F. & Malerba, D. (2001).
Transforming paper documents into XML format with
WISDOM++. International Journal on Document Analysis
and Recognition, vol. 4 pp. 2-17 .

[3] Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always
wanted to know about Datalog (and never dared to ask),
IEEE Transactions on Knowledge and Data Engineering, 1,
1, pp. 146-166.

[4] Dengel, A. (2003). Making Documents Work: challenges for
document understanding, Proc. of Seventh International
Conference on Document Analysis and Recognition,
pp.1026-1037.

[5] L. De Raedt (1992). Interactive Theory Revision. Academic

Press, London.

[6] Esposito, F.; Malerba, D. & Lisi, F.A. (2000). Machine
Learning for intelligent processing of printed documents.
Journal of Intelligent Information Systems 14(2/3): 175-
198.

[7] Esposito, F., Semeraro, G., Fanizzi, N. & Ferilli, S. (2000).
Multistrategy Theory Revision: Induction and Abduction in
INTHELEX. Machine Learning Journal, 38(1/2):133-156,
Kluwer Academic Publisher.

[8] Esposito F., Malerba, D., Semeraro, G., Fanizzi, N., Ferilli,
S. (1998). Adding Machine Learning and Knowledge
Intensive Techniques to a Digital Library Service.
International Journal on Digital Libraries, 2(1): 1-17,
Springer Verlag, Berlin.

[9] S. Klink, A. Dengel, and T. Kieninger. Document structure
analysis based on layout and textual features. In Proc. of
Fourth IAPR International Workshop on Document
Analysis Systems, DAS2000, pp 99–111.

[10] Lloyd, J.W. (1987). Foundations of Logic Programming.
Springer-Verlag, Berlin.

[11] D. Malerba, F. Esposito, and F.A. Lisi (1998). Learning
recursive theories with ATRE, in H. Prade (Ed.),
Proceedings of the 13th European Conference on Artificial
Intelligence, 435-439, John Wiley & Sons, England.

[12] D. Malerba, F. Esposito, F.A. Lisi, and O. Altamura
(2001). Automated Discovery of Dependencies Between
Logical Components in Document Image Understanding.
Proceedings of the Sixth International Conference on
Document Analysis and Recognition, Seattle (WA), pp. 174-
178.

[13] D. Malerba, F. Esposito, O. Altamura, M. Ceci, and M.
Berardi. Correcting the document Layout: a Machine
Learning Approach. Proc. of Seventh International
Conference on Document Analysis and Recognition, pp.97-
103.

[14] T.Mitchell (1997). Machine Learning. McGraw-Hill, New
York.

[15] G. Nagy, S. Seth and M. Viswanathan (1992) A Prototype
Document Image Analysis System for Technical Journal,
IEEE Computer, vol. 25, no. 7, pp.10-22.

[16] Plotkin, G.D., (1971), A further note on inductive
generalization, in Machine Intelligence 6, B.

[17] Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N. &
Ferilli, S. (1998). A Logic Framework for the Incremental
Inductive Synthesis of Datalog Theories. In N. E. Fuchs
(ed.), Logic Program Synthesis and Transformation,
Lecture Notes in Computer Science 1463, (pp. 300-321),
Springer, Berlin.

[18] Wong, K.Y.; Casey, R.G. & Wahl, F.M. (1982). Document
Analysis System. IBM Journal of Research
Development,26(6):647/656.

