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Abstract

In this work, we tackle the problem of Multi-Label Classification (MLC) by using Cutset Net-
works (CNets), weighted probabilistic model trees, recently proposed as tractable probabilistic
models for discrete distributions. We employ CNets to perform Most Probable Explanation (MPE)
inference exactly and efficiently and we improve a state-of-the-art structure learning algorithm for
CNets by explicitly taking advantage of label dependencies. We achieve this by forcing the tree
inner nodes to represent only feature variables and by exploiting structural heuristics while learn-
ing the leaf models. A thorough experimental evaluation on ten real-world datasets shows how the
proposed approach improves several metrics for MLC, proving it to be competitive with problem
transformation methods like classifier chains.
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1. Introduction

Many real world classification problems involve multiple label classes. The problem of Multi-Label
Classification (MLC) concerns learning a mapping from an example to a set of relevant labels.
This issue has recently attracted significant attention due to an increasing number of applications,
such as image and video annotation, functional genomics in bioinformatics, text categorization, and
others (Madjarov et al., 2012). A common approach to MLC is to adopt a problem transformation
technique, where a multi-label problem is transformed into one or more single-label problems. A
popular problem transformation method to deal with MLC is binary relevance (BR) (Boutell et al.|
2004; [Tsoumakas et al., [2010). A BR classifier decomposes the MLC problem into a set of single
label classification problems, one for each different label. The classifiers are learned independently,
thus possibly losing the dependencies among the label variables. However, it is very well known that
exploiting these dependencies can significantly improve the classification performance in a MLC
scenario, as reported by |Dembczynski et al.[(2012). In order to exploit potential label correlations,
the classifier chain approach (CC) (Read et al.l 2009) transforms a MLC problem into a chain of
binary classification problems, where subsequent binary classifiers in the chain are built upon the
predictions of preceding ones.

Probabilistic Graphical Models (PGMs) (Koller and Friedman, 2009), such as Bayesian Net-
works (BNs) and Markov Networks, provide a powerful formalism to model and reason about MLC
problems. Indeed, they are able to capture the conditional independence assumptions among random
variables into a graph-based representation. Exploiting inference tools in PGMs results in answering
different query types such as conditional probability queries and Most Probable Explanation (MPE)
queries. Indeed, exploiting MPE inference is one of the approaches to solve MLC (Antonucci et al.,
2013; |Corani et al., 2014). Nevertheless, learning and inference with PGMs can be challenging.
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In works like (Waal and Gaag, 2007; Rodriguez and Lozano) 2008; Bielza et al.,2011)) the con-
cept of multi-dimensional Bayesian network classifiers (MBCs) for MLC has been introduced. The
structure of this kind of networks is learned by partitioning the arcs of the graphs into three sets:
links among the label variables (label graph), links among features (features graph) and links be-
tween label and features variables (bridge graph). Each subgraph is separately learned and different
families of MBCs could be derived by imposing restrictions on the graphical structure of the label
and feature subgraphs, e.g. empty graphs, trees, polytrees, and so on. In (Antonucci et al., 2013)),
an ensemble of BN classifiers has been used for MLC, thus extending to the multi-label case the
idea of averaging over a constrained family of classifiers. The label subgraph is assumed to be a
tree, and a different classifier for each label is instantiated. Independence of the features given the
labels is assumed, thus generalizing to the multi-label case the naive Bayes assumption. Thanks
to this assumption, the optimal bridge subgraph, linking labels and features, can be identified in
polynomial time. Due to the high complexity of the inference regarding the MPE joint configura-
tion of all the labels, the same authors switched from the ensemble approach to the single model
approach (Corani et al., 2014). To compensate the losing in accuracy of a single model when com-
pared to an ensemble of models, they introduced a more sophisticated structural learning procedure
for the label subgraph. Still, the bottleneck remains the high complexity of the inference task during
learning and classification.

The need for exact and efficient inference procedures has lead to the introduction of Tractable
Probabilistic Models (TPMs). An instance of TPMs, tractable PGMs usually trade off expressive-
ness in exchange for a tractable inference guarantee, see for instance the mixture of tree distribu-
tions (Meild and Jordan, 2000). TPMs include, among the others, the recently introduced Sum-
Product Networks (SPNs) (Poon and Domingos}, 2011) as deep architectures encoding probability
distributions by layering hidden variables as mixtures of independent components. The greater ex-
pressive capacity of SPNs poses new challenges: learning the structure of SPNs involves balancing
inference times, hence the whole learning time, and the model accuracy in the terms of a likeli-
hood score (Vergari et al.l [2015). To cope with similar issues, Cutset Networks (CNets) have been
recently proposed as easy-to-learn TPMs (Rahman et al., 2014)). CNets are weighted probabilistic
model trees in the form of OR-trees having tree-structured probabilistic models as leaves, and pos-
itive weights on inner edges. Inner nodes, i.e., conditioning OR nodes, are associated to random
variables and outgoing branches represent conditioning on the values for those variables domains.
Structure learning algorithmic variants for CNets have been proven to be both accurate and scalable,
given the decomposability property guaranteed by the tree structure (Di Mauro et al., [2015bja).

In this work we show how to employ CNets for MLC problems. As we will show, CNets,
differently from MBCs, offer exact and tractable MPE inference, thus alleviating a major issue for
MLC. Additionally, we propose a CNet structure learning algorithmic variant for MLC. We modify
the searching procedure proposed in (Di Mauro et al., 2015b) by focusing on label dependencies, as
it has been proven to be advantageous for MLC (Dembczynski et al., 2012). First we force each tree
inner node to condition on feature variables only. Then, we apply some heuristics while learning
the leaf tree models to put more prominence on the links among label variables while seeking for
independence among feature variables. In this way a model can exploit more feature contributions
while making predictions about the label variables. We focus on learning a single model and then we
prove it to be very competitive against more sophisticated approaches like BR and CC. In a thorough
empirical comparison on 10 real-world benchmark datasets, we show our model effectiveness under
commonly used metrics for MLC, like accuracy, hamming and exact match scores.
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2. Cutset Networks

In order to introduce the basics about CNets, and before switching to the multi-label case in Sec-
tion [3, now we assume D to be a set of N i.i.d. instances over the discrete variables X =
{X1,..., X}, whose domains are the sets Val(X;) = {7 }?i:l,i =1,...,m.

2.1 Tree-structured probabilistic graphical models

A directed tree-structured model (Meila and Jordan, 2000) is a BN in which each variable has at
most one parent. The joint probability distribution over a set of discrete variables X represented
by such a model can be factorized as P(X) = [[", P(X;|Pa;), where Pa; stands for the parent
variable of X, if present. It follows immediately that inference for complete or marginal queries
has complexity linear in the number of variables, hence the tractability of tree-structured models.

The classic algorithm for learning tree-structured models is that presented in (Chow and Liu,
1968)). There it is shown that maximizing the Mutual Information (MI) among random variables in
X leads to the best tree, in an information-theoretic sense, approximating the underlying probability
distribution of D in terms of the Kullback-Leibler divergence. The learning process for obtaining a
tree-structured probabilistic model (CLtree in the following) proceeds as follows. Firstly, for each
pair of variables in X, their MI is estimated from D; then a maximum spanning tree is built on the
weighted graph induced by the MI as an adjacency matrix. Rooting the tree in a randomly chosen
variable and traversing it leads to the learned tree-structured BN.

2.2 Structure and Parameter Learning of Cutset Networks

As introduced in (Rahman et al.| 2014} and then extended in (D1 Mauro et al.,[2015blal), CNets are a
hybrid of rooted OR trees and CLtrees, with OR nodes as internal nodes and CLtrees as leaves (see
Figure [I). More formally, a CNet is a pair (G,~), where G = O U {T1,..., 7.} is the graphical
structure, composed by a rooted OR tree, O, and by leaf trees 7;; and v = w U {0,...,60} is
the parameter set containing the OR tree weights w and the leaf tree parameters ;. The scope of a
CNet G (resp. a leaf tree 7;), denoted as scope(G) (resp. scope(7;)), is the set of random variables
that appear in it. Each node in the OR tree is labeled by a variable X, and each edge emanating
from it represents the conditioning of X; by a value xz € Val(X;), weighted by the conditional
probability w; ; of conditioning the variable X; to the value xf . A CNet can be thought of a model
tree associating to each instance a weighted probabilistic leaf model.

In (D1 Mauro et al.l 2015b) a recursive definition of CNets has been proposed along with the
proof of the decomposability of their log-likelihood and Bayesian Information Criterion (BIC) (Fried-
man et al., 1997) scores. This lead to a principled algorithm, dCSN, to learn the structure of CNets.
A CNet is defined as follows: a) a CLtree, with scope X, is a CNet; b) given X; € X a variable with
|Val(X;)| = k, graphically conditioned in an OR node, a weighted disjunction of k& CNets G; with
same scope X; is a CNet, where all weights w; j, j = 1,...,k, sum up to one, and X,; denotes
the set X minus the variable X;. Following this definition, the computation of the log-likelihood of
a CNet can be decomposed as follows (Di Mauro et al.,[2015b). Given a CNet (G, ) over variables
X and a set of instances D, its log-likelihood ¢ ((G, 7)) can be computed as:

Yeep iz log PE[Xi][E[Pai])  if G ={T}

g =
p((9:7)) {Zle Mjlogwij + €p,((Gj,7g,)) otherwise,
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where the first equation refers to the case of a CNet composed by a single CLtree ({[X;] is the
value assumed by an instance & in correspondence of a particular variable X;), while the second one
specifies the case of an OR tree rooted on the variable X;, with |V al(X;)| = k, where, for each j =
1,...,k, G; is the CNet involved in the disjunction with parameters vg,, D; = {{ € D : {[X;] =
a:g } is the slice of D after conditioning on X, and M; = |Dj| its cardinality. {p; ((G;,vg,)) denotes
the log-likelihood of the sub-CNet G; on D;.

By exploiting the log-likelihood decomposition, in dCSN a CNet is grown top-down allowing
further expansion, i.e., substituting a CLtree with an OR node only if it improves the log-likelihood.
In detail, dCSN starts with a single CLtree, for variables X, learned from D and it checks whether
there is a decomposition, i.e., an OR node applied on as many CLtrees as the values of the best
variable X, providing a better log-likelihood than that scored by the initial tree. If a such decompo-
sition exists, than the decomposition process is recursively applied to the sub-slices D;, testing each
leaf for a possible substitution. In order to penalize complex structures and thus avoiding overfitting,
a BIC score has been adopted. The BIC score of a CNet (G, «y) on data D is defined as:

scorepic((G,7)) = log Pp((G,7)) — log ¥

Dim(G),

where Dim(G) is the model dimension, set to the number of OR nodes appearing in G, and N is the
size of the dataset D. A Bayesian approach to learn a CLtrees 7 with parameters 6 from data D has
been adopted, by exploiting as scoring function P(6|D) ~ P(D|@)P(0). Considering Dirichlet
priors, the regularized model parameter estimates are:

j»1ﬁ%7pai + Qg, Pay
Mpa; + apy,

where M, is the number of entries in a dataset D, having the set of variables Z instatiated to z.
dCSN, whose source code is public availabl has been extended to the MLC scenario as
described in the next section.

3. Restricted CNets for MLC

In this section we will explain how to exploit CNets for MLC. In the following we assume to
have a set of training data D of N instances, D = {(x%,y?)}X,. Each training instance has a
component x* € X as a vector of M feature values x’ = [z¢,...,z%,], where each x% € R. The
set L = {y1,...,yr} denotes the output domain of possible labels. Each vector of attribute values
x! for each instance is associated to a subset J; C £ of these labels, represented by an vector of L
binary values y* = [y}, ..., y}], where y; = 1, if the label y; is assigned to (i.e., is relevant for) the
instance, and y§ = 0 otherwise (i.e., y; represents the binary relevance of the jth label associated
to the ith instance). We assume the instances to be i.i.d. according to a probability distribution
P(X,Y)on X x ). We are interested to learn a model h, s.t., given a test attribute instance X, we
can compute a prediction:

y=1[0,...,9.] = h(x) = argmax P(X,y).
yE{O,l}L

1. https://github.com/nicoladimauro/dcsn
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A

0.53 0.47 0.13 0.87
Figure 1: Example of a binary CNet model. Internal nodes on variables X; are OR nodes, while
leaf nodes are CLtrees encoding a direct graphical model.

First we will describe how to perform exact MPE inference by the means of CNets, then we will
introduce how we adapt the structure learning algorithm proposed in (Di Mauro et al., |2015b) for
MLC. Computing the MPE assignment for the Y is a common way for probabilistic classifiers to
tackle the MLC problem (Dembczynski et al., 2012). This equals to solve:

y = argmax P(y|x) = argmax P(y, x).
y€{0,1}F ye{0,1}F

where the X = x are assumed to be observed as evidence.

As already stated, CNets and their leaf tree structures favor tractable probabilistic inference for
complete evidences. Here we show how even MPE queries can be answered in time linear to the size
of a CNet. In order to do so, one can compute the MPE state for each leaf node and then continue
visiting all the OR nodes up to the root, obtaining a complete assignment. For the leaf nodes the
MPE state associated to their scope and its corresponding probability can be computed by employ-
ing the max-out variant of the Variable Elimination Algorithm, which is guaranteed to be linear in
the size of the trees (Koller and Friedman, [2009). For each OR node, defined on the variable Z;, and
with outgoing weights wy, . . . , wg, one would have k possible MPE states, s1, . .., s, correspond-
ing to each sub-tree. Each state, alongside its MPE probability p;,¢ = 1, ..., k, has been computed
when exploring the child nodes. If Z; appears as evidence, i.e. Z; € X, then one simply chooses
the child branch corresponding to its value. Otherwise, the branch j* = argmax;_; _; w;p; and
the corresponding MPE state are chosen. This is also linear in the number of child sub-trees.

3.1 Restricted Structure Learning

Probabilistic multi-label classifiers can be learned by optimizing one particular loss function, e.g.
subset 0/1 loss or hamming loss. While doing this, they may try to elicit the marginal (resp. con-
ditional) label dependencies if they focus on modeling p(Y) (resp. p(Y|X)) (Dembczynski et al.,
2012)). Our approach consists in learning a CNet while optimizing the joint likelihood, but guiding
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the structure learning algorithm to focus on the label dependence relationships. We employ several
heuristics to achieve this, both during the CNet structure growing phase and the leaf tree learning
steps. The common idea behind all of them is to prefer modeling more accurately the dependencies
among the Y than the ones over the X.

First, we limit the OR split tests to be taken on the X variables only while growing a CNet. This
leads to particular networks which we call Restricted CNets (RCNets). By doing this we force the
Y to be strictly dependent from the X appearing in the internal nodes. This is pretty evident when
using an RCNet as a generative model. This also helps the Chow-Liu algorithm to better focus
on the Y variable interactions. The CNet in Figure [1|is an RCNet as well, since label variables
are represented only in the leaves: e.g., the leftmost leaf models the interactions among all label
variables but on the subset of the dataset where X7 and X5 variables are set to 0.

A second constraint has been imposed on the structure of the BNs in the leaves: each label
variable and each feature variable can only have as a parent a label variable. This implies that fea-
tures variables shall be independent given the label variables. From the perspective of a MBC, this
constraint translates into the label subgraph to be a tree, and the feature sub-graph to be empty.
However, differently from a single MBC, in an RCNet we have several possible variations of such
templated trees, one for each leaf and modeling different dependencies for different views of the
data. In this way we force to model the dependencies among the class variables, and giving the fea-
ture to independently contribute in the MPE inference evaluation. In order to fulfill this constraint,
the classical Chow-Liu tree algorithm described in Section 2| has been modified as reported in Algo-
rithm [T leading to restricted tree-structured PGMs. After having computed the mutual information
matrix MI between all the variables, we forcibly alter some of its values. Let the MI matrix be
represented as a block matrix:

[ MIxx Mlxy
MI = ( MI;Y Mly v )

where MlIx x (resp. MlIy y) denotes the sub-matrix comprising the mutual information values
among variables in X (resp. Y) and MIx y denotes the sub-matrix comprising the values among
one feature and one label variables. We first set MIx x = 0 to enforce the label conditional
independence of the X, then we boost the mutual information values for the label variables by
setting MIy y = Mly y + max(MI), thus forcing the insertion of all the edges over the Y in the
spanning tree before considering the interactions with the X.

4. Experimental Evaluation

In this section we present the experimental setup to detail the performance evaluation metrics, the
multi-label datasets, the algorithms and their experimental settings. The source code of our algo-
rithm, scripts and datasets are made publicly availabl

4.1 Evaluation Metrics

Recall that given a multi-label dataset consisting of IV instances, each one associated with a set
of labels ); C L, denoted by a vector of L binary values y*, a classifier predicts a set of labels
), denoted by a vector of L binary values y°. In MLC there is no one single way to assess the

2. https://github.com/nicoladimauro/dcsn
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Algorithm 1 LearnRestrictedCLT(D, X, Y)

1: Input: a set of instances D over a set of features X and labels Y
Output: (7,0), atree 7 with parameters 6 encoding a pdf over X U'Y
MI - Ojxuy|x XUy
for each V;,V; € XU Y do

M 1;; + estimateMutuallnformation(V;, V;, D)

MIx x <+ 0 > label conditional independence of the Xs
Mly y < Mly y + max(MI) > forcing dependencies among the Y's
T < maximumSpanningTree(MI)

T < traverseTree(T')

6 < computeFactors(D, T)

: return (7, 0)

R A A

—_ =
—_ O

classifier performance. It is well known in the literature that different metrics focus on different
dependency relationships among the label variables, and are better optimized by taking into account
those dependencies (Dembczynski et al., [2012). We employ three different metrics to assess the
overall performance of CNets and the improvement gained by RCNets. We want to prove that even
a single CNet can be competitive against more sophisticated models and that the proposed heuristics
for RCNets are indeed meaningful for MLC. Namely, the three employed metrics are:

N L
1 . v
HAMMING SCORE = —— > Iy = g)),
i=1 j=1
LN
_ i 5t
EXACT MATCH = N ;H(y =y'),
N . i
1 YAV
ACCURACY = — Z !yA }A’ ‘,
N~ |y’ vyl

where I(C') is the indicator function, while A and V are the bitwise logical AND and OR operations,
respectively (Madjarov et al., [2012).

The EXACT MATCH measure, or 0/1 LOSS as a loss measure, computes the percentage of
instances whose predicted set of labels ¥ matches the true set of labels y exactly. On the other side,
the HAMMING SCORE rewards methods for predicting individual labels well. While the EXACT
MATCH is a very strict evaluation measure, the HAMMING SCORE tends to be very lenient. Finally,
ACCURACY is a label set-based measure defined by the Jaccard similarity coefficients between the
predicted and true set of labels.

4.2 Datasets

A set of 10 numerical traditional multi-label datasets (accessible from the MULANEL MEKAEI, and
LABICE] websites) has been used in the experiments. These datasets belong to a wide variety of ap-

3.http://mulan.sourceforge.net/.
4. http://meka.sourceforge.net/.
5.http://computer.njnu.edu.cn/Lab/LABIC/LABIC_Software.html,
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’ ‘ Domain M N L LCard LDens LDist ‘
Arts-Yahoo Text 500 7484 26 1.653 0.063 599
Business-Yahoo Text 500 11214 30 1.598 0.053 233
CAL500 Music 68 502 174 26.043 0.149 502
Emotions Music 72 593 6 1.868 0.311 27
Flags Images 19 194 7 3.391 0.484 54
Health-Yahoo Text 500 9205 32 1.644 0.051 335
Human Biology 440 3106 14 1.185 0.084 85
Plant Biology 440 978 12 1.078 0.089 32
Scene Images 294 2407 6 1.073 0.178 15
Yeast Biology 103 2417 14 4.237 0.302 198

Table 1: Dataset descriptions: number of attributes (M), instances (/V), and labels (L).

plication domains and their labels range from 6 to 174, while the number of attributes ranges from 19
to 500, and the number of examples ranges from 194 to 11214. Table[I|reports the information about
the adopted datasets, where M, N and L represent the number of attributes, instances, and possible
labels respectively. Furthermore, for each dataset D the following statistics are also reported: Label
Cardinality: LCard(D) = % Zfil Zle yj-, Label Density: LDens(D) = %d(s) and Distinct
Labels: LDist(D) = [{y|3(x,y) € D}|.

Since our current implementation of CNets works on binary data we discretized all the nu-
meric features for each dataset implementing the Label-Attribute Interdependence Maximization
(LAIM) (Cano et al.l 2016) discretization method for multi-label data. We run all the algorithms in
these experiments on the datasets preprocessed by LAIM.

4.3 Algorithms and setup

For the experimental evaluation, we compared both CNet and RCNet implementations, CNET and
RCNEIﬁ, to different algorithms. Both CNET (obtained by dropping lines 6-7 in Algorithm
and RCNET limit OR nodes on X variables, while in addition RCNET modify the MI matrix in
order to fulfill the (in)dependency constraints. Other algorithms have been run using their openly
available implementations in MEK (release 1.9.0). First, due to the lack of openly available
implementations of BNs structure learning algorithms for MLC, we include in the comparison the
Bayesian Chain Classifier (BCC) (Zaragoza et al., |2011), which builds a probabilistic CC after
learning the structure of a BN for MLC. As reported in (Zaragoza et al., 2011)), BCC is highly
competitive against other Bayesian multi-dimensional classifiers such as those reported in (Waal
and Gaag, 2007; Bielza et al., 2011). Then, even if they are not directly comparable to CNets, as
they are ensembles as problem transformation methods, we included both binary relevance method
(BR) and the classifier chains method (CC). As base classifiers we used Naive Bayes (NB) and Tree
Augmented Naive Bayes (TAN), leading respectively to six different multi-label classifier variants:
BRNB, CCNB, BRTAN and CCTAN. Parameters were set as suggested by the MEKA softwarﬁﬂ

6. Both have be run with —d 0. 6, leaving all the other parameters set to default value.

7. Available athttp://meka.sourceforge.net.

8. TAN with SimpleEstimator with alpha=1, and scoreType = BAYES. BCC with NaiveBayes as classifier
and a default value for dependencyType. All the scripts for reproduce the MEKA results reported in this paper
are available at https://github.com/nicoladimauro/dcsnl All experiments have been run on a 4-core
Intel Xeon E312xx (Sandy Bridge) @2.0 GHz with 8Gb of RAM and Linux kernel 3.13.0-39.
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| Dataset | RCNET CCTAN BRTAN CNET CCNB BRNB BCC |

Arts 0432(6) 0372(4) 0391 (3) 0399 (2) 0376(&) 0358(7) 0.331(5)
Business 0.728 (1) 0.703 (4) 0.704 (3) 0.719 (2) 0.68 (6) 0.660 (7) 0.658 (5)
CALS500 0.203 (3) 0.188 (5) 0.251 (2) 0.187 (5) 0.184 (7) 0.252 (1) 0.287 (4)
Emotions 0.554 (2) 0.563 (1) 0.542 (5) 0.499 (6) 0.553 (3) 0.512 (6) 0.475 (4)
Flags 0.563(2) 0.565(1) 0544(4) 0526(6) 0.542(5) 0.545(3)  0.550 (6)
Health 0.603(3) 0611(1) 0610(2) 0587(4) 0578(6) 0.582(5) 0.521 (6)
Human 0361 (1) 0301(3) 0249(5) 0306(2) 0258(4) 0.197(7)  0.265 (6)
Plant 0.397 (1) 0.313 (3) 0.308 (4) 0.354 (2) 0.298 (5) 0.278 (7) 0.229 (6)
Scene 0.669 (1) 0.658 (2) 0.634 (3) 0.530 (4) 0.530 (4) 0.528 (6) 0.563 (7)
Yeast 0464 (2) 0452(3) 0.479(1) 0442 (4) 0404 (7) 0429(5)  0.453(6)
Avrg rank 1.7 2.8 3.2 3.7 51 54 5.6

Table 2: The performance of the multi-label learning approaches in terms of the ACCURACY mea-

sure. In parenthesis the rank of the algorithm for a given dataset.

[ Dataset | RCNET BRTAN CCTAN CNET BRNB BCC CCNB |
Arts 0937 (2) 0931(3) 0940(1) 0937(2) 0926(4) 0936(5) 0.923 (6)
Business 0.973 (1) 0.965 (2) 0.965 (2) 0.974 (1) 0.957 (4) 0.969 (5) 0.942 (6)
CALS500 0.854 (1) 0.814 (4) 0.823 (3) 0.854 (1) 0.813 (5) 0.833 (2) 0.684 (6)
Emotions 0.783 (4) 0.797 (1) 0.786 (3) 0.737 (6) 0.787 (2) 0.760 (6) 0.768 (5)
Flags 0.709 4) 0.710(3) 0.709(4)  0.680(6) 0.723(1) 0.716(2)  0.708 (6)
Health 0.965(1) 0.963(3) 0964(2) 0964(2) 0.959(4) 0956(5) 0.955 (6)
Human 0.894 (1) 0.890 (2) 0.870 (4) 0.894 (1) 0.884 (3) 0.891 (6) 0.827 (5)
Plant 0.892 (3) 0.894 (2) 0.901 (1) 0.888 (5) 0.890 (4) 0.862 (5) 0.884 (5)
Scene 0.879 (3) 0.898 (1) 0.888 (2) 0.838 (5) 0.874 (4) 0.867 (6) 0.816 (5)
Yeast 0773 (1)  0.765(2) 0.749(3) 0.765(2) 0.732(4) 0.754(5)  0.720 (6)
Avrg rank 2.2 2.8 29 3.1 4.1 5.5 6.4

Table 3: The performance of the multi-label learning approaches in terms of the HAMMING SCORE
measure. In parenthesis the rank of the algorithm for a given dataset.

4.4 Results and discussion

The results for each evaluation metric and for each classification algorithm on all the datasets are
reported in Table and ] RCNET outperforms the other methods in 10 (CCNB), 9 (BRNB and
BCC), and 7 (CCTAN and BRTAN) cases in terms of the ACCURACY measure (Table[2). In terms of
the HAMMING SCORE measure, RCNET is superior to the others in 10 (CCNB and BCC), 8 (BRNB),
6 (BRTAN) and 5 (CCTAN) cases (Table [3). Regarding the EXACT MATCH measure, RCNET is
ranked better in 9 (BRNB, CCNB and BCC), 8 (BRTAN), 6 (CCTAN) cases (Table ). By looking
at the average ranks, even CNET consistently outperforms BCC, BRNB and CCNB for all the three
measures. We can see from these results that even if RCNET learns a single model, it is competitive
to other approaches. It performs better that other methods in terms of the ACCURACY and EXACT
MATCH measure.
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| Dataset | RCNET CCTAN CNET BRTAN CCNB BRNB BCC |

Arts 0313(1) 0275(2) 0302(1) 02474 0251 (3) 0234(6) 0.187(5)
Business 0.567 (1) 0.548 (2) 0.565 (1) 0.545 (3) 0.520 (5) 0.518 (6) 0.410 (4)
CALS500 0.000 (1) 0.000 (1) 0.000 (1) 0.000 (1) 0.000 (1) 0.000 (1) 0.000 (1)
Emotions 0.295 (1) 0.282 (3) 0.260 (1) 0.295 (1) 0.265 (5) 0.280 (4) 0.207 (6)
Flags 0.170 2)  0.212(1) 0.185(1) 0.108(6) 0.129(3) 0.114(5)  0.109 (3)
Health 0456 (2) 0478 (1) 0448(1) 0437(3) 0407(6) 0.425(4) 0247 (5)
Human 0263 (1) 0.139(3) 0260(1) 0.141(2) 0.085(5 0.100(4)  0.150 (6)
Plant 0.344 (1) 0.247 (2) 0.333 (1) 0.207 (3) 0.185 (4) 0.181 (5) 0.110 (6)
Scene 0.554 (1) 0.498 (3) 0.492 (1) 0.518 (2) 0.248 (5) 0.375 (4) 0.422 (6)
Yeast 0.147(2)  0.169(1) 0.129(1) 0.120(3) 0.117(4)  0.101(5)  0.074 (6)
Avrg rank 14 2.3 2.7 3.5 4.9 5.2 5.6

Table 4: The performance of the multi-label learning approaches in terms of the EXACT MATCH
measure. In parenthesis the rank of the algorithm for a given dataset.

1234567 1234567 1234567
AN — BeC  RoNET '— CCNB RCNET —J L Bce
CCTAN BRNB  BRTAN — L BCC  ooTAN DANE
BRTAN CCNB  GCTAN BRNB ONET ooNg

CNET CNET BRTAN — |

Figure 2: The critical diagrams for the ACCURACY (left), HAMMING SCORE (center) and EXACT
MATCH (right) evaluation measures: results from the Nemenyi post-hoc test at p=0.05
significance level.

In order to assess whether the overall differences in performance are statistically significant a
post-hoc Nemenyi test (Demsar, 2006) has been conducted comparing all the classifiers to each
others. With a Nemenyi test the performances of two classifiers are significantly different if their
average ranks differ by more than some critical distance (CD), obtained by taking into account the
number of algorithms, the number of datasets and a critical value for a given significance level p.
Figure 2] reports the results from the Nemenyi post-hoc test with average rank diagrams, where the
average ranks of the algorithms are drawn on an enumerated axis. The best ranking algorithms are
at the left-most side of the diagram, and the horizontal bold lines connect the vertical lines for the
average ranks of the algorithms that do not differ significantly. As we can see, the differences are
not statistically different at p = 0.05 significance level when compared to those obtained by the
methods BRTAN and CCTAN. However, note that RCNET s are single models and as such they could
be incorporated into sophisticated problem transformation schemes as CC and BR. Devising a way
to blend CNet structure learning into these schemes is an interesting future line of work.
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5. Conclusions

In this paper, we tackled the MLC problem by employing CNets, a recently proposed tractable
probabilistic model for representing multi-dimensional discrete distributions. We exploited CNets
to efficiently and exactly solve an MPE formulation of MLC. We devised a structure learning al-
gorithmic variant to cope with the prominence of label dependencies, a crucial issue in MLC. The
experimental evaluation on 10 real-world datasets showed how our approach can effectively im-
prove the accuracy, exact and hamming scores, proving itself to be highly competitive against more
complex ensemble approaches.
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