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Abstract. Tables are among the most informative components of docu-
ments, because they are exploited to compactly and intuitively represent
data, typically for understandability purposes. The needs are to identify
and extract tables from documents, and, on the other hand, to be able
to extract the data they contain. The latter task involves the under-
standing of a table structure. Due to the variability in style, size, and
aims of tables, algorithmic approaches to this task can be insufficient,
and the exploitation of machine learning systems may represent an effec-
tive solution. This paper proposes the exploitation of a first-order logic
representation, that is able to capture the complex spatial relationships
involved in a table structure, and of a learning system that can mix the
power of this representation with the flexibility of statistical approaches.
The obtained encouraging results suggest further investigation and re-
finement of the proposal.

1 Introduction

The main motivation underlying the birth and spread of libraries consisted in
collecting large quantities of documents, usually in paper format, with preserva-
tion and access objectives. Each library was typically characterized by a specific
focus-of-interest, that established the direction and limits according to which the
collections were developed, thus helping users to have in one place a complete
landscape of the information they were interested in. As a technological coun-
terpart, digital libraries have the same aims and objectives, but dealing with
documents in digital format. This change of medium has a dramatic impact on
the management of the collections, and on their exploitation by end-users. Huge
quantities of documents can be easily collected and spread all over the world
using the Internet, however, the users may experience difficulties in properly
retrieving the data they are interested in. Information Retrieval (IR) and Ma-
chine Learning (ML) technologies can provide automatic tools to support such
activities.

The identification of relevant documents that can satisfy the users’ query is
the subject of the IR research field. Of course, to provide more effective results
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the automatic techniques should move from the purely lexical aspects of docu-
ment to those concerning their semantics, which is still an open research issue.
But having a thorough understanding of the document content is not only useful
to support search and retrieval. It is also a fundamental requirement to be able
to correlate the documents, and in particular the data and information they
carry. In particular, a component of documents that is usually very informative
and information-dense are tables. Authors use tables to compactly represent
many important data in a small space, to draw more attention from readers, or
for information comparison [10]. Thus, the availability of automatic components
that can identify tables in documents, and that are able to understand the table
structure, would be a precious support to extract the knowledge they contain,
represent it formally (e.g., using a relational Database) and make it available to
people and/or other software (e.g., using semantic technologies that are being
developed nowadays). This paper proposes a set of intelligent techniques that
cover the steps going from a document in digital format up to the identification of
tables and the understanding of their structure, and particularly focuses on the
exploitation of Machine Learning methodologies and systems for understanding
the table structure.

2 Preliminaries

Many works are present in the literature concerning tables and their analysis,
focusing on different objectives, aspects and problems. Some concern theoreti-
cal contributions, such as the distinction between genuine tables (tables aimed
at representing and organizing meaningful information) and non-genuine ones
(tables just aimed at obtaining a spatial partition of the page, as in most Web
documents) [16]. This is a relevant issue, since, according to [2], only 1% Web
tables are genuine. Others face more practical problems, such as table boundary
identification [13] and table structure decomposition [9], or the classification of
tables according to their type of content and intended exploitation. In addition to
table data extraction, table functionality analysis (aimed at understanding table
types, functions, and purposes) is another crucial task for table understanding,
table data sharing and reuse [10]. Yet other researchers focus on applications
such as table search [12] or table classification [16]. Indeed, accurately extract-
ing tables from document repositories is a challenging problem, but also selecting
interesting tables from the set of collected tables is an open issue.

As concerns the table identification step, we considered the DOMINUS frame-
work [5] for document processing and management, and extended it with suitable
techniques for table recognition. DOMINUS provides an integrated and general
framework to manage digital libraries in which most knowledge-intensive tasks
are carried out using intelligent techniques, among which Expert System and
symbolic Machine Learning technologies play a predominant role. After submis-
sion, documents in different digital formats are processed to identify their layout
structure, then to identify the kind of document and its relevant components,
to extract the content from selected components and to exploit such a content
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for indexing and information extraction purposes. Hence, while the layout anal-
ysis phase is involved in table recognition, the information extraction step is
concerned with table structure identification and subsequent content extraction.

As to table recognition, DOMINUS deals with two kinds of digital documents:
born-digital ones and digitized ones (typically obtained by scanning legacy paper
sources). This distinction is relevant because the basic document components
(text, images, geometric shapes—and specifically lines) are explicitly represented
in born-digital documents (such as PDF ones), but not in digitized ones (usually
coming in the form of raster images). Thus, in the latter case, suitable image
processing techniques must be applied to identify them. In particular, horizontal
and vertical lines are fundamental components for table recognition, although
not sufficient (some tables do not show a perfect grid for visually highlighting
their cell organization). Thus, in the case of document images, a variation of the
Hough transform, specifically focused on horizontal /vertical lines, and on the
identification of line segments, was developed and integrated in the DOMINUS
framework. Then, the set of lines and other content blocks in a page were fed
as an input to an expert module in charge of identifying and collecting the
subsets of elements that together make up a table. Expert Systems technology
was exploited because there is no standard representation for tables, and the
many different styles used by different authors can vary significantly as regards
the alignment of the content of rows and columns, the use of horizontal /vertical
lines to separate portions of the table, and the position of the table in the page.
Moreover, some tables are particularly tricky due to the presence of blank cells,
or of cells that span several rows and/or columns. The expert component, whose
detailed description is outside the scope of this paper, was able to identify and
extract most tables in different kinds of documents, with some difficulties on
very small tables and on multi-column documents.

Caption
Caption,,
Stub Column heading
Row heading Data
Note;
Note,,

Fig. 1. Table structure according to Nagy et al.
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As to table structure identification, our work specifically stems from a re-
search stream carried on by Nagy et al. [15], specifically concerned with the
extraction of the table structure and with its formal manipulation aimed at
transposing the content into a relational representation that can be integrated
in a typical database. They presented [15] a method based on header paths for
efficient and complete extraction of labeled data from tables meant for humans.
Header paths are a purely syntactic representation of visual tables that can be
transformed (factored) into existing representations of structured data such as
category trees, relational tables, and RDF triples.

A table contains a rectangular configuration of data cells, each of which can
be uniquely referred by a row and a column index. As reported in [15], a table
contains a set of content-cells that can be identified by a column-header path
and a row-header-path. The table segmentation process aims at identifying four
critical cells useful to partition the table into stub, row header, column header,
and delta regions. In particular, this setting is concerned with six kinds of table-
related elements, as shown in Figure 1:

Caption A text placed above the table, aimed at explaining it;

Data The set of cells containing the actual information carried by the table;

Column Heading The table cells placed above the table data, aimed at ex-
plaining part of the dimensions according to which the data are organized;

Row Heading The table cells placed to the left of the table data, aimed at
explaining the remaining part of the dimensions according to which the data
are organized;

Stub One or more cells that correspond to the intersection between the horizon-
tal projection of the row heading and the vertical projection of the column
heading;

Notes One or more text lines following the table, aimed at explaining portions
of its content.

Some details should be pointed out. First of all, the notes are optional, and
hence might be missing in some tables. The row and column headings may be
quite complex, when the table is intended to represent data that are conceptually
distributed along more than two dimensions (as a side effect, this event typically
causes the presence of cell content that spans over many rows or columns). The
stub can be made up of just one cell (if both the row headings consist of a single
column, and the column headings consist of a single row) or of many cells (in
case of composite row and/or column headings); it may be empty, but it often
contains a meta-header aimed at explaining the row and/or column headings.

Thus, although the mutual position of these elements is known and fixed,
identifying the specific boundaries of each of them may become very complex.
To do this Nagy et al. [15] adopt an algorithmic approach, leveraging typical
patterns. High accuracy should be required if the table data in the available doc-
uments are to be extensively and precisely extracted. Due to the many different
kinds of tables that can be found in documents, and to the many different ways
in which information can be organized in tables, we believe that a significant
high accuracy cannot be reached by hand-written rules, but the characterizing
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essence of the above elements can be captured only using automatic techniques
provided by Machine Learning.

3 Proposed Approach

The first question to answer for applying Machine Learning to table structure
recognition is the type of approach to be used. To answer this question, several
aspects must be considered. A fundamental one concerns the kind of represen-
tation to be exploited. In this respect, it is quite clear that the most important
feature to understand a table lies in its spacial structure, which in turn is made
up of several relationships among the cells (both spacial and content ones). In-
deed, it is self-evident that, when trying to understand a table, and specifically
its components as described above, these are the parameters that any human
considers. As a consequence, propositional techniques don’t have a sufficient
representational power to handle this kind of complexity, and first-order logic
approaches must be considered. In particular, the following features/predicates
were deemed as profitable for table description:

Table boundaries

— Columns and Rows, and adjacency between them

— Cells and their belonging to a given row and column
— Cell content type

It should be noted that, in the proposed setting, the whole set of elements (stub,
table cells and headings, caption, notes) associated to a table is represented
in a Comma Separated Values (CSV) file, and hence in this file not only the
actual table elements, but also caption and notes (if any) are represented as
cells. Thus, there is no structural hint in the CSV file to distinguish different
kinds of elements. In particular, caption and notes are considered as belonging
to a single cell (typically in the first column), and the content of multi-row or
multi-column cells is assumed to be placed in the (top-left)-most cell.

Another issue is the choice of classes to be learned. A straightforward pos-
sibility would be learning, for each cell, the type of table component to which
it belongs. However, this would cause a significant growth in the number of ex-
amples, which would affect computational costs, and would be more difficult to
handle in the subsequent classification phase (because each cell would be clas-
sified independently of the others (so that, for example, a data cell might be
identified in the heading section). To solve the former problem, and to reduce
the impact of the latter, a different solution was adopted. Four classes were de-
fined as shown in Figure 2, that are non-redundant and are sufficient, alone, to
univoquely determine the whole table structure:

home_stub The top-left cell in the stub;
end_stub The bottom-right cell in the stub;
home_data The top-left cell in the data;
end_data The bottom-right cell in the data.
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caption;
caption,,
home_stub
Stub Column heading
end_stub
home_data
Row heading Data
end_data
note;
note,,
caption;
caption,,
single_stub Column Heading
home_data
Row heading Data
end_data
notex
note,,

Fig. 2. Classes for the table structure learning problem

In fact, either end_stub or home_data is redundant, because the home_data cell
is always assumed to be placed just one column to the right, and one row below,
the end_stub. Conversely, if classes are to be considered mutually exclusive, an
additional class must be included, to specifically identify the case of a stub in
which home_stub and end_stub coincide:

single_stub The stub cell, in the case of a single-cell stub.

Indeed, the captions can be identified as the content cell above the home_stub
row, and the notes as the content cells below the end_data row; the column
heading cells are those in the columns to the right of the end_stub column and
in the rows between the home_stub row and the end_stub row; the row heading
cells are those in the rows below the end_stub row and in the columns between
the home_stub column and the end_stub column.

The last question concerns how rigid the learned models should be. Due to
the problem being very multi-faceted, and to the lack of stable criteria to identify
the table components, it is desirable that the learned models are quite flexible,
with a preference for statistical approaches over purely logical ones.
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3.1 Lynx: A Statistical Relational Learning Approach

The SRL approach Lynx [3] was used here to tackle the specific problem of crit-
ical cells identification in tables. Lynx implements a probabilistic query-based
classifier, using first-order logic as a representation language. A first-order al-
phabet consists of a set of constants, a set of variables, a set of function symbols,
and a non-empty set of predicate symbols. Both function symbols and predi-
cate symbols have a natural number (its arity) assigned. A term is a constant
symbol, a variable symbol, or an n-ary function symbol f applied to n terms
t1,t2, ..., tn. An atom p(ty,...,t,) is a predicate symbol p of arity n applied
to n terms ¢;. An atom [ and its negation [ are said to be (resp., positive and
negative) literals. Lynx adopts the relational framework, and the corresponding
query mining algorithm, reported in [4].

Feature Construction via Query Mining The first step of Lynx carries out
a feature construction process by mining frequent queries with an approach sim-
ilar to that reported in [11]. The algorithm for frequent relational query mining
is based on the same idea as the generic level-wise search method, known in data
mining from the Apriori algorithm [1]. The algorithm starts with the most gen-
eral queries. Then, at each step it tries to specialize all the candidate frequent
queries, discarding the non-frequent queries and storing those whose length is
equal to the user specified input parameter maxsize. For each new refined query,
semantically equivalent queries are detected (using the fpr-subsumption rela-
tion [7]) and discarded. The algorithm uses a background knowledge B con-
taining the examples and a set of constraints that must be satisfied by the
generated queries, among which: maxsize (M), maximal query length; type (p)
and mode (p), denote, respectively, the type and the input/output mode of the
predicate’s arguments p, used to specify a language bias; key([p1,pa,...,pnl)
specifies that each query must have one of the predicates p1, ps, ... p, as a start-
ing literal. Given a set of relational examples D defined over a set of classes C,
the frequency of a query p, freq(p, D), corresponds to the number of examples
s € D such that p subsumes s.

Query-based Classification After identifying the set of frequent queries,
the next question is how to use them as features in order to correctly clas-
sify unseen examples. Let X be the input space of relational examples, and
Y =1{1,2,...,Q} denote the finite set of possible class labels. Given a training
set D = {(X;,Y;)|1 <i < m}, where X; € X is a single relational example and
Y; € Y is the label associated to X;, the goal is to learn a function h : X — )Y
from D that predicts the label for each unseen instance. Let P, with |P| = d, be
the set of constructed features obtained in the first step of the Lynx system (the
queries mined from D), as previously reported. For each example X, € X we can
build a d-component vector-valued random variable x = (z1, z2,...,24) where
each x; € x is 1 if the query p; € P subsumes example Xy, and 0 otherwise, for
each 1 <34 <d.
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Using Bayes’ theorem, if p(Y}) describes the prior probability of class Y}, then
the posterior probability p(Y;|x) can be computed from p(x|Y;) as p(Yj|x) =
p(x|Y;)p(Y;)
S p(x[Yi)p(Ys)
classifier is said to assign vector x to class Y if g;(x) > g¢;(x) for all j # 1.
Taking g;(x) = P(Y;|x), the maximum discriminant function corresponds to the
mazimum a posteriori (MAP) probability. For minimum error rate classification,

the following discriminant function will be used

Given a set of discriminant functions g¢;(x), ¢ = 1,...,Q, a

9i(x) = Inp(x|Y;) + In P(Y5). (1)

We are considering a multi-class classification problem involving discrete fea-
tures. In this problem the components of vector x are binary-valued and condi-
tionally independent. In particular, let the component of vector x = (z1,...,2q)
be binary valued (0 or 1). We define p;; = Prob(z; = 1]Y; ) i=1,...,a With the com-

=1,.

ponents of x being statistically independent for all x; € x. The factors pij can be
estimated by frequency counts on the training examples, as p;; = = supporty, (pi)-

By assuming conditional independence we can write P(x|Y;) as a product
of the probabilities of the components of x. Given this assumption, a particu-
larly convenient way of writing the class-conditional probabilities is as follows:
P(x|Y;) = Hle(pij)zi (1—p;;)*~*. Hence, Eq. 1 yields the discriminant function

g;(x) = Inp(x|Y;) + Inp(Y; Zmlln +Zln 1—pi)+Inp(Y;). (2)

_p” =1

The factor corresponding to the prior probability for class Y; can be estimated
from the training set as p(Y;) = H(X’Y)ED‘DS"t' Y=Yi} ,1 <4 < Q. The minimum
probability of error is achieved by the following decision rule: decide Yy, 1 < k <

Q,ifVj,1<j<QANj#k:gr(x)> g;(x), where g;(-) is defined as in Eq. 2.

Feature Selection with Stochastic Local Search After constructing a set
of features, and presenting a method to use those features to classify unseen
examples, the problem is how to find a subset of these features that optimizes
prediction accuracy. The optimization problem of selecting a subset of features
with a superior classification performance may be formulated as follows. Let P
be the constructed original set of queries, and let f : 2Pl — R be a function
scoring a selected subset X C P. The problem of feature selection is to find a
subset X C P such that f(X) = maxzcp f(Z). An exhaustive approach to this
problem would require examining all 2/”! possible subsets of the feature set P,
making it impractical for even small values of |P|. The use of a stochastic local
search procedure [8] allows to obtain good solutions without having to explore
the whole solution space.

Given a subset P C P, for each example X; € & we let the classifier find

the MAP hypothesis ﬁp(Xj) = argmax; ¢;(x;) by adopting the discriminant
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function reported in Eq. 1, where x; is the feature based representation of ex-
ample X, obtained using queries in P. Hence the initial optimization prob-
lem corresponds to minimize the expectation E[lﬁp(xj);éyj] where L (x,)2y; 18

the characteristic function of training example X; returning 1 if ﬁp (X;) #Y75,
and 0 otherwise. Finally, given D the training set with |[D| = m and P a set
of features, the number of classification errors made by the Bayesian model is
errp(P) = mE[lﬁp(Xj);éYj]'

Consider a combinatorial optimization problem, where one is given a dis-
crete set X of solutions and an objective function f : X — R to be minimized,
and seek a solution z* € X such that Vo € X : f(2*) < f(x). A method to
find high-quality solutions for a combinatorial problem consists of a two-step
approach made up of a greedy construction phase followed by a perturbative
local search [8]. GRASP [6] solves the problem of the limited number of different
candidate solutions generated by a greedy construction search method by ran-
domizing the construction method. GRASP is an iterative process combining at
each iteration a construction and a local search phase. In the construction phase
a feasible solution is built, and then its neighborhood is explored by the local
search. The Lynx system includes an implementation of the GRASP procedure in
order to perform the feature selection task, as reported in [3].

4 Problem Characterization and Validation

Lynx has been applied to a dataset consisting of 100 table descriptions. The
dataset? is a collection of tables randomly selected from ten large statistical web
sites [14]. HTML tables are represented in Comma Separated Value (CSV) files.
Information about each table cell (its contained value and its absolute position in
terms of row and column index) are used to provide its relational representation
to be exploited by Lynx. The goal is to correctly predict the label of the critical
cells belonging to each table. In particular, each table cell has been labeled to
belong to one of the following classes: caption, note, home_data, end_data,
home_stub, end_stub, and single_stub.

Figure 3 reports a sample table description adopting the relational language
we used. In particular, predicate 1label/2 indicates the corresponding class la-
bel of a cell; row/3 (resp., col/3) define the position and the identifier of a row
(resp., column) belonging to the table; next_row/2 (resp., next_col/2) denote
the spatial relationship between two adjacent rows (resp., columns); and finally,
cell/4 specifies the type of a cell. Given a table (also including caption and
notes, if any), a row/3 (resp., col/3) atom is introduced for each row (resp., col-
umn) of the CSV file, reporting as arguments the table identifier, the row (resp.,
column) identifier, and its index. Then, suitable next_row/2 (resp., next_col/2)
atoms are introduced to link adjacent rows (resp., columns) to each other in the

3 The DocLab Dataset for Evaluating Table Interpretation Methods available at
http://www.iapr-tcll.org/mediawiki/index.php/Datasets_List.
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doc_table(c10076) .
label(c10076_2_1, single_stub).
label(c10076_1_1, caption).
label(c10076_3_2, home_data).

row(c10076, c10076_r_1, 1).
next_row(c10076_r_1, c10076_r_2).
row(c10076, c10076_r_2, 2).
next_row(c10076_r_2, c10076_r_3).
row(c10076, c10076_r_3, 3).

c0l(c10076, c10076_c_1, 1).
next_col(c10076_c_1, c10076_c_2).
c0l1(c10076, c10076_c_2, 2).
next_col(c10076_c_2, c10076_c_3).
co0l(c10076, c10076_c_3, 3).

cell(c10076_1_1, c10076_r_1, c10076_c_1, alphanumeric).
cell(c10076_2_1, c10076_r_2, c10076_c_1, empty).
cell(c10076_2_2, c10076_r_2, c10076_c_2, integer).
cell(c10076_3_2, c10076_r_3, c10076_c_2, numericSymbol).

Fig. 3. An example of a relational table description.

proper sequence. Finally, for each cell a cel1l/4 atom is added, reporting as ar-
guments the corresponding identifier, the associated row and column identifiers,
and the type of content.

Given a training set made up of the relational descriptions of critical cells
belonging to each table, Lynx is applied in order to construct the relevant re-
lational features maximizing the likelihood on the training data, as reported in
Section 3.1. After this first step the system build a model composed of probabilis-
tic query such as label(A),cell(B,A,C,D),next row(C,E),cell(B,_,E,D),
whose corresponding class probabilities are p(¢g|note) = 0.507, p(q|home_data) =
0.944, p(q|caption) = 0.497, p(q|single_stub) = 0.628, p(qlend_data) = 0.000,
p(glend_stub) = 0.714, and p(gq|home_stub) = 0.548. These probabilistic queries
are then used to predict critical cells belonging to testing tables.

Table 1 reports the results obtained with Lynx with a 10-fold cross valida-
tion in terms of accuracy, Conditional Log Likelihood (CLL), and areas under
the Receiver operating characteristic (ROC) and Precision Recall (PR) curve.
As we can see from the table, the results are very promising. The two labels
on which the system obtains best results are those regarding the data region.
While, it has some difficulties in correctly classifying the labels single_stub
and end_stub. The next step towards improving these results is to use some
collective classification techniques.
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| [AUC-ROC AUC-PRJ

caption 0,984 0,951

note 0,986 0,978

| [Accuracy CLL] horge St‘;)b 87322 8’232
end stu , ,

Dl\gjaé“t 306?2 '51’589 single stub| 0,989 0,810

— : : home data| 0,991 0,968

end data 1,000 0,998

Mean 0,989 0,922

Dev.St. 0,006 0,075

Table 1. Accuracy, CLL, AUC of ROC and PR with a 10-fold cross validation.

5 Conclusions

Tables are very informative components of documents, that compactly represent
many inter-related data. It would be desirable to extract these data in order to
make them available also outside the document. This requires to understand a
table structure. Machine learning solutions may help to deal with the extreme
variability in table styles and structures. We propose to exploit a first-order logic
representation to capture the complex spatial relationships involved in a table
structure, and a learning system that can mix the power of this representation
with the flexibility of statistical approaches. On a dataset including different
kinds of tables, encouraging results were obtained.

As a future work we are trying to combine the prediction of single critical
cell labels in order to improve the accuracy of the segmentation process. We
will adopt a collective classification procedure whose aim should be to improve
the likelihood of a prediction for a given label knowing the probability of the
prediction made on the neighbor labeled cells with an iterative approach. The it-
erative procedure will combine expectation steps, predicting labels on the known
distribution, and maximization steps, improving the probability distribution.
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