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Abstract. Sum-Product Networks (SPNs) are recently introduced deep probabilistic models providing exact and tractable infer-
ence. Even if SPNs have been successfully employed in several application domains, learning their structure from high dimen-
sional data still poses a challenge in terms of time complexity. Classical SPNs structure learning algorithms work by exploiting
two high cost operations repeated several times: determining independencies among random variables (RVs)–introducing product
nodes–and finding sub-populations among samples–introducing sum nodes. Even one of the simplest greedy structure learner,
LearnSPN, scales quadratically in the number of the variables to determine RVs independencies. In this work we investigate
some approximate but fast procedures to determine independencies among RVs whose time complexity scales sub-quadratically.
In particular, we propose two procedures based on a random subspace approach, and a third one adopting entropy as a criterion
to split RVs. Experimental results, on many state-of-the-art datasets for density estimation, prove that LearnSPN equipped by
our splitting procedures is able to reduce learning and/or inference times while preserving comparable inference accuracy.
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1. Introduction

Density estimation represents the unsupervised task
of learning an estimator of a joint probability distribu-
tion pX over a set of random variables (RVs) X that
are assumed to have generated some observed train-
ing data [2]. When such an estimator p̂X ∼ pX pro-
vides a good approximation of the real target distribu-
tion, it can be effectively used to perform inference–
computing the probability of the queries about some
RVs.

Density estimation can be viewed as one of the key
and most general tasks in machine learning. Indeed,
many machine learning tasks, such as classification
and regression, can be simply reframed as performing
inference on a probability distribution. Hence, the aim
becomes twofold: building a highly expressive and ac-
curate estimator, and being able to efficiently learn the
estimator from data and performing tractable and ex-
act inference on it as well.

One of the current challenges in density estimation
is trading off these performances, rare to being able to
optimize all of them in practice.

Probabilistic graphical models (PGMs) [14], like
Bayesian networks or Markov networks, are able to
accurately model highly complex probability distribu-
tions. However, performing inference and learning on
PGMs requires routines that, even if approximate, may
scale exponentially in the worst case [29].

Recently, different tractable probabilistic models
(TPMs) have been introduced, allowing tractable in-
ference at the expense of a stricter representation
bias. TPMs like Arithmetic Circuits [5], Sum-Product
Networks (SPNs) [24], and Cutset Networks [9,27]
provide a good compromise between expressiveness
and tractability by compiling complex distributions in
compact data structures. Nevertheless, as we will see
in the following, the cost of learning them when mod-
eling high dimensional probability distribution is still
an issue.
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In this paper, we focus on SPNs, and we investigate
approximate learning routines to improve both learn-
ing and inference complexity, trying to preserve the
model expressiveness.

SPNs encode a probability distribution as a set of
sum and product nodes, arranged in a deep architec-
ture, represented as a DAG. By imposing some struc-
tural conditions on the networks, SPNs guarantee sev-
eral kinds of probabilistic queries to be computed ex-
actly and in time linear to the network size–the number
of edges.

The success of SPNs in many application domains,
like computer vision [24,33], speech recognition [23],
natural language processing [4] and for representation
learning [32], increased the interest around algorithms
able to learn both their structure and parameters [6,11,
19,31].

One of the first principled top-down learning schem-
-es, and yet still a state-of-the-art structure learner, is
LearnSPN [11]. One of the factors behind its popu-
larity is its simplicity. LearnSPN greedily and recur-
sively decomposes the observed data by either split-
ting on RVs after they have been found independent,
or by clustering samples together according to some
metric. While several variations of LearnSPN have
been proposed in the literature by adapting the split-
ting RVs and clustering routines, their high complex-
ity constitutes the main bottleneck. Our attention is on
the first procedure, splitting RVs into independent sub-
sets, whose general complexity, in the worst case, is
quadratic in the number of the RVs.

In [7] alternative approximated procedures for split-
ting RVs in the SPNs structure learner LearnSPN
have been presented. In this paper we extend the
work in [7] by introducing an improved version of
the stochastic variable splitting method, proposing a
new stochastic method based on random sampling, and
validating all the proposed approaches on additional
datasets with a higher number of random variables.

The contributions of this paper are the following:
i) we advance three alternative procedures to approxi-
mate the variable splitting method in LearnSPN while
performing it in sub-quadratic time, and ii) we empir-
ically evaluate their effectiveness in trading-off infer-
ence accuracy in favour of inference or learning times.
We propose a random subspace approach in which
we reduce the number of independence tests to be
computed. Moreover, we propose another random sub-
space approach that reduces the amount of instances on
which to compute the independence test. Additionally,
we investigate an even more approximated entropy-

based criterion that scales linearly in the number of
RVs.

An extensive comparison w.r.t. the original version
of LearnSPN on several standard benchmark datasets
reveals that the random subspace proposed approaches
effectively trade off the model likelihood in favor of
learning times and smaller networks i.e. faster infer-
ence. On the other hand, the entropy based one sur-
prisingly leads to the construction of more complex
networks–favoring the model expressiveness.

2. Sum-Product Networks

An SPN S is a computational graph defined by a
rooted DAG, encoding an unnormalized probability
distribution over a set of RVs X = {X1, . . . , Xn},
where internal nodes can be either weighted sum or
product nodes over their children (graphically denoted
resp. as

⊕
and

⊗
), and leaves are univariate distribu-

tions defined on a RVXi ∈X . Each node n ∈ S has a
scope sc(n) ⊆ X, defined as the set of RVs appearing
as its descendant leaves. The sub-network Si, rooted
at node i, encodes the unnormalized distribution over
its scope. Each edge (i, j) emanating from a sum node
i to one of its children j has a non-negative weight
wij . The set of all sum node weights corresponds to
the network parameters. Sum nodes can be viewed as
mixtures over probability distributions whose coeffi-
cients are the children weights, while product nodes
identify factorizations over independent distributions.
Examples of SPNs are depicted in Figure 1. In the fol-
lowing we consider X to be discrete valued RVs.

For a given state x of the RVs X , we will indi-
cate S(x) the unnormalized probability of x accord-
ing to the SPN S, that is the root node value when
the network is evaluated after having observed X =
x. An SPN is defined decomposable if the scopes of
the children of each product node are disjoint. It is de-
fined complete when the scopes of the children of each
sum node are the same. These properties together im-
ply validity [24] i.e. the ability of exactly computing
the probability of each possible complete or partial ev-
idence configuration.

When the weights of each sum node i in a valid net-
work S sum to one, i.e.,

∑
j wij = 1, and distribu-

tion at leaves are normalized, then S computes an exact
normalized probability for each possible state [20,24].
W.l.o.g., we assume the SPNs we are considering to be
valid and normalized.
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Fig. 1. Examples of SPNs: a naive factorization over 6 random variables (1a), a shallow mixture standing for a point-wise kernel density
estimation (1b) and a deeper architecture (1c) over the same scope (weights are omitted for simplicity).

In order to compute S(x) it is necessary to eval-
uate the network through a bottom-up step. When
evaluating a leaf node i, Si(x|sc(i)) corresponds to
the probability of the state x|sc(i) for the RV sc(i):
Si(x) = P (sc(i) = x|sc(i)). The value of a product
node corresponds to the product of its children values:
Si(x|sc(i)) =

∏
i→j∈S Sj(x|sc(j)); while, for a sum

node its value corresponds to the weighted sum of its
children values: Si(x|sc(i)) =

∑
i→j∈S wijSj(x|sc(j)).

It is possible to prove that all the marginal probabil-
ities, the partition function and even approximate MPE
queries and states can be computed in time linear in
the size of the network–its number of edges [11,20].
Hence, tractable inference is achieved when the num-
ber of edges is at most polynomial in the number of
RVs. Moreover, the less the number of edges in a net-
work, the faster the inference. While the size of the net-
work implies its inference efficiency, its depth, defined
as the longest path from the root to a leaf node in net-
works with strictly interleaving layers of nodes of the
same kind1, determines its expressive efficiency [17].
This kind of efficiency relates to the ability of a net-
work to capture more complex distributions than other
networks having the same or larger size [31]. Lastly,
also the number of parameters of a network, i.e., the
number of sum node weights, also called model ca-
pacity, influences its expressiveness with respect to a

1Note that it is always possible to transform an SPN with adja-
cent nodes of the same type into an equivalent one with alternating
types [31].

weight learning algorithm. While we are not looking at
weight learning per se in this work, it is worth noting
that the larger a model capacity, the higher the repre-
sentation space searchable by optimizing the network
weights.

Up to now, however, the research community has
put more effort in designing structure learning algo-
rithms and comparing learned SPNs w.r.t. their infer-
ence accuracy, i.e., the closeness of the probability dis-
tribution estimated by the network to the one that gen-
erated the data. For density estimators in general, this
is usually done in the terms of the average test set log-
likelihood [14].

In this work, following [31], we argue that both the
network structure quality metrics and its log-likelihood
shall be taken into account to better evaluate the in-
herent trade-off of density estimators between learning
and inference tractability and their expressiveness and
accuracy.

2.1. Structure Learning

As already stated, we focus our attention to a par-
ticular structure learning algorithm for SPNs, Learn-
SPN [11]. LearnSPN provides a simple, greedy and
yet surprisingly effective learning schema that is able
to infer both the structure and the parameters of an
SPN from the data. Note that, while our approximate
approaches are inspired directly by LearnSPN, they
can be effectively adapted to other algorithmic vari-
ations aiming to learn SPNs, e.g., the ones proposed
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in [1,28,31]. Furthermore, they can also be adapted to
other learning scenarios, in which one has to split RVs
into sets of (approximately) independent RVs [10],
e.g., eliciting the independencies among RVs for clas-
sical PGMs.

LearnSPN performs a greedy top-down structure
search in the space of tree-shaped SPNs, i.e., networks
in which each node has at most one parent. The net-
work structure is built one node at a time by leverag-
ing the probabilistic semantics of an SPN: sum nodes
stand for mixtures over sub-populations in the data,
while products represent factorizations over indepen-
dent components. A high level outline is sketched in
Algorithm 1. LearnSPN proceeds by recursively par-
titioning the training data provided as a matrix con-
sisting of a set D of rows as i.i.d instances, over X ,
the set of columns, i.e., the RVs. For each call on a
submatrix, the algorithm first tries to split the subma-
trix by columns. This is done by splitting the current
set of RVs into different groups such that the RVs in
a group are statistically dependent while the groups
are independent, i.e., the joint distribution factorizes
over the groups. We denote this procedure as Greedy
Variable Splitting (GVS). If the GVS procedure fails,
that is all RVs are somewhat dependent and it is not
meaningful to split them, then LearnSPN switches to
split rows. If this is the case, when GVS is designed
to find only two split components, we assume the sec-
ond one to be empty. LearnSPN then tries to ag-
gregate similar submatrix rows (procedure clusterIn-
stances) into a number of clusters. In the original
work of [11], the hard online EM algorithm is em-
ployed to determine an adaptive number of clusters,
l, assuming RVs Xj independent given the row clus-
ters Ci, formally: P (X) =

∑
i P (Ci)

∏
j P (Xj |Ci).

To control the cluster number, an exponential prior on
clusterings in the form of e−λl|X| is used, with λ as a
tuning parameter.

Every time a column split succeeds the algorithm
adds a product node to the network whose children cor-
respond to partitioned submatrixes. Analogously, after
a row clustering step it adds a sum node where children
weights represent the proportions of instances falling
into the computed clusters (line 11). To avoid a naive
factorization of the whole data matrix the algorithm
heuristically forces a row clustering at the first algo-
rithm iteration.

Termination happens in two cases: when the current
submatrix contains only one column (line 1) or when
the number of its rows falls under a certain threshold
µ (line 3). In the former, a leaf node, standing for a

Algorithm 1 LearnSPN(D, X , α, µ, ρ)

Require: a set of samples D over RVs X; α: Laplace
smoothing parameter; µ: minimum number of in-
stances to split; ρ: statistical independence thresh-
old

Ensure: an SPN S encoding a pdf over X learned
from D

1: if |X| = 1 then
2: S ← univariateDistribution(D,X, α)
3: else if |D| < µ then
4: S ← naiveFactorization(D,X, α)
5: else
6: {Xd1 ,Xd2} ← GVS(D,X, ρ)
7: if |Xd2 | > 0 then
8: S ←

∏2
j=1 LearnSPN(D,Xdj , α, µ, ρ)

9: else
10: {Di}Ri=1 ← clusterInstances(D,X)

11: S ←
∑R
i=1

|Di|
|D| LearnSPN(Di,X, α, µ, ρ)

12: return S

univariate distribution, is introduced by a maximum
likelihood estimation from the submatrix applying a
Laplace smoothing parameter α. In the latter, the sub-
matrix RVs are modeled with a naive factorization, i.e.,
they are considered to be independent and a product
node is put over a set of univariate leaf nodes. As noted
in [31], the two splitting procedures depend on each
other: the quality of row clusterings is likely to be en-
hanced by column splits correctly identifying depen-
dent variables and vice versa. As a consequence, while
we are proposing to substitute only the GVS proce-
dure, the effects of the introduced approximation will
affect also the row clustering step. We will evaluate
this effect globally by measuring both the structure
quality of the networks learned with our proposed ap-
proaches and their likelihood accuracy, in a series of
empirical experiments in Section 4.

3. Related Work

Since the seminal paper about SPNs [24], re-
searchers have designed different algorithms to learn
a SPN structure from data. A first attempt has been
the one presented in [6]. This algorithm proceeds top-
down but differently from LearnSPN. First, it clus-
terizes instances once, at the beginning. Then, it pro-
ceeds splitting variables without exploiting local in-
dependencies, building a region graph, i.e., a rooted
DAG consisting of region nodes and partition nodes.
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The root node is a region node, partition nodes are re-
stricted to being the children of region nodes and vice
versa without losing representational power. The def-
inition of scope for region and partition nodes is the
same as for SPN nodes. Once built a region graph,
the algorithm transforms it in an SPN with multiple
roots. After that, network parameters are estimated
separately with EM algorithm.

Another similar strategy has been described in [21].
As the previously described algorithm it first builds a
region graph and then convert it to a multi-root SPN.
To build the region graph the algorithm starts bottom-
up from the univariate distributions corresponding to
the RVs without partitioning them horizontally. Then,
it recursively tries to merge regions of nodes discov-
ering latent variable interactions. Network weights are
estimated during the merging procedure.

One of the state-of-the-art learner is ID-SPN pre-
sented in [28]. It has been the first algorithm learn-
ing hybridized SPNs using ACs to model distributions
at leaves. It leverages the union of discovering latent
variable interactions with previously mentioned ap-
proaches with the discovery of direct variable inter-
actions as developed for learning classical graphical
models like Markov Networks. A part of its learning
algorithm is driven directly by the likelihood on data,
differently from other algorithms using different ap-
proaches like heuristic functions. Even though ID-SPN
outperforms several algorithms, it results very slow in
practice. In fact, ACs increase structural complexity at
leaves and their learning procedure burdens the overall
network learning algorithm.

In [22] the authors propose a constrained less-
expressive class of SPN named “selective SPNs”
where each sum node must have at most one child with
non-zero output for each possible input. With this net-
work formulation it is possible to find globally optimal
maximum likelihood parameters with a closed form.
Moreover, this allows the employment of stochastic lo-
cal search techniques to speed up the learning proce-
dure trading off accuracy.

In the opposite direction goes the work presented in
[26] where the authors introduced a way to learn graph
SPNs that try to overcome the limited expressiveness
of tree SPNs. Their approach learns a graph SPN start-
ing from different tree SPNs and merging them by
looking at similar sub-structures.

Another work on SPNs expressiveness is the one
made in [30] proposing a principled approach for
structure learning by means of infinite Sum-Product
Trees (SPTs), in other words, an extension of SPNs to

a Bayesian nonparametric model with a posterior dis-
tribution based on induced trees.

An ad-hoc SPN structure learning algorithm for se-
quence data is conceived in [18]. In that work, the au-
thors firstly showed how Dynamic SPNs (DSPNs) can
be used to model sequence data and then they pre-
sented an algorithm to learn the structure of the tem-
plate network that is repeated as many times as needed
to model data sequences of any length. They compare
DSPNs with Dynamic Bayesian Networks highlight-
ing the advantages of DSPNs thank to their feasible
inference.

An online structure learner has been proposed in
[13]. The idea is to update both the structure and the
parameters of an SPN keeping completeness and de-
composability. The introduced algorithm first updates
the network parameters. Then, it checks whether the
correlation between variables of different children of
the same product node is under a certain correlation
threshold. If it turns out that two variables are over the
threshold it updates the network structure by creating a
multivariate leaf node or by creating a mixture of two
components over the variables.

4. Variable splitting

We now describe in detail the Greedy Variable Split-
ting (GVS) procedure applied by LearnSPN to dis-
cover groups of dependent RVs, in order to introduce
later our variants.

To exactly determine a partitioning of independent
RVs, one could recur to Queyranne’s algorithm to re-
trieve two subsets with minimum empirical mutual in-
formation (MI), but this will scale in a cubic time w.r.t.
the number of RVs considered [25]. Instead, as the
name suggests, GVS proceeds in a greedy way, low-
ering the time complexity to be quadratic (see Algo-
rithm 2). By picking a RV at random (line 1), GVS
tries to discover connected components in a graph of
dependencies by introducing one edge among two RVs
if they are dependent.

While pairwise MI could be used to test the inde-
pendence among the two considered RVs, a more so-
phisticated statistical test, a G-Test, is applied in the
original formulation of GVS. In both cases, two RVs
Xi, Xj are assumed to be independent if the statistical
test result falls under a used defined threshold ρ:
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G(Xi, Xj) =

2
∑
xi∼Xi

∑
xj∼Xj

c(xi, xj) · log
c(xi, xj) · |D|
c(xi)c(xj)

. (1)

At the first iteration if the algorithm does not find
any dependency it returns the first considered node as-
suming it to be independent from all the other RVs.
The opposite case is when the algorithm finds a con-
nected component comprising all the RVs currently
considered by LearnSPN.

To understand the worst case time complexity of
GVS consider the following case. At most, the al-
gorithm needs to perform (n2 + n)/2 G-tests with
n = |X| by looking at all possible pairwise cases
(lines 3-12). If we assume the complexity of perform-
ing a G-Test to be linear in the number of samples
(m = |D|), then the worst case complexity of GVS is
O(n2m). As a last remark, consider that the alterna-
tive splitting procedures presented in other SPN learn-
ing algorithms, e.g. [19,28], even if employing differ-
ent pairwise statistical independence tests, still require
a quadratic number of comparisons, in the worst case.

Algorithm 2 GVS(D, X , ρ)

Require: set of samplesD over RVs X; ρ: a statistical
independence threshold

Ensure: a split of two groups of dependent variables
{Xd1 ,Xd2},

1: Xd2 ←X , X0 ← drawVariableAtRandom(X)
2: X ← X \ {X0}, P ← {X0}, Xd1 ← {X0},

R← ∅
3: repeat
4: Xp ← pop(P ) . P ← P \ {Xp}
5: for each Xk ∈ X do
6: if not GTest(D, Xp, Xk) < ρ then
7: R← R ∪ {Xk}
8: Xd1 ←Xd1 ∪ {Xk}
9: P ← P ∪ {Xk}

10: for each Xj ∈ R do
11: X← X \ {Xj}
12: until |P | > 0 ∧ |X| > 0
13: return {Xd1 ,Xd2 \Xd1}

4.1. Stochastic Variable Splitting

The intuition behind our first proposed alterna-
tive method for splitting variables is the same be-

hind random subspace techniques that have been suc-
cessfully employed for building ensembles for predic-
tive tasks [3] but also for density estimation [8]. We
name this method Random Greedy Variable Splitting
(RGVS) sketched in Algorithm 3.

RGVS randomly selects a subset R of k RVs from
X and then applies GVS only on this subset. Since
we are not applying it in an ensemble scenario, but to
learn a single model, we do expect this model infer-
ence accuracy to drop since the independencies discov-
ered by RGVS can only be a subset of those discov-
ered by GVS in a single call. Nevertheless, how much
the accuracy degrades depends to the ability of RGVS
to recover the missed dependencies in one call in the
following calls that LearnSPN performs on the same
RVs. At the same time, we aim to reduce the learn-
ing times as well as the inference times, by obtaining
smaller networks.

If GVS fails on the set of k RVs R, then even
RGVS will fail assuming dependent the remaining
variables in S = X \ R (lines 7-8). Otherwise,
if the second component returned from GVS is not
empty then RGVS will make another stochastic deci-
sion about where to put the remaining variables in S
(lines 10-13). Consequently, the worst case complexity
of RGVS depends on the choice of the parameter k. If
k is chosen to be

√
n, then2 we end up scaling GVS as

if it was linear, since O((
√
n)2m) = O(nm). Other-

wise, depending on a choice of k < n the complexity
of a single call varies but remains sub-quadratic. How-
ever, note that determining the resulting complexity of
a whole run of LearnSPN equipped with RGVS in-
stead of GVS is not immediate. Consider, for example
the case in which k is chosen as a small fraction of the
RVs in X , then, it might happen that LearnSPN calls
the splitting routines a larger number of times since in
each call the only a few or no RVs are considered in-
dependent from the rest. The result is that the network
built may be larger, hence the learning time increased,
w.r.t. a network learned with a larger k. In Section 5
we empirically evaluate the sensitivity of RGVS to the
choice of k w.r.t. the model inference accuracy and its
learning time.

An approach to mitigate the stochasticity of RGVS
in agglomerating the remaining variables not consid-
ered by GVS is implemented in WRGVS (Algorithm
4) where W stands for wiser. This method, firstly ex-
tracts one RV selected at random from each subset

2We set k to be at least 2 when n = |X| < 4.
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found by GVS and uses it as a representative of that
subset. Then, each remaining variable is added to the
subset whose representative variable has the stronger
dependency according to a G-test. With this approach
we aim to improve the accuracy of learned networks
w.r.t. the ones learned with RGVS keeping, at the same
time, the complexity linear in the number of variables.

Algorithm 3 RGVS(D, X , ρ)

Require: set of samplesD over RVs X; ρ: a statistical
independence threshold

Ensure: a split of two groups of dependent variables
{Xd1 ,Xd2}

1: Xd1 ← ∅,Xd2 ← ∅, n ← |X|, k ←
max(b

√
nc , 2)

2: if k = n then
3: return GVS(D,X, ρ)

4: R← randomSubspace(X, k)
5: S ←X \R
6: {Xd1 ,Xd2} ← GVS(D,R, ρ)
7: if Xd2 = ∅ then
8: return {Xd1 ∪ S, ∅}
9: r ← Bernoulli(0.5)

10: if r = 0 then
11: return {Xd1 ∪ S,Xd2}
12: else
13: return {Xd1 ,Xd2 ∪ S}

4.2. Entropy-based Variable Splitting

The second proposed variable splitting method,
named Entropy-Based Variable Splitting (EBVS), is
based on the concept of entropy as taken in information
theory3, whose pseudocode is listed in Algorithm 5.

EBVS performs a linear scan of the RVs in X ,
grouping in one split those RVs whose entropy value
falls under a user defined threshold η. The rationale
behind this idea is that a RV with exactly zero entropy
is independent from all other RVs in X . To understand
why this is true, consider computing MI between RV
X and any RV X∗ ∈ X , denoted as MI(X;X∗) then
we have that MI(X;X∗) = H(X)−H(X|X∗) where
H(·) denotes marginal entropy and H(X|X∗) condi-
tional entropy respectively [16]. But since H(X) =
0 by hypothesis and it must hold that H(X) ≥
H(X|X∗), then it turns out that MI(X;X∗) = 0,

3For a discrete RVX , having values inX , we consider its discrete
entropy as H(X) = −

∑
x∈X p(x) log(p(x)).

Algorithm 4 WRGVS(D, X , ρ)

Require: set of samplesD over RVs X; ρ: a statistical
independence threshold

Ensure: a split of two groups of dependent variables
{Xd1 ,Xd2}

1: Xd1 ← ∅,Xd2 ← ∅, n ← |X|, k ←
max(b

√
nc , 2)

2: if k = n then
3: return GVS(D,X, ρ)

4: R← randomSubspace(X, k)
5: S ←X \R
6: {Xd1 ,Xd2} ← GVS(D,R, ρ)
7: if Xd2 = ∅ then
8: return {Xd1 ∪ S, ∅}
9: Xj ← drawVariableAtRandom(Xd1)

10: Xk ← drawVariableAtRandom(Xd2)
11: for each Xi ∈ S do
12: if GTest(D, Xi, Xj) ≥ GTest(D, Xi, Xk)

then
13: Xd1 ←Xd1 ∪Xi

14: else
15: Xd2 ←Xd2 ∪Xi

16: return {Xd1 ,Xd2}

hence X must be independent to all other RVs in X .
Since the empirical estimator for the entropy is rarely
zero on real data, we apply thresholding to increase the
method robustness and regularization. Moreover, we
may apply Laplacian smoothing to compute the prob-
abilities involved in the entropy computation4.

While η can be heuristically determined by the user
by performing cross-validation, having a global thresh-
old can impose a too strict inductive bias. Therefore,
we introduce another method variant, called EBVS-
AE, where AE stands for “Adaptive Entropy”, in which
η is adaptively computed based on the size (the num-
ber of instances) of the current submatrix processed by
LearnSPN. EBVS-AE determines each time the ac-
tual value of η proportionally to the number of sam-
ples |D| processed w.r.t. the number of samples in the
whole dataset. Both EBVS and EBVS-AE involve the
computation of the entropy for each RV in X , hence
their complexity is O(nm).

4For convenience, and to avoid the addition of a new hyperparam-
eter, the Laplacian smoothing parameter value will be the same of
the hyperparameter α of LearnSPN, used to smooth the univariate
distributions at leaves. Note that now η substitutes the hyperparam-
eter ρ which is not needed anymore.
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We empirically determine in the next Section whether
both EBVS and EBVS-AE provide good approxima-
tions to the variable splitting method of LearnSPN. It
is reasonable to expect the structures learned by these
methods to be quite different from those learned by
GVS and RGVS, since the procedure to test for statis-
tical independence relies on a single RV metric for the
former and for pairwise metrics for the latter.

Algorithm 5 EBVS(D, X , η, α)

Require: set of samplesD over RVs X; η: a threshold
for entropies, α: Laplacian smoothing parameter

Ensure: a split of two groups of dependent variables
{Xd1 ,Xd2}

1: Xd1 ← ∅,Xd2 ← ∅
2: for each Xi ∈ X do
3: if computeEntropy(D, Xi, α) < η then
4: Xd1 ←Xd1 ∪ {Xi}
5: else
6: Xd2 ←Xd2 ∪ {Xi}
7: if |Xd1 | = 0 then
8: return {Xd2 ,Xd1}
9: else

10: return {Xd1 ,Xd2}

4.3. Random Sampling based Variable Splitting

Another proposed method to speed-up the variable
splitting step of LearnSPN is based on random sam-
pling. This time we apply a stochastic approach in or-
der to reduce the number of samples to be used to es-
timate independencies between variables through G-
test.

The method randomly selects (without replacement)
an amount of samples equal to β|D|, where β ∈ [0, 1],
and then computes the G-test on this subset of sam-
ples. The assumption here is that this subset could have
the same distribution of the set of instances in the con-
sidered data slice. Since we compute the counts on a
subset of D, statistics should be proportional to the
considered amount of samples. Given that, we need to
fix both the computation of the G-value for two vari-
ables and the threshold accordingly. Regarding the first
one, we also need to fix the computation of the co-
occurences c(xi, xj). Now this value is computed on a
subset of β|D| samples, while we need to require the
correct expected count of c(xi, xj) on the whole set
D. The expected counts on the whole D are computed

as c(xi, xj)/β. For other quantities in Equation 1 we
make a similar fix, leading to the following formula:

G(Xi, Xj) =

2
∑
xi∼Xi

∑
xj∼Xj

c(xi, xj)

β
· log c(xi, xj) · |D|

c(xi)c(xj)
. (2)

It is clear that the complexity of this last introduced
variable splitting procedure is still quadratic in the
number of random variables, but we are confident that
taking a percentage of the samples considerably re-
duces the learning times and possibly reduces infer-
ence times since the learned networks could be small
in size.

5. Experiments

We empirically evaluated all the proposed meth-
ods (RGVS, WRGVS, EBVS, EBVS-AE, RSBVS)
as alternative methods for variable splitting by plug-
ging them in LearnSPN-b [31], a simplified variant of
LearnSPN. We implemented them in Python5, in the
freely available version of LearnSPN-b [31] and we
refer to GVS in the following as the original version
of LearnSPN-b employing Algorithm 2. LearnSPN-
b only performs binary splits even for the row cluster-
ing step while learning an SPN. By doing this, it slows
down the greedy search process avoiding too complex
structural choices at early stages, therefore implement-
ing a form of the “simplicity bias”.

With the following experimental evaluation we aim
to answer the following research questions: (Q1) how
does RGVS compare to GVS in terms of infer-
ence and learning time and model accuracy? (Q2) is
WRGVS able to learn more accurate and compact net-
works in a faster way than RGVS? (Q3) how does RS-
BVS compare to GVS in terms of inference and learn-
ing time and model accuracy? (Q4) how does EBVS
compare to GVS in terms of inference and learning
time and model accuracy? (Q5) is EBVS-AE able to
learn more accurate and compact networks in a faster
way than EBVS?

To answer the aforementioned questions, we evalu-
ated the proposed methods on 17 datasets, employed
as standard benchmarks to compare TPMs, being in-
troduced in [15] and [12]. They comprise binarized

5Code is available at https://github.com/fabriziov/
alt-vs-spyn

https://github.com/fabriziov/alt-vs-spyn
https://github.com/fabriziov/alt-vs-spyn
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data coming from tasks such as frequent item mining,
recommendation and classification. In Table 1 are re-
ported the datasets used in our experiments and their
statistics.

For each method, we selected the best parameter
configurations based on the average validation log-
likelihood scores, then evaluated such models on the
test sets. We performed an exhaustive grid search for
ρ ∈ {5, 10, 15, 20}, µ ∈ {10, 50, 100, 500} and α ∈
{0.1, 0.2, 1, 2}, leaving all other parameters to the de-
fault values. For EBVS and EBVS-AE the grid search
involved also η ∈ {0.05, 0.1, 0.3, 0.5}.

Experiments have been run on an 8-core AMD
Opteron 63XX @ 2.3 GHz with 16GB of RAM and
Ubuntu 14.04.4 LTS, kernel 3.13.0-45.

5.1. (Q1) Evaluating RGVS

Regarding RGVS, as expected, making the variable
splitting method partially random fosters the learning
speed of the models. Table 2 reports the global learn-
ing times for the best validation networks. From it is
visible how LearnSPN-b equipped with RGVS takes
less time to grow a full structure than GVS, requiring
in some cases less than half the time. The improvement
in learning times is even more noticeable on datasets
with a high number of RVs such as Reuters-52, BBC
and Ad. Table 7 reports the structure quality of the
learned networks in terms of their number of edges
(size), number of layers (depth) and parameters (model
capacity). See Section 2 for how these values influence
both inference and learning. It is evident how RGVS
is able to learn very compact models, speeding up in-
ference times. However, this is done trading-off ac-
curacy. In Table 2 average test log-likelihoods are re-
ported for all methods on all datasets except for RS-
BVS (see Table 9 for its detailed results). There, accu-
racy degrades on all datasets–significantly on Pumsb-
star, DNA, WebKB, Reuters-52 and Ad– being compa-
rable to other methods on some datasets such as Retail,
Jester, Kosarek and MSWeb.

Additionally, to better understand the behavior of
RGVS, we evaluate how changing the proportion of
RVs involved in a GSV affects accuracy and learning
times. We assess this by determining k as the vary-
ing proportion of the RVs actually involved in the sta-
tistical test, making it range in the 10%, 30%, 50%,
70%, 90% of all of them, for the best configurations
found on the validation sets. From Table 8, one can see
that generally, when the proportion of involved RVs in
the G-test is between 30% and 70%, we obtain faster

learning times and less accurate models. The reason
behind this is that when this proportion is either small
or close to 100%, LearnSPN-b just makes much more
calls to the RGVS, evaluating fewer RVs every time.
Concluding, we can answer Q1 by stating that RGVS
is able to learn more compact models in less time than
GVS, yet compromising on inference accuracy.

5.2. (Q2) Evaluating WRGVS

An additional stochastic method introduced in the
previous Section is WRGVS. This method attempts
to reduce the error of stochastic decisions made by
RGVS.

Here we evaluate whether it improves the accu-
racy w.r.t. the one gained with networks learned with
RGVS. From our results in Table 2, it turns out that
WRGVS is significantly more accurate than RGVS on
all datasets except Retail. The improvement in accu-
racy is highly remarkable on Accidents, Pumsb-star,
EachMovie and Ad having more than 100 variables.
Regarding learning times, WRGVS needs, reasonably,
a relatively small fraction of time more than RGVS
even on datasets where the improvement in accuracy
is very high. As reported in Table 7, networks learned
with WRGVS are in general bigger than the ones
learned with RGVS but smaller than the ones learned
with the original procedure GVS. However, RGVS
is capable to learn networks with fewer parameters,
therefore resorting less frequently to row clustering,
than WRGVS on datasets with a high number of vari-
ables (Jester, DNA, Kosarek, MSWeb, Book, Each-
Movie, Reuters-52, BBC, Ad) while WRGS tends to
be more efficient than RGVS in this sense on datasets
with a smaller number of variables (NLTCS, Plants,
Audio, Netflix, Accidents, Retail, Pumsb-star and We-
bKB). To wrap-up, WRGVS needs a fraction of time
more than RGVS but it is still faster than GVS, sig-
nificantly improving the accuracy when compared to
RGVS but being still less accurate than GVS. Thus,
to answer the research question Q2, we can state that
WRGVS is able to learn more accurate but bigger net-
works than RGVS, needing a fraction of time more
than it.

5.3. (Q3) Evaluating RSBVS

We evaluated the accuracy and the structural char-
acteristics of networks learned by RSBVS varying the
amount of samples taken into account when computing
the G-test.
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Table 1
Datasets used and their statistics.

|V | |Ttrain| |Tval| |Ttest| |V | |Ttrain| |Tval| |Ttest|

NLTCS 16 16181 2157 3236 Kosarek 190 33375 4450 6675
Plants 69 17412 2321 3482 MSWeb 294 29441 3270 5000
Audio 100 15000 2000 3000 Book 500 8700 1159 1739
Jester 100 9000 1000 4116 EachMovie 500 4525 1002 591

Netflix 100 15000 2000 3000 WebKB 839 2803 558 838
Accidents 111 12758 1700 2551 Reuters-52 889 6532 1028 1540

Retail 135 22041 2938 4408 BBC 1058 1670 225 330
Pumsb-star 163 12262 1635 2452 Ad 1556 2461 327 491

DNA 180 1600 400 1186

Table 2
Times (in seconds) taken to learn the best models on each dataset and average test log-likelihoods for EBVS, EBVS-AE, RGVS, WRGVS and
GVS.

learning time log-likelihood

EBVS EBVS-AE RGVS WRGVS GVS EBVS EBVS-AE RGVS WRGVS GVS

NLTCS 98 31 4 6 8 -6.051 -6.046 -6.329 -6.145 -6.040
Plants 255 179 24 32 70 -12.890 -12.853 -16.633 -14.291 -12.880
Audio 130 108 25 42 59 -40.763 -40.632 -41.983 -41.380 -40.697
Jester 73 67 16 25 41 -53.897 -53.528 -54.881 -54.714 -53.919

Netflix 131 123 48 62 89 -58.234 -58.021 -59.752 -59.109 -58.4360
Accidents 623 96 18 31 34 -35.336 -35.635 -39.370 -34.593 -29.002

Retail 105 97 11 14 22 -11.245 -11.198 -11.290 -11.274 -10.969
Pumsb-star 256 245 18 25 34 -29.235 -29.485 -41.969 -29.689 -23.282

DNA 17 18 3 4 9 -97.876 -97.764 -99.123 -98.142 -81.931
Kosarek 193 152 22 38 52 -11.032 -11.033 -11.524 -11.058 -10.724
MSWeb 449 204 33 50 118 -10.100 -10.042 -10.966 -10.872 -9.860

Book 105 65 40 45 92 -35.416 -35.395 -35.616 -35.422 -34.298
EachMovie 58 51 22 35 82 -51.753 -52.232 -65.114 -55.781 -51.512

WebKB 76 24 29 36 77 -157.941 -158.202 -167.319 -165.716 -154.909
Reuters-52 184 90 58 85 341 -86.443 -85.949 -98.031 -96.469 -84.090

BBC 37 17 18 24 253 -250.883 -250.783 -269.084 -267.275 -248.585
Ad 183 165 52 67 350 -20.682 -22.379 -56.659 -35.785 -15.792

In particular, in our experiments we evaluated the
method taking at random the 50%, 30%, 20% and 15%
of samples from the considered data slice. We expect
a monotonic behavior, the lower the amount of taken
samples, the lower the accuracy and the learning time.

Looking at Table 9, our hypothesis about RSBVS
monotonic behavior is experimentally validated. In
fact, both accuracy and learning times decrease ac-
cordingly to the reduction of taken samples. When
datasets have a small amount of training samples, such
as DNA and BBC, there is small or no difference in
accuracy when RSBVS takes at most the 30% of sam-
ples.

As regards the structural characteristics, we ob-
tained the same behavior as accuracy, i.e., reducing
the percentage of samples corresponds to a decrease of

learned network sizes. Considering learning times, on
some datasets (e.g., WebKB and Reuters-52), it hap-
pens that learning times are longer when the 15% of
samples than the 20% is taken. However, these dif-
ferences are rather small and may depend on the ran-
domness of the algorithm, or when the best valida-
tion model is the one that needs additional time for its
specific hyperparameter configuration–for instance, a
smaller µ.

In question Q3 we asked how does RSBVS per-
form when compared to GVS in terms of accuracy
and learning times. Since varying the amount of sam-
ples taken for the independencies discovering, RS-
BVS shows a monotonic behavior, hence we com-
pared RSBVS to GVS taking the 50% of samples–
conclusions about the results could be obtained with
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Table 3
Positions in the learning times rank for GVS, EBVS, EBVS-AE, RGVS, WRGVS, RSBVS 50%.

EBVS EBVS-AE RGVS WRGVS RSBVS 50% GVS

NLTCS 6 4 1 3 5 2
Plants 6 4 1 3 5 2
Audio 6 2 1 3 5 4
Jester 4 3 1 2 6 5

Netflix 4 2 1 5 3 6
Accidents 6 4 1 2 5 3

Retail 6 5 1 2 4 3
Pumsb-star 5 4 1 2 6 3

DNA 4 3 1 2 6 5
Kosarek 6 5 1 2 4 3
MSWeb 6 5 1 2 4 3

Book 6 3 1 2 5 4
EachMovie 4 3 1 2 5 6

WebKB 4 1 2 3 6 5
Reuters-52 4 3 1 2 5 6

BBC 4 1 2 3 5 6
Ad 4 3 1 2 5 6

AVG 5.0 3.2 1.1 2.5 4.9 4.2

Table 4
Number of victories on learning time for the algorithms on the rows compared to those on columns.

GVS EBVS EBVS-AE RGVS WRGVS RSBVS 50%

GVS - 9 7 0 2 12
EBVS 8 - 0 0 1 8

EBVS-AE 10 17 - 2 4 14
RGVS 17 17 15 - 17 17

WRGVS 15 16 13 0 - 16
RSBVS 50% 5 9 3 0 1 -

Table 5
Positions in the accuracy rank for GVS, EBVS, EBVS-AE, RGVS, WRGVS, RSBVS 50%.

EBVS EBVS-AE RGVS WRGVS RSBVS 50% GVS

NLTCS 1 1 4 3 2 1
Plants 2 1 5 4 3 1
Audio 2 1 4 3 3 1
Jester 2 1 5 4 3 2

Netflix 2 1 6 4 5 3
Accidents 4 5 6 3 2 1

Retail 3 3 4 4 2 1
Pumsb-star 3 4 6 5 2 1

DNA 3 3 5 4 2 1
Kosarek 2 2 5 3 4 1
MSWeb 3 2 6 5 4 1

Book 3 2 5 4 5 1
EachMovie 1 2 5 4 3 1

WebKB 2 2 5 4 3 1
Reuters-52 3 2 6 5 4 1

BBC 2 2 6 5 4 2
Ad 2 3 6 5 4 1

AVG 2.7 2.5 5.9 4.7 3.8 1.4
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Table 6
Number of statistically significant victories (numerator) and ties (denominator) on accuracy (Wilcoxon signed rank test, p-value = 0.05) for the
algorithms on the rows compared to those on columns.

GVS EBVS EBVS-AE RGVS WRGVS RSBVS 50%

GVS - 12 / 4 11 / 4 17 / 0 17 / 0 17 / 0
EBVS 1 / 4 - 4 / 6 17 / 0 16 / 0 13 / 0

EBVS-AE 2 / 4 7 / 6 - 17 / 0 16 / 0 13 / 0
RGVS 0 / 0 0 / 0 0 / 0 - 0 / 1 0 / 1

WRGVS 0 / 0 1 / 0 1 / 0 16 / 1 - 3 / 1
RSBVS 50% 0 / 0 4 / 0 4 / 0 16 / 1 13 / 1 -

Table 7
Structural quality metrics (the number of edges, layers and network parameters) for the best validation models for EBVS, EBVS-AE, RGVS,
WRGVS and GVS.

# edges # layers # params

EBVS EBVS-AE RGVS WRGVS GVS EBVS EBVS-AE RGVS WRGVS GVS EBVS EBVS-AE RGVS WRGVS GVS

NLTCS 8185 3969 316 677 1129 23 9 9 11 17 1190 331 58 49 271
Plants 42318 67821 2770 5177 15129 27 17 15 17 27 2304 1863 415 310 2635
Audio 36499 43243 2581 5056 17811 21 11 11 13 25 550 477 308 297 2736
Jester 26263 27609 1862 3183 12460 17 5 13 15 25 308 276 270 282 2071

Netflix 42033 44512 5097 8301 30417 21 11 15 15 31 503 465 737 209 4351
Accidents 98218 33377 1529 3127 11861 33 15 15 19 27 4315 436 240 133 2656

Retail 10096 6973 368 443 1010 41 37 7 9 19 446 258 31 20 175
Pumsb-star 32776 137092 1478 2339 12821 29 19 13 17 27 1941 1885 216 201 2679

DNA 8694 8694 475 738 3384 7 7 9 7 13 52 52 38 71 938
Kosarek 38097 42732 1130 1970 3692 31 41 13 15 23 1466 753 120 176 610
MSWeb 41447 57482 639 907 10341 35 35 7 9 33 1771 964 18 83 1824

Book 128181 65002 2311 2952 3814 29 33 9 11 11 1182 295 118 373 441
EachMovie 34155 31467 2659 3644 24458 21 25 11 17 29 485 328 317 549 3253

WebKB 61125 34863 2994 3925 9344 83 7 9 11 15 861 61 219 89 1239
Reuters-52 121211 83826 2275 4653 82084 103 21 9 13 27 1494 255 138 225 9922

BBC 39997 26167 2293 2387 68117 71 7 7 7 25 508 31 57 383 7057
Ad 90599 166802 3389 5213 20823 157 137 7 9 33 1231 894 94 238 1338

Table 8
Learning times in seconds and average test log-likelihoods for the best validation models for RGVS, varying the amount of RVs involved in
GVS.

learning time log-likelihood

10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

NLTCS 9.35 3.65 3.54 3.40 3.73 -6.196 -6.356 -6.576 -6.562 -6.337
Plants 45.18 21.25 18.84 21.09 26.49 -16.808 -17.786 -17.186 -16.292 -15.223
Audio 43.72 24.93 24.32 26.03 27.20 -41.866 -42.146 -42.206 -42.076 -41.702
Jester 34.33 17.85 18.77 21.51 30.95 -54.806 -54.984 -54.949 -54.866 -54.341

Netflix 67.51 54.72 51.29 49.53 72.75 -60.043 -59.832 -59.464 -59.559 -59.082
Accidents 38.43 18.10 19.55 20.80 30.40 -39.415 -39.871 -40.006 -38.759 -36.677

Retail 24.18 9.06 11.59 15.73 20.51 -11.382 -11.368 -11.358 -11.344 -11.142
Pumsb-star 24.60 21.60 18.83 19.99 29.50 -43.240 -45.732 -42.171 -37.525 -32.310

DNA 7.55 2.06 2.58 2.98 3.89 -99.453 -99.458 -98.920 -98.269 -95.968
Kosarek 11.82 13.59 12.58 8.10 9.96 -10.976 -10.926 -10.926 -10.926 -10.926
MSWeb 23.36 22.73 17.20 14.27 22.61 -10.115 -10.310 -10.115 -10.115 -10.115

Book 21.88 22.09 20.92 21.72 37.68 -35.549 -35.656 -35.662 -35.636 -35.571
EachMovie 7.30 5.87 7.48 8.17 6.34 -58.095 -58.339 -58.868 -58.295 -58.180

WebKB 15.81 9.89 12.75 13.06 17.38 -157.723 -159.217 -158.880 -156.547 -155.465
Reuters-52 17.12 24.28 31.51 67.34 44.18 -89.163 -89.840 -88.640 -90.714 -89.153

BBC 5.74 5.20 6.79 7.05 5.41 -257.590 -258.049 -257.184 -257.184 -257.184
Ad 7.93 5.94 11.90 46.25 104.57 -18.200 -22.621 -21.617 -18.755 -18.875
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Table 9
Learning times in seconds and average test log-likelihoods for the best validation models for RSBVS, varying the proportion of samples involved
in GVS.

learning time log-likelihood

50% 30% 20% 15% 50% 30% 20% 15%

NLTCS 36.09 15.28 6.62 5.12 -6.078 -6.226 -6.322 -6.483
Plants 184.79 70.81 33.17 26.16 -13.659 -14.969 -16.772 -18.763
Audio 60.40 25.95 13.40 10.61 -41.550 -42.827 -44.178 -45.155
Jester 35.11 11.37 6.15 3.78 -54.212 -55.453 -57.369 -57.784

Netflix 47.52 28.19 24.62 8.66 -59.551 -61.152 -62.000 -62.952
Accidents 196.30 84.41 54.34 35.04 -32.511 -33.548 -34.657 -36.539

Retail 30.81 21.68 12.82 14.38 -11.052 -11.087 -11.265 -11.340
Pumsb-star 429.70 172.33 80.72 60.23 -27.463 -29.557 -31.744 -33.851

DNA 13.34 2.60 2.65 3.26 -83.644 -99.665 -99.665 -99.665
Kosarek 136.31 97.46 47.64 43.27 -11.185 -11.502 -11.684 -11.761
MSWeb 132.17 96.34 62.99 65.61 -10.349 -10.581 -10.757 -10.824

Book 99.84 72.96 54.14 57.37 -36.395 -36.955 -37.176 -37.176
EachMovie 59.84 34.74 27.19 30.80 -55.140 -59.143 -64.014 -67.121

WebKB 91.03 73.15 54.42 68.52 -163.292 -168.048 -169.456 -169.456
Reuters-52 187.65 140.01 123.69 139.94 -91.890 -95.322 -96.778 -97.466

BBC 68.65 61.61 54.17 58.77 -266.407 -269.355 -269.355 -269.355
Ad 196.06 159.42 132.01 112.31 -33.972 -52.284 -57.699 -57.760

Table 10
Structural quality metrics (the number of edges, layers and network parameters) for the best validation models for RSBVS varying the proportion
of samples involved in GVS.

# edges # layers # params

50% 30% 20% 15% 50% 30% 20% 15% 50% 30% 20% 15%

NLTCS 1456 470 217 113 9 7 7 7 221 69 29 20
Plants 10983 3110 1235 597 19 15 19 11 844 252 98 58
Audio 3287 883 358 215 13 13 7 5 348 101 53 7
Jester 2519 645 258 207 15 13 5 5 318 67 21 4

Netflix 3009 881 381 247 13 11 9 5 408 146 45 19
Accidents 5441 1656 725 490 19 13 9 9 1070 353 145 83

Retail 481 392 294 280 7 9 5 5 45 31 7 5
Pumsb-star 19571 5920 2442 1674 25 23 19 17 1264 520 229 167

DNA 1542 362 362 362 9 3 3 3 373 2 2 2
Kosarek 4168 751 496 441 31 13 9 5 239 66 39 23
MSWeb 1634 839 681 627 19 13 7 5 187 69 26 14

Book 2066 1111 1002 1002 13 7 3 3 151 33 2 2
EachMovie 4232 1382 1077 1015 17 11 7 5 188 32 16 6

WebKB 2823 1758 1680 1680 15 5 3 3 320 29 2 2
Reuters-52 4552 2169 1852 1787 17 11 7 5 489 88 20 4

BBC 2519 2118 2118 2118 9 3 3 3 102 2 2 2
Ad 5718 3333 3134 3114 9 7 5 3 388 48 8 2

smaller amounts of samples follow immediately. In
our experimental setting, RSBVS taking 50% of sam-
ples, when compared to GVS, significantly degrades
in terms of accuracy but it is fast on datasets with many
RVs like Reuters-52, BBC and Ad.

From Table 10, RSBVS, when compared to GVS,
learns in general smaller networks with far fewer pa-
rameters on datasets with a high number of variables.

In conclusion, answering question Q3, we can state
that RSBVS is able to learn smaller and less accurate

networks when compared to GVS but it gains in learn-
ing times only on datasets with a high number of RVs.
Moreover, in these contexts, it learns networks with far
fewer parameters.

5.4. (Q4) Evaluating EBVS

From our results, EBVS learns much less com-
pact networks w.r.t. GVS. Concerning learning times,
while it speeds up the building procedure for a sin-
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gle node, the overall time required by the algorithm
to grow a whole network increases (Table 2). This is
due to the fact that it calls the row clustering pro-
cedure less frequently than GVS since it learns net-
works with more nodes but with fewer parameters (Ta-
ble 7). Thus, it moves into the search space faster but it
favours larger networks than GVS. An exception hap-
pens on datasets with a high number of variables, such
as Reuters-52, BBC and AD, where EBVS gains con-
siderable shorter learning times w.r.t. GVS.

On the accuracy side, instead, one can see that
EBVS has comparable results w.r.t GVS and performs
better than RGVS (Table 2). To answer the research
question Q4 we can state that EBVS does not learn
more compact networks than GVS but it learns more
accurate networks than RGVS.

On datasets with a high number of variables (|V | >
500) EBVS is able to learn a network needing shorter
times than GVS, gaining comparable accuracy (e.g.,
on BBC). Still, on datasets with few variables, due to
the increased size of the learned models their learning
time increased.

5.5. (Q5) Evaluating EBVS-AE

In the previous Section we questioned the intro-
duction of an adaptive thresholding method for the
entropy-based splitting procedure. Results confirm our
intuition over the employed datasets.

For EBVS-AE, as showed in Table 2, on all datasets
we obtained remarkable shorter learning times than
EBVS (needing half time on Reuters-52 and BBC
that have |V | > 800). On accuracy, EBVS-AE out-
performs (on Plants, Audio, Jester, Netflix, Book,
Reuters-52, MSWeb) EBVS or it is not significantly
worse (on NLTCS, Retail, DNA, Kosarek, WebKB,
BBC). Only on few datasets it performs significantly
worse than EBVS (Accidents, Pumsb-star, Each-
Movie, Ad) but gaining a comparable accuracy on
most of them while learning a smaller network (Acci-
dents and EachMovie)–see Table 7. On many datasets
our adaptive version of EBVS is capable to learn
smaller networks than EBVS (see Table 7) especially
on datasets with a high number of RVs (Book, Each-
Movie, WebKB, Reuters-52, BBC, Ad).

In general, EBVS-AE compared to EBVS learns
networks with a considerable smaller number of weigh-
-ts, thus, it spends less time for row clustering during
the learning procedure.

EBVS-AE when compared to the baseline GVS
achieves comparable or better results on many consid-

ered datasets (Table 2). Hence, we can answer Q5 by
stating that EBVS-AE, in general, tends to learn more
accurate and compact networks with fewer weights
than EBVS, needing less time and often being more
accurate, and as such shall be preferred over it.

Table 5 and Table 6 (resp. Table 3 and Table 4) re-
port the cumulative results in terms of accuracy (resp.
learning time) for all methods in form of rankings.

6. Conclusions

Learning an SPN from high dimensional data still
poses a challenge in terms of time complexity. The
simplest greedy structure learner, LearnSPN, scales
quadratically in the number of the variables to deter-
mine RVs independencies.

In this paper, we proposed approximate but faster
procedures to determine independencies among RVs
whose complexity scales in sub-quadratic time.

We investigated three approaches: two based on ran-
dom subspaces and another one that adopts entropy as
a criterion to split RVs in linear time.

Experimental results prove that there is no free
lunch: LearnSPN equipped by the formers learns net-
works that save on learning and inference time, provid-
ing less accurate inference; while with the latter pro-
cedure, it is able to produce networks that are still ac-
curate estimators but requiring more time when learn-
ing and evaluating due to bigger size on datasets with
few RVs. While, on datasets with a high number of
variables it requires less time but gains worse accuracy
than our baseline.
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