
Mining Frequent Patterns from
Multi-Dimensional Relational Sequences

Nicola Di Mauro, Teresa M.A. Basile, Stefano Ferilli, and Floriana Esposito

Università degli Studi di Bari, Dipartimento di Informatica, 70125 Bari, Italy

Abstract. The problem addressed in this paper regards the discov-
ering of frequent multi-dimensional patterns from relational sequences.
In a multi-dimensional sequence each event depends on more than one
dimension, such as in spatio-temporal sequences where an event may
be spatially or temporally related to other events. In literature, the
multi-relational data mining approach has been successfully applied to
knowledge discovery from complex data. This work takes into account
the possibility to mine complex patterns, expressed in a first-order lan-
guage, in which events may occur along different dimensions. A complete
framework and an Inductive Logic Programming algorithm to tackle this
problem is presented with preliminary experiments focussing on artificial
multi-dimensional sequences.

1 Introduction

The great variety of applications of sequential pattern mining, such as user pro-
filing, medicine, local weather forecast and bioinformatics, makes this problem
one of the central topics in data mining as showed by the research efforts pro-
duced in recent years [1, 22, 7, 17, 18]. Sequential information may concern data
on multiple dimensions and, hence, the mining of sequential patterns from multi-
dimensional information results very important. The first work on mining multi-
dimensional patterns has been presented in 2001 by Pinto et al. [18]. However, all
the works in multi-dimensional data mining have been restricted to the propo-
sitional case, not involving a first-order representation formalism.

Some works facing the problem of knowledge discovery from spatial and tem-
poral data in the multi-relational data mining research area [15, 19, 5, 20, 12] are
present in literature, but there exists no contributions to manage the general
case of multi-dimensional data in which, for example, spatial and temporal in-
formation may co-exist.

In this paper an Inductive Logic Programming (ILP) [16] algorithm for dis-
covering first-order (Datalog) maximal frequent patterns in multi-dimensional
relational sequences is provided. Multi-dimensional patterns are defined as a
set of atomic first-order formulae in which events are explicitly represented by a
variable and the relations between events are represented by a set of dimensional
predicates (next, follow, follow-at).

Although encoding temporal predicates in ILP is very simple, making a sys-
tem able to understand and use their semantic is crucial for efficiency. Some



recent works on mining logical patterns [9, 11, 13, 4] take into account temporal
sequences (i.e., 1-dimensional sequences) by using a purposely defined logical
temporal formalism. Instead, this work proposes a dedicated framework which
incorporates a specific language bias for multi-dimensional data, expressed in a
first-order logic, in order to rise a faster execution and a smaller search space.
The first-order logical representation gives us the possibility to encode temporal,
spatial and other dimensional spaces without requiring to discriminate between
them. Furthermore, it is possible to represent any other domain relations and
let them to co-exist with other dimensional ones.

An interesting application of multi-dimensional logical pattern mining is
modelling. A logical formalism for mining temporal patterns in a task of user
modelling has been proposed in [8] in which the user behaviour is described ac-
cording to the temporal sequences of his actions. The approach proposed in this
paper allows us to tackle many complex scenarios such as context modelling, in
which a situation and the actors involved in it evolve both in time and space.
For instance, we should think to profile a user accessing to a room (home, of-
fice, museum, etc.) by describing contextual information (such as position in the
room described by two spatial dimensions) and temporal information.

2 Mining Multi-Dimensional Patterns

We used datalog [21] as representation language for the domain knowledge and
patterns, that here is briefly reviewed. A term is defined as a constant symbol
or a variable. An atom p(t1, . . . , tn) is a predicate p of arity n applied to n terms
ti. A substitution θ is defined as a set of bindings {X1 ← a1, . . . , Xn ← an}
where Xi, 1 ≤ i ≤ n is a variable and ai, 1 ≤ i ≤ n is a term. A substitution
θ is applicable to an expression e, obtaining the expression eθ, by replacing all
variables Xi with their corresponding terms ai.

Definition 1. A 1-dimensional relational sequence may be defined as an ordered
list of datalog atoms separated by the operator <, l1 < l2 < · · · < ln.

Example 1. The following list of datalog atoms
p(a,b) < p(b,c) < p(c,a) < p(b,b)

represents a 1-dimensional sequence. In general, for this kind of sequences, re-
ferring to one dimension only, the operator < can be omitted as follows

p(a,b) p(b,c) p(c,a) p(b,b)
where is implicit, for instance, that the atom p(b,c) follows the atom p(a,b).

Hovewer, in order to make the proposed framework more general, the concept
of fluents introduced by J. McCarthy in [14] should be considered: “After having
defined a situation, st, as the complete state of the universe at an instant of time
t, then a fluent is defined as a function whose domain is the space of situations. In
particular, a propositional fluent ranges in (true,false). For example, raining(x,
st) is true if and only if it is raining at the place x in the situation st.”

In our description language we can distinguish two kinds of datalog atoms:
dimensional and non-dimensional atoms. Specifically:



– non-dimensional atoms, that may be divided into
• fluent atoms: explicitly referring to a given event (i.e., in which one of

its argument denotes an event);
• non-fluent atoms: denoting relations between objects (with arity greater

than 1), or characterizing an object (with arity 1) involved in the se-
quence;

– dimensional atoms: referring to dimensional relations between events in-
volved in the sequence.

Example 2. The following set of datalog atoms
p(e1,a,b) (e1 < e2) p(e2,b,c) q(b,c)

denotes a 1-dimensional sequence with three non-dimensional atoms and one
dimensional atom. Specifically, p(e1,a,b) denotes the fluent p(a,b) at the event
e1, p(e2,b,c) denotes the fluent p(b,c) at the event e2, (e1 < e2) indicates that
the event e2 is the direct successor of e1 and q(b,c) represents a generic relation
between the objects b and c.

Another way to read the previous example is the following: “ p(a,b) is true
in the event e1, the event e1 gives rise to the event e2 where is true p(b,c), and
there is a relation q between b and c”.

The choice to add the event as an argument of the predicates is necessary in
the general case of n-dimensional sequences with n > 1. In this case, indeed, the
operator < is not sufficient to express multi-dimensional relations and we must
use its general version <i, 1 ≤ i ≤ n. Specifically, (e1 <i e2) denotes that the
event e1 gives rise to the event e2 in the dimension i. Hence, in our framework a
multi-dimensional data is supposed to be a set of events, and to each dimension
corresponds a sequence of events.

Definition 2. A multi-dimensional relational sequence is a set of datalog
atoms, involving k events and regarding n dimensions, in which there are non-
dimensional atoms (fluents and non-fluents) and each event may be related to
another event by means of the <i operators, 1 ≤ i ≤ n.

After having defined what is a logical multi-dimensional sequence, in the
following we give a detailed description of the dimensional operators used to
describe multi-dimensional patterns.

2.1 Multi-Dimensional Patterns

In order to represent multi-dimensional patterns, some dimensional operators
must be introduced. The following symbols for describing general event relation-
ships along many dimensions has been adopted. In particular, given a set D of
dimensions, in the following are reported the multi-dimensional operators:

– <i: next step on dimension i,∀i ∈ D. This operator indicates the direct
successor on the dimension i. For instance, (x <time y) denotes that the
event y is the direct successor of the event x on the dimension time. next i/2
is the corresponding Datalog predicate used to denote the successor operator;



– �i: after some steps on dimension i,∀i ∈ D. This operator encodes the
transitive closure of <i. For example, (y �spatialx z) states that the event z
occurs somewhere after the event y on the dimension spatialx. follows i/2 is
the corresponding Datalog representation;

– ©n
i : exactly after n steps on dimension i,∀i ∈ D. In particular it calculates

the n-th direct successor. For instance, (x©n
spatialz w) states that the event

w is the n-th direct successor of the event x on the dimension spatialz. The
follows at 1/3 Datalog predicate is used to represent such a situation.

The dimensional characteristics in the sequences will be described by using
the <i operator, while the two dimensional operators �i and ©n

i , will be used,
in combination with <i operator, to represent the frequent discovered patterns.

Example 3. With the above defined dimensional operators, an example of a sim-
ple temporal sequence could be:

p(e1,a,b) (e1 <time e2) q(e2,b,c) (e2 <time e3) p(e3,e,f) (e3 <time e4) q(e4,f,g)
and the relative temporal patterns that may be true when applied to it are

p(E1,X,Y) (E1 <time E2) q(E2,Y,Z)
p(E1,X,Y) (E1 �time E2) q(E2,Z,W)
p(E1,X,Y) (E1©2

time E2) p(E2,Z,W)

In general, given a sequence σ = (e1e2 · · · em) of m elements, a sequence
σ′ = (e′

1e
′
2 · · · e′

k) of length k is a subsequence (or pattern) of σ if for a given
h < m − k: eh+i = e′

i+1, 1 ≤ i ≤ k. The frequency of a subsequence in a
sequence is the number of all the possible values of h such that the previous
condition holds.

We are interested in finding maximal frequent patterns with a high frequency
in long sequences. A pattern σ′ of a sequence σ is maximal if there is no pattern
σ′′ of σ more frequent than σ′ and such that σ′ is a subsequence of σ′′.

Definition 3. A multi-dimensional relational pattern is a set of datalog atoms,
involving k events and regarding n dimensions, in which there are non-dimensional
atoms and each event may be related to another event by means of the operators
<i, �i and ©n

i operators, 1 ≤ i ≤ n.

2.2 The algorithm

In this section we describe the algorithm for frequent pattern discovery based
on the same idea of the generic level-wise search method, known in data mining
from the Apriori algorithm [1]. The level-wise algorithm makes a breadth-first
search in the lattice of patterns ordered by a specialization relation �. The search
starts from the most general patterns, and at each level of the lattice the algo-
rithm generates candidates by using the lattice structure and then evaluates the
frequencies of the candidates. In the generation phase, some patterns are taken
out using the monotonicity of pattern frequency (if a pattern is not frequent
then none of its specializations is frequent).



The main method is outlined in Algorithm 1. The generation of the frequent
patterns is based on a top-down approach. The algorithm starts with the most
general patterns. These initial patterns are all of length 1 and are generated
by adding to the empty pattern a non-dimensional atom. Successively, at each
step it tries to specialize all the potential frequent patterns, discarding the non-
frequent patterns and storing the ones whose length is equal to the user specified
input parameter maxsize. Furthermore, for each new refined pattern, semanti-
cally equivalent patterns are detected, by using the θ-subsumption relation, and
discarded. Note that the length of a pattern is defined as the number of non-
dimensional atoms. In the specialization phase, the specialization operator under
θ-subsumption is used. Basically, the operator adds atoms to the pattern.

Algorithm 1 MDLS
Require:

maxsize: maximal pattern length (i.e., the maximum number of non-dimensional
predicates appearing in the pattern);
minfreq: the threshold;

Ensure: Pmax: the set of maximal frequent patterns
1: P ← { initial patterns }
2: Pmax ← ∅
3: while P 6= ∅ do
4: Ps ← ∅
5: for all p ∈ P do
6: {generation step}
7: Ps ← Ps∪ {all the specializations of p }
8: P ← ∅
9: for all p ∈ Ps do

10: {evaluation step}
11: if freq(p) ≥ minfreq then
12: if length(p) = maxsize then
13: Pmax ← Pmax∪ {p}
14: else
15: P ← P∪ {p}

In particular, given the set D of dimensions, the set F of fluent atoms, the
set P of non-fluent atoms, the refinement operator for specializing patterns is
defined as follows:

adding a non-dimensional atom
– the pattern S is specialized by adding a non-dimensional atom F ∈ F

(a fluent) referring to an event already introduced in S;
– the pattern S is specialized by adding a non-dimensional atom P ∈ P;

adding a dimensional atom
– the pattern S is specialized by adding the dimensional atom (x <i y)

i ∈ D, relating the events x and y, iff ∃ a fluent F ∈ F in S with x as



its event argument and there not exist the atoms (x �i y) and (x©n
i y)

in S;
– the pattern S is specialized by adding the dimensional atom (x �i y)

i ∈ D, relating the events x and y, iff ∃ a fluent F ∈ F in S with x as
its event argument and there not exist the atoms (x <i y) and (x©n

i y)
in S;

– the pattern S is specialized by adding the dimensional atom (x©n
i y)

i ∈ D, relating the events x and y, iff ∃ a fluent F ∈ F in S with x as
its event argument and there not exist the atoms (x <i y) and (x �i y)
in S.

The dimensional atoms are added iff there exists a fluent atom referring to
its starting event. This is to avoid unuseful chains of dimensional predicates like
this p(e1,a) (e1 <i e2) (e2 <i e3) (e3 <i e4), that is naturally subsumed by
p(e1,a) (e1©3

i e4).
As regards the language bias, classical mode and type declarations are used

to specify which predicates can be used in patterns and to formulate constraints
on the binding of variables.

3 Experiments

In order to evaluate the proposed technique we made preliminary experiments,
applying the algorithm to a simple example about 3D data and to an artificial
dataset.

3.1 3D example: Cellular automaton data

In the following we evaluated the algorithm on the best-known example of a cel-
lular automaton, named The Game of Life, devised by J.H. Conway in 1970 [6].
This simulation game resembles the processes of a society of living organisms.

The universe of the game involves a plane, assumed to be infinite, divided into
cells, each of which is in one of two possible states, live – meaning that there is an
organism – or dead . The idea is to start with a simple configuration of organisms
and then observe how it changes as one applies the “genetic laws” for births,
deaths, and survivals. Note that each cell of the plane has eight neighboring
cells, four adjacent orthogonally and four adjacent diagonally. The rules are:

– Births: each empty cell adjacent to exactly three neighbors is a birth cell.
An organism is placed on it in the next population;

– Survivals: every organism with two or three neighboring organisms survives
for the next generation;

– Deaths: each organism with four or more neighbors dies (is removed) for
overpopulation. Every organism with one neighbor or none dies for isolation.

Note that all births and deaths occur simultaneously.
We can model the plane by using two dimensions (say x and y), while the

time may be modeled by another dimension (say t). The plane containing the



organisms has been viewed as a two-dimensional array. Hovewer, since the plane
is in principle infinite, its left and right edges are considered to be stitched
together, like the top and bottom edges, thus yielding a toroidal array.

1st 2nd 3th 4th

Fig. 1. A sequence of evolving populations

In Figure 1 is reported a sequence of evolving populations, form an initial
population of 25 organisms, that can be described in the defined domain language
as follows.

/* 1st population */
live(f1) (f1 <x f2) live(f2) ...
(f1 <y f6) live(f6) (f6 <x f7) (f2 <y f7) dead(f7) ...
(f6 <y f11) live(f11) (f11 <x f12) (f7 <y f12) dead(f12) ...
/* 2nd population */
live(s1) (s1 <x s2) dead(s2) ...
(s1 <y s6) live(s6) (s6 <x s7) (s2 <y s7) dead(s7) ...
(s6 <y s11) live(s11) (s11 <x s12) (s7 <y s12) dead(s12) ...
/* 3th population */
...
/* 4th population */
...
/* temporal relations */
(f1 <t s1) (f2 <t s2) (f3 <t s3) (f4 <t s4) (f5 <t s5)...

We used the operators <x and <y to indicate that an event is a direct succes-
sor, respectively, in horizontal and in vertical direction. While, the operator <t

represents direct successor of an event along the time dimension. In particular,
this kind of 3-dimensional sequences combines spatial and temporal data.

Executing the algorithm on some artificial population we obtained many
different multi-dimensional patterns, including still lifes, and oscillators1 as that
reported in Figure 2. The block and boat patterns are still lifes, while the blinker
is a two-phase oscillator.

1 In cellular automata, a still life is a pattern that does not change from one generation
to the next, while, an oscillator is a pattern that returns to its original state, in the
same orientation and position, after a finite number of generations.



block boat blinker

Fig. 2. Some patterns occur in the Game of Life

block
live(A) (A <x B) live(B) (A <y C) live(C) (C <x D) (B <y D) live(D)
(A <t A′) live(A′) (A′ <x B′) live(B′) (A′ <y C ′) live(C ′) (C ′ <x D′)
(B′ <y D′) live(D′)

boat
live(A) (A <x B) live(B) (A <y C) live(C) (C ©2

x D) live(D) (B ©2
y E)

live(E) (A <t A′) live(A′) (A′ <x B′) live(B′) (A′ <y C ′) live(C ′) (C ′©2
x D′)

live(D′) (B′©2
y E′) live(E′)

blinker
live(A) (A <x B) live(B) (B <x C) live(C)
dead(D) (D <y B) dead(E) (B <y E) (B <t B′) dead(A′) (A′ <x B′)
live(B′) (B′ <x C ′) dead(C ′) live(D′) (D′ <y B′) live(E′) (B′ <y E′)

3.2 Artificial relational data

In order to evaluate the proposed algorithm on more convincing data, a random
problem generator has been implemented and used to generate multi-dimensional
relational sequences. In particular, it randomly generates a sequence containing a
frequent pattern taking as input the following parameters. The domain language
is defined by a set D of d dimensions, a set R of r binary predicates, and a set
F of f fluent predicates with arity 3. By using these predicates, a sequence,
made up of Es events and Os objects, is generated by randomly selecting Rs
relational literals and Fs fluent literals per event. A relational literal is generated
by randomly selecting its predicate fromR and randomly selecting its arguments
from the set of Os objects. For each event, Fs fluent literals are generated
by randomly selecting their predicates from F and randomly selecting its two
relational arguments from the set of Os objects. The sequence contains freq
patterns with the same logical structure, made up of Ep events and Op objects.
Each pattern contains Fp fluents literals per event and Rp relational literals
randomly generated by using the above method.

Two kind of problems, P1 and P2, have been generated, with r and f set to
3, Fs and Fp set to 1. In the former we fixed the length of the pattern, while
in the latter we fixed the length of the sequence. In particular, the problem P1

has been divided into 5 sub-problems, where the number of events Es of the
sequence has been set, respectively, to 100, 200, 300, 400 and 500, while the
number of events Ep of the pattern has been fixed to 4. The problem P2 has
been divided into 5 sub-problems, where the number of events Ep of the pattern



Table 1. Warmr and MDLS performances (time in secs.).

p1 p2 p3 p4 p5

Warmr MDLS Warmr MDLS Warmr MDLS Warmr MDLS Warmr MDLS

1D 5,17 1,46 5,32 2,33 5,0t, F0 2,66 5,85 3,92 6,44 5,52
P1 2D 3,75 1,37 4,23 1,97 4,22 2,84 3,68 3,38 4,36 4,59

3D 3,98 1,32 3,46 1,80 4,00 2,72 4,08 3,47 4,02 4,04

1D 5,82 1,53 12,22 3,14 26,52 5,83 45,84 9,3 63,79 13,59
P2 2D 4,46 1,43 8,61 2,77 19,62 5,07 37,41 8,52 62,23 14,47

3D 3,78 1,16 10,30 2,84 18,68 5,13 38,52 9,06 66,67 14,57

has been set, respectively, to 4, 5, 6, 7 and 8, fixing the number of events Es of
the sequence to 100. For each sub-problem 10 sequences have been generated.

Our system has been compared to Warmr [5], using the package ACE-ilProlog
[2] kindly made available by Hendrik Blockeel. Table 1 reports the mean time,
over the 10 sequences for each sub-problem (pi, 1 ≤ i ≤ 5), by executing both
Warmr and MDLS. For each sub-problem of P1 we fixed Ep = 4, Op = 3
and Rp = 2, while the others parameter have been set, respectively, as follows
Es = 100, 200, 300, 400, 500, Os = 10, 20, 30, 40, 50, Rs = 40, 60, 80, 100, 120,
freq = 10, 20, 30, 40, 50. While, for the problem P2 we fixed Es = 100, Os = 10
and Rs = 40, Ep = 4, 5, 6, 7, 8, Op = 3, Rp = 2, freq = 10. t, F The first column
of Table 1 indicates the kind of sequence (1D, 2D, 3D) for each problem, while
the others the mean time in seconds for each corresponding sub-problem. As one
can see, MDLS outperforms Warmr that is limited with respect to the length
of the pattern. Indeed, the time increases as the length of the pattern grows, as
reported for the the problem P2.

4 Related Work

In this section we will review some recent work on mining logical sequences.
In [9] is presented a work, in the domain of user modelling, that helps shell

users by creating scripts (a sequence of commands) from shell logs, that auto-
mate frequent performed tasks. The authors see this task as a relational learning
problem, indeed commands may be interrelated by their execution order, and
each command is possibly related to one or more parameters, giving out a repre-
sentation of a shell log as a set of logical ground atoms. After having transformed
shell logs in a relational representation, they applied the Warmr [5] system, an
upgrade of the propositional Apriori algorithm that can detect first order logic
association rules, for generating scripts. They used a specific predicate to specify
that two commands are considered next to each other in a sequence.

Warmr [5] is based on the level-wise search of conventional association rule
learning systems of the Apriori-family [1]. It extends these systems by looking for
frequent patterns that may be expressed as conjunction of first-order literals. In
Warmr a pattern is defined as a conjunction of first order literals. It performs a
top-down level-wise search, starting with the key and refining patterns by adding



literals to them. Infrequent patterns (i.e. patterns whose frequency is below a
predefined threshold) are pruned as are their refinements. With Warmr it is
possible to generate patterns that are syntactically different but semantically
equivalent. This is due to the redundant conditions that may be added to a
pattern or to the fact that the same pattern may be expressed in different ways.

As already described in [3], this problem may be avoided by using the Warmr’s
configurable language bias or by its constraint specification language. However,
this solution does not solve the problem at all. Indeed, the constraints that may
be defined in Warmr, by using its constraint specification language, are only
syntax based, and they are not sufficient to handle semantic dependencies. For
this and other limitations already described in [9, 8], in some cases Warmr sys-
tem is not able to calculate frequent subsequences and it is difficult to correctly
represent the specific sequence mining task.

In [11] are presented a logic language, SeqLog, for mining sequences of logical
atoms, and the inductive mining system MineSeqLog, that combines principles
of the level-wise search algorithm with the version space in order to find all
patterns that satisfy a constraint by using an optimal refinement operator for
SeqLog. SeqLog is a logic representational framework that adopts two operators
to represent the sequences: one to indicate that an atom is the direct successor
of another and the other to say that an atom occurs somewhere after another.
Furthermore, based on this language, the notion of subsumption, entailment
and a fix point semantic are given. However, with SeqLog one can represent
unidimensional sequences only.

In [10] has been proposed an algorithm for selecting logical hidden Markov
models from data. Hidden Markov models are one of the most popular methods
for analyzing sequential data, but they can be exploited to handle sequence of
flat/unstructured symbols. The proposed logical extension [10] overcomes such
weakness by handling sequences of structured symbols by means of a probabilis-
tic ILP framework. However, the mining of multi-dimensional sequence is not
taken into account from these methods both logical and propositional.

5 Conclusions

In this paper we proposed a logical framework for mining multi-dimensional
patterns in which many dimensions can be specified. What we can obtain are
maximal frequent multi-dimensional patterns described in a first order language.

One of the most important characteristic of using logical framework for se-
quences is that we can incorporate additional information by using a background
knowledge, and that any relation between atoms can be expressed or learned.

The result is a dedicated system in which are incorporated specific language
bias for multi-dimensional data in order to rise a faster execution and a smaller
search space. Preliminary experimental results prove the validity of the proposed
approach.



Acknowledgements This work is partially founded by the Italian COFIN
project “Learning Hierarchical, Abstract Models from Temporal/Spatial Data”.
The authors would like to thank Jan Ramon for giving useful suggestions on
setting the system Warmr.

References

1. R. Agrawal, H. Manilla, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast dis-
covery of association rules. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and
R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI Press, 1996.

2. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele.
Executing query packs in ilp. In J. Cussens and A. Frisch, editors, Proceedings of
the 10th International Conference on Inductive Logic Programming, volume 1866
of LNAI, pages 60–77. Springer, 2000.

3. H. Blockeel, J. Fürnkranz, A. Prskawetz, and F. Billari. Detectin temporal change
in event sequences: an application to demographic data. In Proceedings of the
5th European Conference on Principles of Data Mining and Knowledge Discovery,
pages 29–41. Springer, 2001.

4. S. de Amo and D.A. Furtado. First-order temporal pattern mining with regular
expression constraints. Data & Knowledge Engineering, 62(3):401–420, 2007.

5. L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns. Data Mining
and Knowledge Discovery, 3(1):7–36, 1999.

6. M. Gardner. The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American, 2(223):120–123, October 1970.

7. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gener-
ation. In ACM-SIGMOD Int. Conf.Management of Data (SIGMOD’00), pages
1–12, 2000.

8. N. Jacobs. Relational Sequence Learning and User Modelling. PhD thesis, Depart-
ment of Computer Science, K.U.Leuven, Leuven, Belgium, October 2004.

9. N. Jacobs and H. Blockeel. From shell logs to shell scripts. In C. Rouveirol and
M. Sebag, editors, Proceedings of the 11th International Conference on Inductive
Logic Programming, volume 2157, pages 80–90. Springer, 2001.

10. K. Kersting and T. Raiko. ‘Say EM’ for selecting probabilistic models for logical
sequences. In F. Bacchus and T. Jaakkola, editors, Proceedings of the 21st Con-
ference on Uncertainty in Artificial Intelligence (UAI05), pages 300–307. AUAI
Press, 2005.

11. S.D. Lee and L. De Raedt. Constraint based mining of first order sequences in
SeqLog. In R. Meo, P.L. Lanzi, and M. Klemettinen, editors, Database Support for
Data Mining Applications, volume 2682 of LNCS, pages 155–176. Springer, 2004.

12. D. Malerba and F.A. Lisi. Discovering associations between spatial objects: An
ilp application. In Proceedings of the 11th International Conference on Inductive
Logic Programming, volume 2157 of LNCS, pages 156–166. Springer, 2001.

13. C. Masson and F. Jacquenet. Mining frequent logical sequences with SPIRIT-LoG.
In Proceedings of the 12th International Conference on Inductive Logic Program-
ming, volume 2583 of LNAI, pages 166–181. Sringer Verlag, 2003.

14. J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463–502. Edinburgh University Press, 1969. reprinted in McC90.



15. S. Moyle and S. Muggleton. Learning programs in the event calculus. In Proceedings
of the 7th International Workshop on Inductive Logic Programming, pages 205–212.
Springer, 1997.

16. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19/20:629–679, 1994.

17. P.J. Pei, J. Han, and W. Wang. Mining sequential patterns with constraints in
large databases. In Proceedings of the 11th ACM International Conference on
Information and Knowledge Management, pages 18–25, 2002.

18. H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal. Multi-dimensional
sequential pattern mining. In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management, pages 81–88, New York,
NY, USA, 2001. ACM Press.

19. L. Popeĺınsky. Knowledge discovery in spatial data by means of ILP. In Proceedings
of the Second European Symposium on Principles of Data Mining and Knowledge
Discovery, pages 185–193. Springer, 1998.

20. J. Rodŕıguez, C. Alonso, and H. Böstrom. Learning first order logic time series clas-
sifiers. In J. Cussens and A. Frisch, editors, Proceedings of the 10th International
Workshop on Inductive Logic Programming, pages 260–275. Springer, 2000.

21. J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Com-
puter Science Press, 1988.

22. M.J. Zaki. SPADE: An efficient algorithm for mining frequent sequences. Machine
Learning Journal: Special issue on Unsupervised Learning, 42(1/2):31–60, 2001.


