
Random Searching the ILP Lattice

Nicola Di Mauro, Floriana Esposito, Teresa M.A. Basile and Stefano Ferilli

Università degli Studi di Bari, Dipartimento di Informatica, 70125 Bari, Italy

Abstract. In recent we years, significant progress on stochastic local
search (SLS) algorithms for solving hard combinatorial (NP-complete)
problems, such as the propositional satisfiability problem (SAT) and the
travelling salesman problem (TSP), has been made, demonstrating the
benefits of randomizing and restarting the search. It has been showed
that these methods significantly outperform deterministic search.
A challenging issue in current Inductive Logic Programming (ILP) al-
gorithms is the use of efficient methods for searching very large spaces
of hypothesis, in which classical complete deterministic algorithms fail.
In this paper, we propose a randomization strategy for ILP, similar to a
restart strategy, able to randomly jump in the clause lattice to skip some
portion of it.

1 Introduction

Recently, a lot of works demonstrated the benefits of randomizing and restarting
the search for solving hard combinatorial problems such as SAT and TSP, and
proved that for some challenging AI tasks stochastic search may significantly
outperform deterministic search.

It is well known that, in ILP, managing the size of the hypothesis space repre-
sents a main problem and in many cases algorithms that perform an exhaustive
search are intractable. Most ILP algorithms, such as FOIL and PROGOL, search
the lattice of clauses ordered by subsumption in a deterministic manner, based
on refinement (top-down algorithms) or on least general generalization (bottom-
up algorithms) of clauses. This paper proposes a stochastic search method for
ILP, based on a random backtracking search in the clause subsumption lattice.

The first stochastic search algorithms applied to ILP clause lattices were Ge-
netic Algorithms (GAs), starting from GA-SMART [2] up to the last works by
Tamaddoni-Nezhad and Muggleton [5] and Divina [1]. In [4] the author proposes
two simple probabilistic schemes that restrict the search space for an ILP sys-
tem, namely stochastic clause selection that randomly selects a sample of clauses
from the search space which contains a good clause, and iterative beam search.
In [6] authors report a study of randomised restarted search in ILP, propos-
ing a randomised general-to-specific search, a rapid random restart search, and
two randomised searches using the stochastic local search algorithms GSAT and
WalkGSAT. In [3] a Simulated Annealing framework for ILP was presented, by
describing two non deterministic algorithms that independently use generaliza-
tion and specialization operations, and showing that they partially overcome the
difficulties of greedy methods.



2 The Algorithm

We are interested in performing a random search in the clause subsumption
lattice bounded at one end by a finite most specific (bottom) clause derived
using an example seed. The algorithm proposed in this paper (RBK) performs
a Random Backtracking Depth First Search in this lattice.

The space explored by backtrack search procedures can be represented by
a tree, where an internal node represents a backtrack point, and a leaf node
represents either a solution or a failure. In our case, leaf nodes are those clauses
that are at least cons% consistent (do not cover at least cons% negative examples)
and comp% complete (cover at least comp% positive examples). Randomization
is introduced as follows: the algorithm starts the depth search and can backtrack
at most bks∗r times, where bks is an input parameter and r is a random number
in ]0, 1]. After that, if it has not found a solution to the problem, then it jumps
forward to node j (see below), in order to skip some unexplored space and avoid
traps, and restarts the depth search from the node j.

The algorithm can perform a maximun number of jumps, jmps, and for each
jump it uses an estimate of the search space size to calculate how many nodes
have to be skipped. In particular, given the parameter bks, the number, rjmps,
of remaining jumps, bks ∗ 1, 5 ∗ rjmps is an estimate of the maximum number
of nodes still to be explored by RBK. Estimating the search space size S, using
a Monte Carlo approach, and given the size T of the tree’s portion already
explored, (S−T − bks ∗ 1, 5 ∗ rjmps)/rjmps represents the number of nodes to be
skipped at each jump. During the search, RBK evaluates each node in order to
check for completeness and consistency of the clause it represents. It can prune
the subtree of a node n if the completeness (consistency) value is less (greater)
than the comp% (cons%) input parameter.

The proposed strategy allows to jump out of a trap when it explores a region
far from a solution (like a restart strategy), never explores repeated nodes, and
may be complete (it can explore the complete search space, bks=+inf).

3 Experiments

Experiments were run using an artificial dataset containing in total 9000 facts.
A problem Pxy of the dataset represents a learning problem in which the target
clause is made up of 4 variables and y binary predicate symbols, p1, . . . , py, and
50 positive and 50 negative randomly generated examples, containing 4 literals
for each predicate symbol, whose arguments are selected, uniformly and without
replacement, from the set of all possible pairs of x constants.

Table 1 reports statistics on the algorithm execution. Column 2 reports, for
each problem, the estimated search space size. The deterministic variant of RBK,
obtained by setting bks=+inf (that corresponds to standard Depth First Search,
or DFS), has been executed, on each problem, 10 times1 with (columns 3 and

1 Each time the algorithm selects at random a seed from which to start the search.



Table 1. Deterministic Search. Space: estimated search space nodes; ALL: Depth First
Search (DFS, deterministic) without pruning; PRUNING: DFS with pruning; Snodes:
skipped nodes. Time in seconds.

ALL PRUNING RBK FOIL
Prob Space Time Nodes Time Nodes Pruned nodes Nodes Snodes Time

P44 2524,2 2,28 1707,1 1,4 922,3 784,8 (46,0%) 779,9 530,8 1,23 0,52
P45 19608,9 8,53 8014,9 3,48 2411,4 5603,5 (69,9%) 1376,8 649,0 2,04 7,53
P46 181225,6 83,48 77155,5 7,05 4554,5 72601,0 (94,1%) 2026,5 5799,4 3,07 107,54

P54 2689,1 1,04 1001,4 0,4 282,6 718,8 (71,8%) 266,2 134,9 0,38 0,63
P55 20640,8 11,92 10212,7 1,23 884,0 9328,7 (91,3%) 469,1 184,6 0,81 51,40
P56 187724,1 180,84 88698 1,93 1184,1 87513,9 (98,7%) 798,3 1835,1 1,30 708,61

P64 2082,5 1,19 1102 0,26 144,9 957,1 (86,8%) 104,6 41,2 0,20 0,62
P65 21295,5 13,08 8620,2 1,11 602,3 8017,9 (93,0%) 527,0 140,2 0,91 69,07
P66 209124,7 147,86 50362,5 2,78 1168 49194,5 (97,7%) 627,2 7800,5 1,47 231,84

4) and without (columns 5 and 6) pruning the search tree; column 7 reports the
number of nodes that have been skipped. It is important to note that a high
percentage of the nodes are skipped just because they do not represent good
clauses, and hence RBK will have a low probability to skip nodes representing
good clauses. As we can see RBK outperforms DFS on all problems by evaluating
less nodes. Finally, from the last column it is possible to see that both DFS and
RBK are better than FOIL, that in some cases (boldfaced values) is not able to
find the target concept.

Concluding, we proposed a random backtracking algorithm for searching the
clause subsumption lattice that outperforms both its deterministic variant and
a classical ILP algorithm.

References

1. Federico Divina. Relational inductive learning with a hybrid evolutionary algorithm.
AI Communications, 18(1):67–69, 2005.

2. A. Giordana and C. Sale. Learning structured concepts using genetic algorithms. In
D. Sleeman and P. Edwards, editors, Prooceedings of the 9th Internation Workshop
on Machine Learning, pages 50–55. Morgan Kaufmann, 1992.

3. M. Serrurier, H. Prade, and G. Richard. A simulated annealing framework for ILP.
In R. Camacho, R. King, and A. Srinivasan, editors, ILP 2004, volume 3194 of
LNAI, pages 288–304, 2004.

4. A. Srinivasan. A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery, 3(1):95–123, 1999.

5. A. Tamaddoni-Nezhad and S.H. Muggleton. A genetic approach to ILP. In
S. Matwin and C. Sammut, editors, ILP02, volume 2583 of LNAI, pages 285–300.
Springer, 2002.

6. F. Železný, A. Srinivasan, and D. Page. A monte carlo study of randomised restarted
search in ILP. In R. Camacho, R. King, and A. Srinivasan, editors, ILP04, volume
3194 of LNAI, pages 341–358. Springer, 2004.


