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Abstract 

One of the aims of the EU project COLLATE is to design 
and implement a Web-based collaboratory for archives, 
scientists and end-users working with digitized cultural 
material. Since the originals of such a material are often 
unique and scattered in various archives, severe 
problems arise for their wide fruition. A solution would 
be to develop intelligent document processing tools that 
automatically transform printed documents into a web-
accessible form such as XML. Here, we propose the use 
of a document processing system, WISDOM++, which 
uses heavily machine learning techniques in order to 
perform such a task, and report promising results 
obtained in preliminary experiments. 
 
 

1. Introduction 

The preservation of cultural heritage is mainly based on 
the possibility of saving, storing, accessing and 
interpretating cultural objects such as documents, texts, 
paintings and works of arts. Such objects are often unique, 
very valuable, fragile, irreplaceable and locally preserved 
in scientific collections at museums, in archives, or in 
urban and historic areas. Archives, museums and other 
cultural institutions also manage large collections of 
documents in the form of photos, expertise’s papers, 
records, scientific studies and analyses. Both the objects 
themselves as well as the supplementary documentation 
are often accessible only through physical contact. 
Duplicates in the form of text (e.g., critical editions), or 
images (facsimiles, photographs) on paper are extremely 
expensive in terms of manpower, know-how and printing 
costs, and often cannot be justified for a small scientific 
audience. An answer to these problems might lie in the 
creation of digital libraries, enhanced by the concept of an 
annotation collaboratory, that are able to bundle 

documents, interpretation knowledge, work processes and 
an expert network in a flexible working environment. 

The intrinsic nature of the document processing 
procedures poses several constraints that require tailored 
solutions. Intelligent Systems are becoming over the years 
valuable working instruments for researchers involved in 
humanistic sciences. The new challenge is to develop 
tools that can facilitate the fruition and investigation of 
the cultural heritage, to be used by non-experts or 
communities of researchers both for their personal work 
and for collaborative purposes. Technologically, the 
World Wide Web can serve as a standard communication 
platform for such communities as well as a gateway for 
document-centered digital library applications. Yet, while 
the Web may solve the problem of the diffusion and 
access of this material in its digital form, new automated 
tools are needed to allow a more intelligent processing 
and a personalized utilization of this knowledge. 

In the project COLLATE (Collaboratory for annotation, 
indexing and retrieval of digitized historical archive 
material IST-1999-20882) one of the aims is to design 
and implement a Web-based collaboratory for people and 
insitutions working with digitized cultural material. The 
documents concern European films of the early 20th 
century that are not accessible in digitized formats. The 
need is to acquire and manage all the documents referring 
to a unique subject in order to reconstruct an entity in the 
knowledge base available on the Web. Documents are of 
different nature, often on partially damaged supports, with 
different standard and ancient typing characters. A 
straightforward application of OCR technology produces 
poor results because of the variability of the layout 
structure of printed documents. A more advanced solution 
would be to develop intelligent tools that automatically 
transform a large variety of printed documents into a web-
accessible form. This requires a solution to several image 
processing problems, such as the separation of textual and 
graphical components in a document image (document 
analysis), the recognition of the kind of document 
(document classification), the identification of 
semantically relevant components of the page layout 



(document understanding), the extraction of sequences of 
characters from portions of the document image (OCR), 
and the transformation of the page into HTML/XML 
format. A large amount of knowledge is required to this 
purpose [1], [4]: While in the literature a great effort is 
made to hand-code such a knowledge [15], we propose 
the massive application of inductive learning techniques 
throughout all the steps of document processing. 

2. Wisdom ++ 

WISDOM (Windows Interface System for Document 
Management) is the system used to process the documents 
[6]. One of its distinguishing features is the use of a rule 
base to support some tasks performed in the various steps. 
The rule base is automatically built from a set of training 
documents using different inductive machine learning 
methods, which make the system highly adaptive. 

Document images processed in the COLLATE project 
(see Figure 1) are provided by three national film 
archives: Deutsches Filminstitut (DIF), Filmarchiv Austria 
(FAA) and Národní Filmový Archiv (NFA). Generally, 
documents are multi-page, each page being an RGB 24bit 
color image in TIFF format whose size can reach up to 50 
MB. Since WISDOM++ can manage 300dpi black-and-
white images of at most A4-format documents, a 
preliminary conversion is necessary. In this application 
only some pages of each document are interesting for 
document classification and understanding. Specifically, 
only the first, second and last page have been processed. 

Document preprocessing consists in the evaluation of 
the skew angle, the rotation of the document, as well as 
the computation of a spread factor. The evaluation of the 
skew angle is essential, since the method used for the 
subsequent step of document segmentation is generally 

ineffective when applied to skewed documents. Once the 
skew angle has been estimated the document image can be 
corrected by means of an inverse rotation operator. The 
spread factor of the document image is used to define 
some parameters of the segmentation algorithm. At the 
end of the preprocessing phase, the resolution of the 
document image is reduced to 75 dpi (about 70 KB for an 
A4-sized page), which is a reasonable trade-off between 
accuracy and speed of the segmentation process and also 
filters out noisy black specks on a white background. 

If the primary goal of the document analysis process is 
interpretation of text data, graphic data appearing in the 
digitized document must be first separated from the text 
so that subsequent processing stages may operate 
exclusively on the textual information. This is obtained in 
two steps: image segmentation and block classification. 
WISDOM++ segments the reduced document image into 
rectangular blocks by means of an efficient variant of the 
Run Length Smoothing Algorithm (RLSA) [18]. In order 
to facilitate subsequent processing steps, each block must 
be classified according to the type of content: text, 
horizontal line, vertical line, picture (i.e., halftone images) 
and graphics (e.g., line drawings). Such a classification is 
performed by means of a decision tree automatically built 
from a set of training examples (blocks) of the five classes 
whose performance has been reported in [2]. The result of 
the segmentation process is a list of classified blocks, 
corresponding to printed areas in the page image. Each 
block is described by its top left-hand and bottom right-
hand corners’ coordinates, and its type. 

The number of blocks is generally less than a hundred; 
however, this representation is still too detailed for 
learning document classification and understanding rules. 
The perceptual organization process that aims at detecting 
structures among blocks is called the layout analysis. The 
result is a hierarchy of abstract representations of the 
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Figure 1. Examples of documents to be processed 
 



document image, the layout structure. The leaves of the 
layout tree are the blocks, while the root represents the 
whole document. A page may group together several 
layout components, called frames, which are rectangular 
areas of interest in the document page image. The layout 
analysis is done in two steps: 

1. A global analysis in order to determine possible 
areas containing paragraphs, sections, figures and 
tables. This step is based on an iterative process, in 
which the vertical and horizontal histograms of text 
blocks are alternatively analyzed in order to detect 
columns and sections/paragraphs, respectively. 

2. A local analysis to group together blocks which 
possibly fall within the same area. Perceptual criteria 
considered in this step are: proximity (e.g. adjacent 
components belonging to the same column/area are 
equally spaced), continuity (e.g. overlapping 
components) and similarity (e.g. components of the 
same type, with an almost equal height). 

Pairs of layout components that satisfy some of these 
criteria may be grouped together. Each layout component 
is associated with one of the following types: text, 
horizontal line, vertical line, picture, graphic and mixed. 
When the constituent blocks of a component are 
homogeneous, the same type is inherited by the layout 
component; otherwise, the associated type is set to mixed. 

The layout structure extracted by WISDOM++ is a 
hierarchy with six levels: basic blocks, lines, set of lines, 
frame1, frame2, and pages (see Figure 2). If the user is 
not satisfied with the result of the layout analysis he can 
act directly on the results of the segmentation process by 
deleting some blocks or he can modify the result of the 
global analysis by performing three different operations: 

a) Horizontal splitting: a column/section is cut 
horizontally. 

b) Vertical splitting: a column/section is cut 
vertically. 

c) Grouping: two sections/columns are merged. 
After each operation, WISDOM++ recomputes the 

result of the local analysis process, so that the user can 
immediately perceive the final effect of the requested 
corrections and can decide whether to confirm or reject it. 
Once the user has completed the correction process, 
WISDOM++ has the description of when and how the 
user has modified the result of the global analysis, and 
generates corresponding training observations in order to 
automatically learn rules for the automated correction of 
the layout analysis by means of one of the learning 
systems WISDOM++ incorporates [13]. 

The splitting operations can be described by means of a 
binary function, split(X,S), where X represents the 
column/section to be split, S is an ordinal number 
representing the step of the correction process, and the 
range of the split function is the set {horizontal, vertical, 
no_split}. The grouping operation can be described by a 
ternary predicate group(A,B,S), where A and B  are the 
two grouped sections (columns) and S is the ordinal 
number representing the step of the correction process.  

3. Document classification 

The logical components of the document, such as title, 
authors, can be identified after having detected the layout 
structure. They can be arranged in a hierarchical structure, 
which is called logical structure, resulting by a division of 

 

 

 

 

 

 
 

 

 

 

Figure 2. Layout components 
shown at the following levels: 
a) Basic blocks;  
b) Lines;  
c) Set of lines; 
d) Frame 1;  
e) Frame2. 
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the content of a document into increasingly smaller parts. 
The leaves of the logical structure are the basic logical 
components, such as authors of a paper. The heading of 
an article, encompassing the title and the author, is 
therefore a composite logical component. The root of the 
logical structure is the document class. The discovery of 
the logical structure of a document can be cast as the 
problem of associating some layout components with a 
correspondent logical component. In WISDOM++ it 
consists in the association of a page with a document class 
(document classification) and of second frames with basic 
logical components (document understanding). 

Classification is performed by matching the layout 
structure of the first page against models of classes of 
documents that are able to capture the invariant properties 
of the images/layout structures of documents belonging to 
the same class. They are expressed in a first-order logic 
language, so that the classification problem can be 
reformulated as a matching test between two logic 
formulae: one that describes a model and another that 
represents the image/layout properties of the first page. In 
such a first-order logic language unary function symbols 
(attributes) describe properties of a layout component, 
while binary predicate and function symbols (relations) 
express spatial relationships between layout components. 
Table 1 reports a list of the attributes/relations used. 

Table 1 . Attributes/Relations used to describe both 
the models and the documents. 

Attribute/relation name 
(Extracted from) Definition 

image_length(doc) (Image) Integer domain (1..5000) 
image_width(doc)(Image) Integer domain (1..4000) 
width(block) (Page layout) Integer domain (1..640) 
height(block) (Page layout) Integer domain (1..890) 
x_pos_centre(block)  
(Page layout) Integer domain  (1..640) 

y_pos_centre(block)  
(Page layout) Integer domain  (1..875) 

type_of(block)  
(Page layout) 

Nominal domain:  
text, hor_line, image, 
ver_line, graphic, mixed 

part_of(page,block) 
(Page layout) 

Boolean domain: 
true if page contains block 

on_top(b1,b2) 
(Page layout) 

Boolean domain: 
true if block b1 is above b2 

to_right(b1,b2) 
(Page layout) 

Boolean domain: true if block 
b2 is to the right of b1 

alignment(block1,block2) 
(Page layout) 

Nominal domain: 
only_left_col, only_right_col, 
only_middle_col, 
both_columns, both_rows 
only_upper_row, 
only_lower_row, 
only_middle_row 

The rules can be learned from a set of training examples 
of documents classified by the user. Two different 
strategies can be applied to learning tasks: batch and 
incremental. The system embedded in WISDOM++ for 
batch learning is ATRE [11]. The learning problem can 
be formulated as: 

Given: a set of concepts C1, C2, …, Cr to be learned, a 
set of observations O described in a language LO, a 
background knowledge BK described in a language LBK, a 
language of hypotheses LH, a generalization model over 
the space of hypotheses and a user’s preference criterion  

Find: a (recursive) logical theory T for the concepts C1, 
C2, …, Cr, such that T is complete and consistent with 
respect to O and satisfies the user’s preference criterion. 

As to the representation language, the basic component 
is the literal in the two forms:  f(t1, … ,tn)=Value where f 
is an n-ary function symbol, i.e. a relation or attribute, ti’s 
are constant terms, and Value is one of the possible values 
of f's domain or f(t1, ……, tn) ∈∈ Range  (set literal), where f 
is function symbol called descriptor, ti's are terms, and 
Range is a closed interval of possible values taken by f. 

The language of observations LO allows an efficient 
and comprehensible object-centered representation of 
observations that are represented by ground multiple-head 
clauses made up of a conjunction of simple literals in the 
head. Indeed, in order to reduce the computational 
complexity of the problem, the description of the 
document is restricted to the properties of the frame2 
layout components alone. A partial description of the page 
layout of a document  follows: 
image_lenght(1)=3468, image_width(1)=2418, 
part_of(1,2)=true, part_of(1,3)=true, …, part_of(1,25)=true, 
width(2)=15, width(3)=20, …, width(25)=429, 
height(2)=239, height(3)=4, …, height(25)=24, 
type_of(2)=text, type_of(3)=text, …, type_of(25)=text, 
x_pos_centre(2)=20, …, x_pos_centre(25)=334, 
y_pos_centre(2)=420, …, y_pos_centre(25)=558, 
on_top(3,9)=true, on_top(9,8)=true, …, on_top(19,20)=true, 
to_right(2,7)=true, to_right(3,9)=true, …, to_right(2,4)=true, 
alignment(3,13)=only_right_col, 
alignment(7,8)=only_upper_row, ... 
where the constant 1 denotes the whole page, and 2–25 
the layout components at the frame2 level. 
Examples can be considered as positive or negative. 

The language of hypotheses, LH is that of linked, range-
restricted definite clauses [5] with simple set literals in 
the body and one simple literal in the head. 

The language of background knowledge LBK has the 
same constraints as LH: this knowledge allows to reduce 
the search space of the hypotheses with different biases. 

ATRE’s theories can be transformed into Datalog 
programs [3] with built-in predicates: a simple literal 
f(t1,…,tn)=Value can be transformed into an (n+1)-ary 
predicate f(t1,…,tn,Value), while a set literal f(t1, …, 
tn)∈Range, where Range is an interval [a .. b], can be 



transformed into f(t1, …, tn, Z), Z ≥ a, Z ≤ b. In such a 
way, it is possible to extend notions and properties of 
first-order logic to ATRE definite clauses. 

Regardless of the chosen representation language, a key 
role of the induction process is the search through a space 
of hypotheses. A generalization model provides a basis 
for organizing this search space, since it establishes when 
a hypothesis covers a positive/negative example and when 
an inductive hypothesis is more general/specific than 
another. The generalization model adopted in ATRE is a 
variant of Plotkin's relative generalization [16], named 
generalized implication [11]. 

The learning algorithm in ATRE belongs to the family 
of separate-and-conquer algorithms [14]: It is based on 
the strategy of learning one clause at a time (conquer 
step), removing the covered examples (separate step) and 
iterating the process on the remaining examples. 

Some preliminary experimental results on the task of 
learning rules for classification of COLLATE documents 
are reported. The dataset consisted of 89 documents: 18 
of class FAA censorship card (faa_cen), 10 of A4-size 
DIF censorship decision (dif_cen_decision), 5 of DIF 
censorship card (dif_cen_card); other 56 of  class Reject 
(Newspaper Articles). Learned rules and runtime are in 
the following Table 2. 

Table 2 Rules for document classification 

class(X1)=dif_cen_decision ←  
   part_of(X1,X2)=true, type_of(X2)=text 
   image_lenght(X1)∈[3389 .. 3507], 
    y_pos_centre(X2)∈[670 .. 841]     

400.883 s 

class(X1)=dif_cen_card ←  
    image_lenght(X1)∈[1211 .. 1227] 

3.243 s 

class(X1)=faa_cen ←  
    image_lenght(X1)∈[1689 .. 1730], 
    image_width(X1)∈[2417 .. 2483]. 

74.448 s 

The first rule states that a document belongs to DIF 
censorship decision if the image length of its first page is 
between 3389 and 3507 pixels (as expected from A4 sized 
documents) and the layout structure of its first page 
contains a frame2 component of type text with a centroid 
positioned vertically between row 670 and row 841. 

The second rule emphasizes the importance of the 
descriptor image_length, which is enough to discriminate 
a DIF censorship card from a DIF censorship decision. 

The third clause confirms the importance of handling 
numerical descriptors in ATRE, since FAA censorship 
documents are characterized by two conditions: length of 
the document image between 1689 and 1730, and image 
width between 2417 and 2483. 

4. Document understanding 

In document understanding, layout components are 
associated with logical components. This association can 
theoretically affect layout components at any level in the 
layout hierarchy. However, in WISDOM++ only frame2 
components are associated with some component of the 
logical hierarchy. Moreover, only layout information is 
used in document understanding. This approach differs 
from that proposed by other authors [9] which 
additionally make use of textual information, font 
information and universal attributes given by the OCR. 
This diversity is due to a different conviction on when an 
OCR should be applied. We believe that only some layout 
components of interest for the application should be 
subject to OCR, hence document understanding should 
precede text reading and cannot be based on textual 
features. Two assumptions are made: documents 
belonging to the same class have a set of relevant and 
invariant layout characteristics; logical components can be 
identified by using layout information only. 

Document understanding of all pages is performed by 
matching the layout structure of the each page against 
models of logical components.  An example of models for 
the logical components running_head and paragraph in 
the case of papers published in magazines might be: 
logic_type(X)= running_head ←← 

position(X)= top_left, type(X)=text, page_number(X)=even 
logic_type(X)= running_head ←← 

position(X)=top_righ, type(X)= text, page_number(X)=odd 
logic_type(Y)= paragraph ←← 

on_top(X,Y)=true, logic_type(X)=running_head, 
type(Y)=text 
These rules mean that a textual layout component at the 

top left (right) hand corner of an even (odd) page is a 
running head, while a textual layout component below a 
running-head is a paragraph of the paper. 

This example shows that the document understanding 
problem cannot be effectively reformulated as a simple 
matching test between logic formulae. The association of 
the logical description of pages with logical components 
requires a full-fledged theorem prover.  

Attributes and relations used to describe the layout of 
each page to be “understood”, partially overlaps with 
those presented in Table 1. The two image attributes 
image_length and image_width are no longer necessary, 
while it is important to introduce a new attribute page 
which specifies the position of the page to be understood 
within the document (first, second, etc.). An example of 
the page layout for document understanding purposes is: 
page(1)=first,  
part_of(1,2)=true, part_of(1,3)=true, …, part_of(1,25)=true,  
width(2)=15, width(3)=20, …, width(25)=429,  
height(2)=239, height(3)=4, …, height(25)=24,  
type_of(2)=text, type_of(3)=text, …, type_of(25)=text,  



x_pos_centre(2)=20, …, x_pos_centre(25)=334,  
y_pos_centre(2)=420, …, y_pos_c entre(25)=558, 
on_top(3,9)=true, on_top(9,8)=true, …, on_top(19,20)=true,  
to_right(2,3)=true, to_right(2,5)=true,…,to_right(3,5)=true,  
alignment(9,12)=only_right_col, …,  
alignment(7,8)=only_upper_row. 
where the constant 1 denotes the whole page, and 2–25 
the layout components at the frame2 level. 

There are three main differences with respect to 
document classification: in document understanding each 
document generates as many training examples as the 
number of layout components at the frame2 level. 
Furthermore, all pages of the document are of interest, not 
only the first one as in document classification. Finally, 
the number of learning problems equals the number of 
document classes. 

The incremental learning system adopted in document 
understanding was INTHELEX (INcremental THEory 
Learner from EXamples) which induces hierarchical 
theories from examples [7]. INTHELEX is fully 
incremental: this means that, in addition to the possibility 
of taking as input a previously generated version of the 
theory, learning can also start from an empty theory and 
from the first available example. INTHELEX can learn 
simultaneously multiple concepts; furthermore, it is a 
closed loop learning system – i.e., a system in which the 
learned theory is checked to be valid on any new example 
and, in case of failure, a revision process is activated on it, 
in order to restore completeness and consistency. 
INTHELEX learns theories, expressed as sets of function-
free clauses [10], from positive and negative examples. It 
assumes that, within a clause, different terms must denote 
different objects [17]. According to a full memory storage 
strategy, it retains all the processed examples, so that the 
learned theories are guaranteed to be valid on the whole 
set of known examples. It incorporates two refinement 
operators, one for generalizing hypotheses that reject 
positive examples, and the other for specializing 
hypotheses that explain negative ones. 

After having prepared a set of training documents for 
each class, rules for document understanding can be 
learned for each concept in that document class. The 
user/trainer of WISDOM++ is asked to label layout 
components of a set of training documents according to 
their logical meaning. Those layout components with no 
clear logical meaning are not labeled (undefined). 
Therefore, each document generates a number of positive 
and negative instances depending on the number of layout 
components in the documents which constitute the set of 
observations. The undefined play the role of 
counterexamples for all the concepts to be learned.   

Two experiments were carried out: the first on the set of 
18 documents belonging to faa_cen class and the other on 
the set of 10 documents belonging to dif_cen_decision 

previously used for classification task. Each class of 
documents has its own concepts, i.e. layout components 
corresponding to meaningful logical components. 
Concepts that can be found in a dif_cen_decision are: 
assessors, cens_authority, cens_signature, cert_signature, 
chairman, object_title, representative, rep_ producer, 
session_data. In the faa_cen class, the logical components 
that can be learned are: applicant, department, 
registration_au, date_place, reg_numb and authorization.  

Being the learning computational model conceptual and 
fully incremental, also a restricted number of training 
documents is sufficient for learning, provided that they 
are appropriately selected by the trainer as the most 
significant. Indeed, when learning labels for faa_cen 
documents, INTHELEX worked with an average of 10 
examples for each concept and generated 2 clauses for 
applicant, registration_au, date_place and authorization 
and just one for department and reg_numb.  

A learned rule for cens_authority by the INTHELEX is: 
logic_type_cens_authority(A) :-  
  width_medium_large(A),type_of_text(A), 
  pos_left(A),pos_upper(A),  
  part_of(B,A),page_first(B), 
  part_of(B,C),height_very_very_smal(C), 
  type_of_text(C),pos_left(C), 
  part_of(B,D),type_of_text(D),pos_upper(D)   
  on_top(D,E),part_of(B,E),part_of(B,F), 
  height_very_very_smal(F),type_of_text(F),  
  part_of(B,G),part_of(B,H). 
The meaning is: A block A is of kind cens_authority IF 

“It appears at the top of the first page, in the left, is a 
text block, has a medium or wide size and in the same 
page there are other six components (C, D, E, F, G, H), 
two of which (C and F) are very small and of text type, 
being C on the left, and another component D, of text 
type, is placed in the upper part of the page and over a 
block E.” 
Table 3 reports the testing results for understanding 

image documents for the class dif_cen_decision. 

Table 3 A4-size DIF censorship cards: testing results 

CONCEPT Accuracy CONCEPT Accuracy 

assessors 92 object title 100 

  cens_authoriy 100 representative 92 

cens_signature 74 rep_producer 100 

cert_signature 96 session_data 100 

chairman 96   

5. OCR and transformation into  
HTML/XML format 

After the layout structure has been mapped into the 
logical structure, OCR can be applied to some logical 



components of interest. Text read by the OCR is then 
associated to a layout component whose content type has 
already been determined. Thus, all data of concerning the 
result of document processing can be stored for future 
retrieval purposes. Moreover, by transforming the 
document into HTML/XML formats, it can be made 
accessible via Web. The realization of this transformation 
is explained in the following. An XML document has both 
a logical and a physical structure. The logical structure 
allows a document to be divided into named units and 
sub-units (elements). The physical structure allows 
components of the document (entities) to be named and 
stored separately, sometimes in other data files, so that 
information can be re-used, and non XML data (e.g. 
images) can be included by reference.  

The most significant feature of XML is the concept of 
Document Type Definition (DTD), which provides a 
formal set of rules to define a logical document structure, 
defines the elements that may be used, and dictates where 
they may be applied in relation to each other. The 
declarations that comprise the DTD may be stored at the 
top of each document that must conform to these rules 
(internal DTD), or may be alternatively stored in a 
separate data file (external DTD), which is referred to by 
a special instruction at the top of each document. 
WISDOM++ adopts the latter solution, which generates, 
for each document class, a distinct DTD in which each 
declaration conforms to the markup declaration format  
<!…>. The keyword ELEMENT introduces an element 
declaration and specifies its allowed content. An attribute 
may be associated with an element in order to provide 
refined information on it. Examples of attributes are the 
URL, the format and the resolution of a document. All the 
attributes are declared separately from the element, but 
are usually declared together, in the attribute list 
declaration. It is also noteworthy that the DTD generated 
by WISDOM++ distinguishes the logical structure (logic) 
from the layout structure (geometric). The layout structure 
is used only for storing purposes: to render the document 
similar in appearance to the original document, we will 
use XSL specifications, as explained later. 

Once the DTD has been defined, an instance of that 
document type can be generated and stored in a .xml file 
by respecting constraints defined by the set of rules in the 
DTD. The first row specifies the set of characters, the 
second row specifies the name of the style sheet file (with 
extension .xsl), while the third row defines the DTD 
associated to the document class (file with extension .dtd). 
Then, the file reports the specification of the logical 
structure. Text extracted with the OCR is intermixed with 
tags that define its logical structure. The specification of 
the geometric structure follows that of the logical one and 
is reported level by level. 

The XML specification includes a facility for physically 
isolating and separately storing any part of a document. 
Each unit of information is called an entity, and each 
entity is assigned a name, so that it can be identified. The 
only entity to which an entity name is not assigned is the 
document entity. It is stored in a data file that is 
considered as representing the entire document. In simple 
cases, the document entity may be the only entity (main 
program without sub-programs), in more complex cases 
the document entity is used to position the call of other 
entities (main program with only sub-programs). A 
declaration <!ENTITY…> is required to announce the 
existence of an entity. No such declaration is reported in 
XML documents generated by WISDOM++, since they 
contain only one entity (document entity). The content of 
an XML element, such as abstract or paragraph, has no 
explicit text style or format. Since XML language is not 
concerned with visualization aspects, it is necessary to 
specify the element rendering in a different language. XSL  
(eXtensible Style Language) is a language used for 
expressing style sheets. An XSL style sheet specifies the 
presentation of a class of XML documents by describing 
how an instance of the class is transformed into an XML 
document that uses the formatting vocabulary. 

An XSL style sheet processor accepts a document or 
data in XML and an XSL style sheet and produces the 
presentation of that XML source content that was 
intended by the designer of that style sheet. The 
presentation process involves two distinct steps: the 
transformation of the original XML source file, and the 
interpretation of the transformed file to produce formatted 
results suitable for presentation. To sum up, several pieces 
of information extracted by WISDOM++, i.e. the layout 
and logical structures, the textual content of some logical 
components, and the pictorial content of some graphical 
layout components, are distributed into different files 
(DTD, XML, XSL and JPG). Nevertheless, the document 
conversion into structured formats (HTML/XML) is not 
straightforward, since a number of factors should be 
considered in order to render the converted document as 
similar as possible to the original document image. 
Layout-based conversion into HTML/XML format is 
detailed described in [2]. 

7. Conclusions and future work 

In this paper, we presented the application of the 
document management system WISDOM++, already 
widely tested in the domain of digital libraries [8], to the 
problem of automatically processing documents available 
in film archives for the project COLLATE. With the goal 
of supporting complex working tasks such as historic film 
documentation and reconstruction of surrogates of lost or 



physically damaged films, the project aims at exploiting 
the chances of the proceeding digitization of cultural and 
historical document corpora by establishing innovative 
models and techniques of content-based organisation, 
handling and presentation of imperiled and precarious 
historical materials. The philosophy of the COLLATE 
project is mainly in its specific concept of a dynamic 
annotation and retrieval, based on the use of automated 
document processing techniques and content-based access 
methods, in the domain of heterogeneous multimedia 
repositories. 

The transformation of documents into a digital format 
appropriate for a Web browser, is a complex knowledge-
intensive process, involving document image analysis and 
machine learning techniques as well as multimedia editing 
techniques for rendering purposes. Machine learning is 
proposed as a viable solution to the problem of specifying 
the models used in text-graphics separation, layout 
analysis, document classification and understanding.  

Promising results obtained in preliminary experiments 
on this kind of documents have been reported; 
nevertheless, they have to be confirmed by a larger 
experimentation. Moreover, there are problems that still 
need to be resolved. First, the extension of WISDOM++ 
with many segmentation algorithms that work properly on 
color images as well as on images of forms, where textual 
content is typically surrounded by frames or by vertical 
and horizontal lines. Second, we intend to perform a tight 
integration of the OCR with WISDOM++, in order to 
simplify the current user interaction and simultaneously 
take advantage of the font information extracted by the 
OCR during the HTML/XML rendering process. 
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