Eliciting Multi-Dimensional Relational Patterns

Nicola Di Mauro, Teresa M.A. Basile, Grazia Bombini, Stefano Ferilli, and
Floriana Esposito

Universita degli Studi di Bari, Dipartimento di Informatica, 70125 Bari, Italy
{ndm, basile, gbombini, ferilli, esposito}@di.uniba.it

Abstract. Here the issue of discovery of frequent multi-dimensional pat-
terns from relational sequences is addressed. The great variety of ap-
plications of sequential pattern mining makes this problem one of the
central topics in data mining. Nevertheless, sequential information may
concern data on multiple dimensions and, hence, the mining of sequen-
tial patterns from multi-dimensional information results very important.
This work takes into account the possibility to mine complex patterns,
expressed in a first-order language, in which events may occur along dif-
ferent dimensions. Specifically, multi-dimensional patterns are defined as
a set of atomic first-order formulae in which events are explicitly repre-
sented by a variable and the relations between events are represented by
a set of dimensional predicates. A complete framework and an Relational
Learning algorithm to tackle this problem are presented along with some
experiments on artificial and real multi-dimensional sequences.

1 Introduction

The rapid growth of the amount of data stored in large databases has lead to
an increasing interest in the data mining research area and, in particular, to-
wards methods to discovery hidden structured patterns in large databases. The
sequences are the simplest form of structured patterns and different method-
ologies have been proposed to face the problem of sequential pattern mining,
firstly introduced by R. Agrawal and R. Srikant in [2], with the aim of captur-
ing the existent maximal frequent sequences in a given database. The issue of
discovering all frequent sequences of itemsets in a dataset is crucial when the
data to be mined have some sequential nature like events in the case of tempo-
ral information. Furthermore, some real world domains such as user profiling,
medicine, local weather forecast and bioinformatics show an inherent propension
to be modelled by means of sequences of events/objects related to each other.
This great variety of applications of sequential pattern mining makes this prob-
lem one of the central topics in data mining as showed by the research efforts
produced in recent years [1,23,7,18,19] .

However, some environments involve very complex components and features.
Thus, the classical existing data mining approaches, that look for patterns in
a single data table, have been extended to the multi-relational data mining
approaches that look for patterns involving multiple tables (relations) from a re-
lational database. This has led to the exploitation of a more powerful knowledge

representation formalism as first-order logic. Some works facing the problem of
knowledge discovery from spatial and temporal data in multi-relational data min-
ing research area are present in literature [16,20, 5,21, 14]. Nevertheless, there
exists no contributions presenting a framework to manage the general case of
multi relational data in which, for example, spatial and temporal information
may co-exist.

On the other hand, it is worth to note that sequential information might
concern data on multiple dimensions and, hence, the mining of sequential pat-
terns from multi-dimensional information turns out to be very important. An
attempt to propose a (two-dimensional) knowledge representation formalism to
represent spatio-temporal information based on multi-dimensional modal logics
is proposed in [3], while the first work presenting algorithms to mine multi-
dimensional patterns has been presented in 2001 by Pinto et al. [19]. However,
all the works in multi-dimensional data mining have been restricted to the propo-
sitional case, not involving a first-order representation formalism.

In this paper we provide an Inductive Logic Programming (ILP) [17] algo-
rithm for discovering first-order (DATALOG) mazimal frequent patterns in multi-
dimensional relational sequences. Multi-dimensional patterns are defined as a
set of atomic first-order formulae in which events are explicitly represented by a
variable and the relations between events are represented by a set of dimensional
predicates.

2 Mining Multi-Dimensional Patterns

We used Datalog [22] as representation language for the domain knowledge and
patterns, that here is briefly reviewed. A first-order alphabet consists of variables,
predicate symbols and function symbols (including constants). A term is defined
as a constant symbol (a function symbol of arity 0, i.e. followed by a 0-tuple of
terms) or a variable. An atom p(t1,...,t,) (or atomic formula) is a predicate
symbol p of arity n applied to n terms t;. Both [and its negation [are said to
be literals (resp. positive and negative literal) whenever [is an atomic formula.

A clause is a formula of the form VX,VXy ... VX, (L1 V Lo V...V L;VLi11V
...V L,,) where each L; is a literal and X1, X»,...X,, are all the variables oc-
curring in Ly VLy V... L; V... Ly,. Most commonly the same clause is written as
Ly,Lo,...«— L;, Liy1,...Ly. Clauses, literals and terms are said to be ground
whenever they do not contain variables. A Horn clause is a clause which con-
tains at most one positive literal. A Datalog clause is a clause with no function
symbols of non-zero arity; only variables and constants can be used as predicate
arguments.

A substitution 6 is defined as a set of bindings {X; < a1,..., X, «— an}
where X;,1 < i < n is a variable and a;,1 < i < n is a term. A substitution
0 is applicable to an expression e, obtaining the expression ef, by replacing all
variables X; with their corresponding terms a;.

Definition 1 (1-dimensional relational sequence). A I-dimensional rela-
tional sequence may be defined as an ordered list of Datalog atoms separated by
the operator <, 11 <ly < --- <l,.

However, in order to make the proposed framework more general, the concept
of fluents introduced by J. McCarthy in [15] should be considered: “After having
defined a situation, s, as the complete state of the universe at an instant of time
t, then a fluent is defined as a function whose domain is the space of situations. In
particular, a propositional fluent ranges in (true,false). For example, raining(z,
s¢) is true if and only if it is raining at the place x in the situation s;.”

If we consider a sequence as an ordered succession of events for each dimen-
sion, a fluent may be used to indicate that an atom is true for a given event. In
particular, in our description language we can distinguish two kinds of Datalog
atoms: dimensional and non-dimensional atoms. Specifically:

— non-dimensional atoms, that may be divided into

o fluent atoms: explicitly referring to a given event (i.e., in which one of
its argument denotes an event);

e non-fluent atoms: denoting relations between objects (with arity greater
than 1), or characterizing an object (with arity 1) involved in the se-
quence;

— dimensional atoms: referring to dimensional relations between events in-
volved in the sequence.

The choice to add the event as an argument of the predicates is necessary for
the general case of n-dimensional sequences with n > 1. In this case, indeed, the
operator < is not sufficient to express multi-dimensional relations and we must
use its general version <;,1 < i < n. Specifically, (e; <; e2) denotes that the
event e; gives rise to the event es in the dimension ¢. Hence, in our framework a
multi-dimensional data is supposed to be a set of events, and to each dimension
corresponds a sequence of events.

Definition 2 (Multi-dimensional relational sequence). A multi-dimensional
relational sequence is a set of Datalog atoms, involving k events and concerning n
dimensions, in which there are non-dimensional atoms (fluents and non-fluents)
and each event may be related to another event by means of the <; operators,
1< <n.

In order to represent multi-dimensional relational patterns, some dimensional
operators must be introduced. The following symbols for describing general event
relationships along many dimensions have been adopted. In particular, given a
set D of dimensions, in the following are reported the multi-dimensional opera-
tors:

— <;: next step on dimension ©,Vi € D. This operator indicates the direct
successor on the dimension ¢. For instance, (¢ <¢me y) denotes that the event
y is the direct successor of the event x on the dimension time. next_i/2 is
the corresponding Datalog predicate used to denote the successor operator;

— <;: after some steps on dimension i,¥i € D. This operator encodes the
transitive closure of <;. For example, (y <spatialz 2) States that the event z
occurs somewhere after the event y on the dimension spatialz. follow_i/2
is the corresponding Datalog representation;

— QP exactly after n steps on dimension i,Vi € D. In particular it calculates
the n-th direct successor. For instance, (z Ospatialz w) states that the event
w 18 the n-th direct successor of the event = on the dimension spatialz. The
followat_1/3 Datalog predicate is used to represent such a situation.

Note that, the dimensional characteristics in the sequences will be described
by using the <; operator, while the two dimensional operators <i; and O}, will
be used, in combination with <; operator, to represent the frequent discovered
patterns.

Definition 3 (Subsequence [9]). Given a sequence 0 = (e1ea---emy) of m
elements, a sequence o’ = (ejes---¢€}.) of length k is a subsequence (or pattern)
of the sequence o if

1.1 <k<m
3. Vi,j,1 <i<j<k3nl1<h<l<m:e =eyande)=e.

The frequency of a subsequence in a sequence is the number of different mappings
from elements of o’ into the elements of o such that the previous conditions hold.

Note that this is a general definition of subsequence, in our case the gaps rep-
resented by the third condition are modelled by the <; and (O} operators as
reported in the following definition.

Definition 4 (Multi-dimensional relational pattern). A multi-dimensional
relational pattern is a set of Datalog atoms, involving k events and regarding n
dimensions, in which there are non-dimensional atoms and each event may be
related to another event by means of the operators <;, <; and O} operators,
1< <n.

We are interested in finding maximal frequent patterns with a high frequency
in long sequences. A pattern ¢’ of a sequence o is mazimal if there is no pattern
0" of o more frequent than ¢’ and such that ¢’ is a subsequence of ¢”’. In order
to calculate the frequency of a pattern over a sequence it is important to define
the concept of sequence subsumption.

If we indicate the operator <; with the Datalog predicate next_i(X,Y), the
Datalog definition of the operators OF and <i; can be formulated as follows:

followat_i(1,X,Y) < next_i(X,Y), !.
followat_i(K,X,Y) < next_i(X,Z), K1 is K - 1, followat_i(K1,Z,Y).

follow_i(X,Y) « next_i(X,Y).

follow_i(X,Y) < next_i(X,Z), follow_i(Z,Y).

These definitions are added to the background knowledge B and used to
prove the dimensional operators appearing in the patterns using the following
definition of subsumption. Given S a multi-dimensional relational sequence, in
the following we will indicate by X' the set of Datalog clauses BUU, where U is
the set of ground atoms in S.

Definition 5 (Subsumption). Given P a multi-dimensional relational pattern
and S a multi-dimensional relational sequence, let X = BUU. The pattern P
subsumes the sequence S, written as P C S, iff there exists an SLDg1-deduction
of P from X.

An SLDor-deduction is an SLD-deduction under Object Identity. In the Ob-
ject Identity framework, within a clause, terms that are denoted with different
symbols must be distinct, i.e. they must represent different objects of the domain.

3 The algorithm

After having defined the formalism for representing sequences and patterns,
here we describe the algorithm for frequent multi-dimensional relational pattern
mining based on the same idea of the generic level-wise search method, known in
data mining from the APRIORI algorithm [1]. The level-wise algorithm makes a
breadth-first search in the lattice of patterns ordered by a specialization relation
<. The search starts from the most general patterns, and at each level of the
lattice the algorithm generates candidates by using the lattice structure and
then evaluates the frequencies of the candidates. In the generation phase, some
patterns are taken out using the monotonicity of pattern frequency (if a pattern
is not frequent then none of its specializations is frequent).

The mining method is outlined in Algorithm 1. The generation of the fre-
quent patterns is based on a top-down approach. The algorithm starts with the
most general patterns. These initial patterns are all of length 1 and are gener-
ated by adding to the empty pattern a non-dimensional atom. Successively, at
each step it tries to specialize all the potential frequent patterns, discarding the
non-frequent patterns and storing the ones whose length is equal to the user
specified input parameter maxsize. Furthermore, for each new refined pattern,
semantically equivalent patterns are detected, by using the fp-subsumption re-
lation, and discarded. Note that the length of a pattern is defined as the number
of non-dimensional atoms. In the specialization phase, the specialization oper-
ator under #OI-subsumption is used. Basically, the operator adds atoms to the
pattern.

The algorithm uses a background knowledge B (a set of Datalog clauses)
containing the sequence and a set of constraints that must be satisfied by the
generated patterns. In particular B contains:

— mazsize(M): maximal pattern length (i.e., the maximum number of non-
dimensional predicates that may appear in the pattern);

Algorithm 1 MDLS

Require: X' = BUU, where B is the background knowledge and U is the set of ground

atoms in the sequence S.

Ensure: P,,..: the set of maximal frequent patterns

1:
2:
3:

10:
11:
12:
13:
14:
15:

P «— { initial patterns }
Praz — 0
while P # () do
Py —]
for all pe P do
/* generation step */
P, — P,U {all the specializations of p that satisfy all the constraints
posconstraints, negconstraints or atmostone}
P~
for all p € P; do
/* evaluation step */
if freq(p) > minfreq then
if length(p) = maxsize then
Pras — PmazU {p}
else
P — PU {p}

minfreq(m): this constraint indicates that the frequency of the patterns must
be larger that m;

dimension(next_i): this kind of atom indicates that the sequence contains
events on the dimension i. One can have more that one of such atoms, each
of which denoting a different dimension. In particular, the number of these
atoms represents the number of the dimensions.

type(p): denotes the type of the predicate’s arguments p;

mode(p): denotes the input output mode of the predicate’s arguments p;
negconstraint([pi,pa, ..., pn]): specifies a constraint that the patterns must
not fulfill, i.e. if the clause (p1,pse,...,pn) subsumes the pattern then it
must be discarded. For instance, negconstraint([p(X,Y),q(Y)]) discards all
the patterns subsumed by the clause (p(X,Y),q(Y));

posconstraint([py, pa, .. .,pn/): specifies a constraint that the patterns must
fulfill. It discards all the patterns that are not subsumed by the clause
(P1,p2:- - Pn);

atmostone([p1,pa,...,pn/): this constraint discards all the patterns that
make true more than one predicate among p1, ps, . .., pn. For instance, atmo-
stone([red(X),blue(X),green(X)]) indicates that each constant in the pattern
can assume at most one of red, blue or green value;

key([p1,pa, - . .,pn/): it is optional and specifies that each pattern must have
one of the non-dimensional predicates p1,pa,...p, as a starting literal.

The use of the dimension(next_i) literals, that specify the number of di-

mensions the sequence is based on, allows to the corresponding definitions of the
predicates followat_i/3 and follow_i/2 to be automatically generated and
added to the background knowledge 5.

Classical mode and type declarations are used to specify a language bias
indicating which predicates can be used in the patterns and to formulate con-
straints on the binding of variables. The solution space is further pruned by us-
ing some positive and negative constraints specified by the negconstraint and
posconstraint literals. The last pruning choice is defined by the atmostone
literals. This last constraint is able to describe that some predicates are of the
same type.

Since each pattern a) must start with a non-dimensional predicate, or with
a predefined key, and b) its frequencey must be less than the sequence length,
the frequency of a pattern can be defined as follows.

Definition 6 (Frequency). Given a multi-dimensional relational pattern P =
(p1,p2,---,0n) and S a multi-dimensional relational sequence, the frequency of
pattern P is equal to the number of different ground literals used in all the possible
SLDoi-deductions of P from X = BUU that make true the literal p;.

The refinement of pattern is obtained by using a refinement operator p that
maps each pattern to a set of specializations of the pattern, i.e. p(p) C {p'|p 2 p'}
where p =< p’ means that p is more general of p’ or that p subsumes p’. In
particular, given the set D of dimensions, the set F of fluent atoms, the set P of
non-fluent atoms, the refinement operator for specializing the patterns is defined
as follows:

adding a non-dimensional atom
— the pattern S is specialized by adding a non-dimensional atom F € F
(a fluent) referring to an event already introduced in S;
— the pattern S is specialized by adding a non-dimensional atom P € P;
adding a dimensional atom
— the pattern S is specialized by adding the dimensional atom (z <; y)
1 € D, relating the events x and y, iff 3 a fluent F € F in S which event
argument is « and there not exist the atoms (z <; y) and (x O y) in S;
— the pattern S is specialized by adding the dimensional atom (z <; y)
1 € D, relating the events x and y, iff 3 a fluent F € F in S which event
argument is « and there not exist the atoms (z <; y) and (z QP y) in S;
— the pattern S is specialized by adding the dimensional atom (z O y)
1 € D, relating the events x and y, iff 3 a fluent F' € F in S which event
argument is « and there not exist the atoms (z <; y) and (z <; y) in S.

The dimensional atoms are added iff there exists a fluent atom referring to
its starting event. This is to avoid unuseful chains of dimensional predicates like
this p(e;,a) (e1 <; ez) (ex <; e3) (es <; eq), that is naturally subsumed by
pler,a) (e O? e4). We recall that the length of a pattern P is equal to the
number of non-dimensional atoms in P.

4 Experiments

MDSL has been implemented in Yap Prolog and evaluated by making some
experiments on an artificial dataset and on trace files collected from different

users of Unix csh [6,9]. The analysis of the use of Unix command shell represents
one of the classic applications in the domain of adaptive user interfaces and user
modeling. Greenberg [6] collected logs from 168 users of the unix csh, divided
into 4 target groups: 55 novice programmers, 36 experienced programmers, 52
computer scientists and 25 non-programmers. Table 1 reports statistics of finding
frequent patterns for 3 users logs from the Greenberg dataset.

Each Greenberg’s log file corresponding to a user is divided into login sessions
denoted by a starting and an ending time record. Each command entered in each
session has been annotated with the current working directory, alias substitution,
history use and error status. Furthermore, each command name may be followed
by some otpions and some parameters. For instance the command 1s -a *.c
has name 1s, option -a and parameter *.c.

As pointed out in [9], this problem is a relational problem, since commands
are interrelated by their execution order (or time), and each command can be
eventually related to one or more parameters. A shell log may be viewed as a 2-
dimensional sequence, since each command is followed by another command (the
first dimension) and each command line is composed by an ordered sequence of
tokens (i.e., command name, options and parameters). Each shell log has been
represented as a set of logical ground atoms as follows.

command (e) is the predicate used to indicate that e is a command. The com-
mand name has been used as a predicate symbol applied to e;

parameter(e,p) has been used to indicate that e has the parameter p. The
parameter name has been used as a predicate symbol applied to p;

current_directory(c,d) indicates that d is the current directory of the com-
mand c;

next_c(cl,c2) (<.) indicates that the command c2 is the direct command
successor of ci;

next_p(pl,p2) (<,) indicates that the parameter p2 is the direct parameter
successor of pl.

For instance the following shell log

Cp paper.tex newpaper.tex
latex newpaper
xdvi newpaper

should be translated as

command(c1), ‘$cp’(cl),

next_p(cl,clpl), parameter(clpl, ‘paper.tex’),

next_p(clpl,clp2), parameter(clp2, ‘newpaper.tex’),
next_c(cl,c2), ‘$latex’(c2),

next_p(c2,c2pl), parameter(c2pl, ‘newpaper’),
next_c(c2,c3), ‘$xdvi’(c3),

next_p(c3,c3pl), parameter(c3pl, ‘newpaper’)

In this way it is possible to describe patterns such as

command (L), ‘$latex’(L),
next_p(L,LP), parameter(LP,P),

next_c(L,X), ‘$xdvi’(X),
next_p(X,XP), parameter(XP,P)

Table 1 reports statistics on MDLS performance on the Greenberg dataset.
The first four columns denote, respectively, the user name, the number of literals
of the sequence, the number of sessions for each user log file and the total number
of commands in the log file. For each user some experiments has been made.
The kind of experiment carried out is denoted in the fifth column that reports
the operators used in the experiment. For instance <o and <p indicate that
only these two operators have been used in the experiment. We see that, as
the number of commands and dimensional operators grows, the execution time
increases. Note that each session represents a separate sequence and a log file is
a collection of sequences. There is no correlation between two session in a log
file.

Table 1. MDLS performances (time in secs.). [S]: n. of literals in the sequence; |Ses]:
n. of sessions for user log file; |C|: total number of commands in the log file; Op:
dimensional operators used; L: max length of the patterns; F: min freq of the patterns;
IMP|: n. of found maximal patterns; Sp: required specializations.

User |S| [Ses| |C| |Op L F Time MP| Sp
<c 55 117 45 3597
<c<p 55 268 45 9513
n9 2654 73 357 |<c O 55 258 91 8495
<c <c O¢ 55 28.94 149 29081
<cp <lop Obp|5 5 99.06 218 76299
<c 510 236 38 4512
<c<p 510 3.58 18 6434
nl7 5366 61 848 |<c O 510 7.95 47 10808
<c <c O 510 37.06 39 19198
<c,p <c,p Oc,p|5 10 144.38 25 25142
<c 515 6.10 64 7716
<c<p 515 19.33 77 24046
<c O& 515 16.30 139 20744
<c <c O¢ 5 15 138.06 162 51363
n7 12355 80 1231|<¢ 580 1.78 9 953
<c<p 580 4.06 11 2493
<c O¢ 580 4.14 16 2479
<c < OF 580 42.55 29 6745
<c,p <dc,p Od,p|5 80164.99 49 17505

5 Related Work

As already pointed out, the problem of sequential pattern mining is a central
one in a lot of data mining applications and many efforts have been done in
order to propose purposely designed methods to face it. Most of the works have
been restricted to propositional patterns, that is, patterns not involving first
order predicates. One of the early domains that highlights the need to describe
with structural information the sequences was the bioinformatic. Thus, the need
to represent many real world domains with structured data sequences became
more unceasing, and consequently many efforts have been done to extend exist-
ing or propose new methods to manage sequential patterns in which first order
predicates are involved. On the other hand, for a fair description of some appli-
cation domains, the sequences must involve not only relational objects but also
the evolution of each object in more than one dimension. Unfortunately, to our
knowledge, there are no methods able to manage sequences whose description
involves both relations and more than one dimensions. In the following a brief
survey of the techniques proposed to deal with relational or multi-dimensional
sequences is presented along with the modelled application domain.

In [9] is presented a work, in the domain of user modelling, that helps shell
users by creating scripts (a sequence of commands) from shell logs, that auto-
mate frequent performed tasks. The authors see this task as a relational learning
problem, indeed commands may be interrelated by their execution order, and
each command is possibly related to one or more parameters, giving out a repre-
sentation of a shell log as a set of logical ground atoms. After having transformed
shell logs in a relational representation, they applied the Warmr [5] system, an
upgrade of the propositional Apriori algorithm that can detect first order logic
association rules, for generating scripts. They used a specific predicate to specify
that two commands are considered next to each other in a sequence.

Warmr [5] is based on the level-wise search of conventional association rule
learning systems of the Apriori-family [1]. It extends these systems by looking for
frequent patterns that may be expressed as conjunction of first-order literals. In
Warmr a pattern is defined as a conjunction of first order literals. It performs a
top-down level-wise search, starting with the key and refining patterns by adding
literals to them. Infrequent patterns (i.e. patterns whose frequency is below a
predefined threshold) are pruned as are their refinements. With Warmr it is
possible to generate patterns that are syntactically different but semantically
equivalent. This is due to the redundant conditions that may be added to a
pattern or to the fact that the same pattern may be expressed in different ways.

As already described in [4], this problem may be avoided by using the Warmr’s
configurable language bias or by its constraint specification language. However,
this solution does not solve the problem at all. Indeed, the constraints that may
be defined in Warmr, by using its constraint specification language, are only syn-
tax based, and they are not sufficient to handle semantic dependencies. For this
and other limitations already described in [9, 8], in some cases the Warmr sys-
tem is not able to calculate frequent subsequences and it is difficult to correctly
represent the specific sequence mining task.

In [13] are presented a logic language, SeqLog, for mining sequences of logical
atoms, and the inductive mining system MineSeqlLog, that combines principles
of the level-wise search algorithm with the version space in order to find all
patterns that satisfy a constraint by using an optimal refinement operator for
SeqLog. SeqLog is a logic representational framework that adopts two operators
to represent the sequences: one to indicate that an atom is the direct successor
of another and the other to say that an atom occurs somewhere after another.
Furthermore, based on this language, the notion of subsumption, entailment
and a fix point semantic are given. However, with Seql.og one can represent
unidimensional sequences only.

In [12] it is proposed an extension of classical Fisher kernels, working on
sequences over flat alphabets, in order to make they able to model logical se-
quences, i.e., sequences over an alphabet of logical atoms. Fisher kernels were
developed to combine generative models with kernel methods, and have shown
promising results for the combinations of support vector machines with (log-
ical) hidden Markov models and Bayesian networks. Successively, in [10] the
same authors proposed an algorithm for selecting logical hidden Markov mod-
els from data. Hidden Markov models are one of the most popular methods
for analyzing sequential data, but they can be exploited to handle sequence of
flat /unstructured symbols. The proposed logical extension [11] overcomes such
weakness by handling sequences of structured symbols by means of a probabilis-
tic ILP framework.

The work above reported extend/propose techniques to mine sequences in-
volving relational objects. However, these methods, both logical and proposi-
tional, do not mention the possibility to manage patterns in which more than
one dimension is take into account. On the other hand, it is not wrong to af-
firm that for most of the applications of real world domain generally the pattern
sequences deal with different events each of which should be associated with
different dimensions.

6 Conclusions

The issue of discovering sequential patterns from sequence data have drawn a lot
of research efforts both in single data table and in multiple data table, known as
multi-relational data. Although much work has been done in the area, no pre-
vious research revealed ways to find sequential patterns from multidimensional
sequence data and in particular sequential patterns from multi-dimensional se-
quence expressed in first-order logic. Indeed, some works faces the problem of
knowledge discovery from spatial and temporal data in the multi-relational data
mining research area but there exists no contributions to manage the general
case of multi-dimensional data in which, for example, spatial and temporal in-
formation may co-exist. Other works on multi-dimensional data mining, in some
cases thinking to the concept of multi-dimension of a sequence as the presence of
multiple attributes in data descriptions, have been restricted to the propositional
case, not involving a first-order representation formalism. Finally, other works

propose a (two-dimensional) knowledge representation formalism to represent
spatio-temporal information based on multi-dimensional modal logics.

In this paper we proposed a logical framework for mining multi-dimensional
patterns in which many dimensions can be specified. What we can obtain are
maximal frequent multi-dimensional patterns described in a first order language.
One of the most important characteristic of using logical framework for sequences
is that we can incorporate additional information by using a background knowl-
edge, and that any relation between atoms can be expressed or learned. The
result is a dedicated system in which are incorporated specific language bias for
multi-dimensional data in order to rise a faster execution and a smaller search
space.

Acknowledgements

The authors would like to thank Jan Ramon for giving useful suggestions on
setting the system Warmr and Saul Greenberg for providing the test Unix log
data.

This work is partially funded on the Apulian Regional Project DDTA “Dis-
tretto Digitale a Supporto della Filiera Produttiva del Tessile-Abbigliamento”.

References

1. R. Agrawal, H. Manilla, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast dis-
covery of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307-328. AAAT Press, 1996.

2. R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the Int.
Conf. on Data Engineering (ICDE95), pages 3—14, 1995.

3. Brandon Bennett, Anthony G. Cohn, Frank Wolter, and Michael Zakharyaschev.
Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Ap-
plied Intelligence, 17(3):239-251, 2002. Submitted 2000.

4. H. Blockeel, J. Firnkranz, A. Prskawetz, and F. Billari. Detectin temporal change
in event sequences: an application to demographic data. In Proceedings of the
5th European Conference on Principles of Data Mining and Knowledge Discovery,
pages 29-41. Springer, 2001.

5. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7-36, 1999.

6. S. Greenberg. Using unix: collected traces of 168 users. Research Report 88/333/45,
Department of Computer Science, University of Calgary, Alberta, 1988.

7. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gener-
ation. In ACM-SIGMOD Int. Conf.Management of Data (SIGMOD’00), pages
1-12, 2000.

8. N. Jacobs. Relational Sequence Learning and User Modelling. PhD thesis, Depart-
ment of Computer Science, K.U.Leuven, Leuven, Belgium, October 2004.

9. N. Jacobs and H. Blockeel. From shell logs to shell scripts. In C. Rouveirol and
M. Sebag, editors, Proceedings of the 11th International Conference on Inductive
Logic Programming, volume 2157, pages 80-90. Springer, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

K. Kersting, .. De Raedt, , and T. Raiko. Logical hidden markov models. Journal
of Artificial Intelligence Research - JAIR, 25:425-456, April 2006. Submitted 2005.
K. Kersting and T. Raiko. ‘Say EM’ for selecting probabilistic models for logical
sequences. In F. Bacchus and T. Jaakkola, editors, Proceedings of the 21st Con-
ference on Uncertainty in Artificial Intelligence (UAI05), pages 300-307. AUAI
Press, 2005.

Kristian Kersting and Thomas Gértner. Fisher kernels for logical sequences. In
Jean-Francois Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi,
editors, Machine Learning: ECML 2004, Proceedings of the 15th European Con-
ference on Machine Learning, volume 3201 of Lecture Notes in Computer Science,
pages 205-216. Springer, 2004.

S.D. Lee and L. De Raedt. Constraint based mining of first order sequences in
SeqLog. In R. Meo, P.L. Lanzi, and M. Klemettinen, editors, Database Support for
Data Mining Applications, volume 2682 of LNCS, pages 155-176. Springer, 2004.
D. Malerba and F.A. Lisi. Discovering associations between spatial objects: An
ilp application. In Proceedings of the 11th International Conference on Inductive
Logic Programming, volume 2157 of LNCS, pages 156—-166. Springer, 2001.

J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, 1969. reprinted in McC90.

S. Moyle and S. Muggleton. Learning programs in the event calculus. In Proceedings
of the 7th International Workshop on Inductive Logic Programming, pages 205—-212.
Springer, 1997.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629-679, 1994.

P.J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in
large databases. In Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, pages 18-25, 2002.

H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. Multi-dimensional
sequential pattern mining. In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management, pages 81-88, New York,
NY, USA, 2001. ACM Press.

L. Popelinsky. Knowledge discovery in spatial data by means of ILP. In Proceedings
of the Second European Symposium on Principles of Data Mining and Knowledge
Discovery, pages 185-193. Springer, 1998.

J. Rodriguez, C. Alonso, and H. Béstrom. Learning first order logic time series clas-
sifiers. In J. Cussens and A. Frisch, editors, Proceedings of the 10th International
Workshop on Inductive Logic Programming, pages 260—-275. Springer, 2000.

J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Com-
puter Science Press, 1988.

M.J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning Journal: Special issue on Unsupervised Learning, 42(1/2):31-60, 2001.

