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Abstract. This paper addresses the problem of mitigating the order
effects in incremental learning, a phenomenon observed when different
ordered sequences of observations lead to different results. A modifica-
tion of an ILP incremental learning system, with the aim of making it
order-independent, is presented. A backtracking strategy on theories is
incorporated in its refinement operators, which causes a change of its
refinement strategy and reflects the human behavior during the learning
process. A modality to restore a previous theory, in order to backtrack
on a previous knowledge level, is presented. Experiments validate the
approach in terms of computational cost and predictive accuracy.

1 Introduction

In many situations, intelligent systems are bound to work in environments that
change over time. In these cases, their learning component, if any, must take
into account that the available knowledge about the world is provided over time.
For instance, a learning system should revise its learned knowledge when new
observations are available, while still being able to provide at any stage of the
learning process such a knowledge in order to carry out some task. This kind of
learning is often named Incremental Learning.

As pointed out in [1], the three most important assumptions characterizing an
incremental learning system are: a) “it must be able to use the learned knowledge
at any step of the learning”; b) “the incorporation of experience into memory
during learning should be computationally efficient” (theory revision must be
efficient in fitting new incoming observations); and, c) “the learning process
should not make unreasonable space demands, so that memory requirements
increase as a tractable function of experience” (memory requirements must not
depend on the training size).

It is clear that, in the incremental learning setting, the shape of the learned
theories can be strongly influenced by the order in which the examples are pro-
vided to the system and taken into account by it. This paper carries on the
work reported in [2], facing the problem of making a learning system insensitive
to examples ordering. While the aim of that work was a preliminary check of
the performance of the proposed technique (and hence it focused on a specific
feature of the system, namely the generalization operator), here the research is
extended to take into account the general case, in which positive and negative
examples, and consequently generalization and specialization operations, can be
interleaved. As reported in [1], we can define incremental learning as follows:
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Definition 1 (Incremental Learning). A learner L is incremental if L inputs
one training experience at time, does not re-process any previous experience, and
retains only one knowledge structure in memory.

The first condition, “L inputs one training experience at time”, avoids to con-
sider as incremental the learning algorithms exploited by batch learning systems,
that process many instances at at time, by simply storing the instances observed
so far and running the method on all of them. The second condition, “does not
re-process any previous experience”, places a constraint on the learning mecha-
nism itself, by ruling out those systems that process new data together with old
data in order to come up with a new model. in that it can process each experience
only once. The important idea is that the time taken to process each experience
must remain constant or nearly so with increasing numbers, in order to guar-
antee efficient learning of the sort seen in humans. Finally, the third condition,
“retains only one knowledge structure in memory”, leaves out algorithms like
CE [3], since it requires to memorize exactly one definition for each concept. CE
processes instances one at a time and does not need to reprocess them. However,
it retains in memory a set of competing hypotheses summarizing the data, that
can grow exponentially with the number of training items, and it reprocesses
these hypotheses upon incorporating each training case.

Systems whose behaviour falls in Definition 1 can be seen as incremental
hill climbing approaches to learning, affected by the training instances ordering.
The cause of such a phenomenon can be discovered by looking at the learning
process as a search in the space of knowledge structures. In this perspective,
an incremental learner chooses which path to follow from a set of possibilities
(generated by new incoming instances and constrained by the previous ones) but
there is no warranty that future instances will agree with this choice.

Definition 2 (Order Sensitivity). A learner L is order sensitive if there ex-
ists a training set T on which L exhibits an order effect.

Since robustness is a primary issue for any machine learning system, mitigating
the phenomenon of order sensitivity is very desirable. The approach to decreasing
order sensitivity in incremental learning systems, proposed in this paper, is based
on a backtracking strategy. It aims at being able to preserve the incremental
nature of the learner, as stated in Definition 1, and to offer a strategy that
alleviates the order sensitivity while preserving efficiency of the learning process.
Indeed, a generic learner is not required to provide an exact definition of the
target concept but, rather, to identify a good approximation of the concept
itself that makes it able to behave efficiently on future incoming instances.

As pointed out in [1], there exist at least three different levels at which
order effects can occur: at the level of attributes of the instances, at the level
of instances, and at the level of concepts. The last two are more interesting
for a deep analysis of the order effect phenomenon. This paper focuses on the
second level, where the task is to learn a concept definition from instances. In
particular, we investigate the approach in the Inductive Logic Programming
(ILP) framework, in which the concept definition is made up of clauses and
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the instances are a set of positive and negative examples describing the target
concept. The problem of order effects at the level of concepts requires further
analysis and represents a future work issue.

2 Related Works

It is widely known in the Machine Learning literature that incremental learning
suffers from instance order effects and that, under some orderings, extremely poor
theories might be obtained. However, when the purpose of a machine learning
system is to work in a robust manner, it is very desirable for it to be not order
sensitive. Thus, a lot of approaches in order to decrease/overcome the order
effect phenomenon in an incremental learner have been proposed.

The simplest way proposed to alleviate the problem is to retain all possible
alternatives for a revision point, or more than one description in memory. Unfor-
tunately, this method results very expensive from the computational complexity
point of view, in both time and space. An alternative is to make strong assump-
tions about the nature of the target concept. The disadvantage of this method
concerns the validity of such assumptions, since checking these representational
restrictions could be computationally heavy. A more interesting approach con-
sists in imposing constraints on the learning process by means of a background
knowledge. A formal analysis of the conditions under which background knowl-
edge reduces order effects is reported in [4]. The Author identifies the causes
of the order effect in the system’s incapacity to focus on an optimal hypothesis
(when it has to choose among the current potential ones) and to keep enough
information not to forget potential hypotheses. These characteristics correspond
to a local preference bias that heuristically selects the most promising hypothe-
ses. Such a bias can be viewed as a prior knowledge built into the system and can
be obtained by means of additional instances provided to an order-independent
system. Hence, the Author reduces the problem of the correct instances ordering
to the problem of adding such instances (representing the prior knowledge) to
an order-independent system. In this way it is proved that there are strong con-
tingencies for an incremental learner to be order independent on some collection
of instances.

Other specific strategies have been proposed to overcome the order effect
problem in incremental clustering. The NOT-YET strategy [5] exploited in COB-
WEB [6] tries to overcome the problem by means of a buffering strategy. The
instances that cannot be added to the current cluster are stored into a buffer
for future elaborations. The size of the buffer (i.e., the number of instances that
can be “remembered”) is a user-defined parameter. During the learning process,
when the size of the buffer exceeds the user defined-size, the strategy elaborates
the buffered instances up to this moment in order to include them in the existing
clusters. Experimental results reported in [5] show that, in such an approach,
there can be cases in which to induce a good cluster an high number of instances
must be “bufferized” in order to be reconsidered later, and in some cases this
number may amount to even 90% of the dataset. Another approach is represented
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by the ID5R algorithm [7], an incremental version of the ID3 batch algorithm,
that builds a decision tree incrementally. The tree is revised as needed, achieving
a tree equivalent to the one that the basic ID3 algorithm would construct, given
the same set of training instances. In ID5R the information needed to revise the
tree is maintained at each test node. This information consists of the counts of
positive and negative instances for every possible value of every attribute coming
from the training instances. The tree is revised changing the position of some (or
all) test nodes according to a measure calculated on all the information (positive
and negative instances) regarding such a node. Hence, the algorithm does not
forget any information contained in the input data and, when it makes a choice
between alternative hypotheses, it keeps enough information in order to compose
all potential competing models and, thus, to select the best one at any moment.

3 The Backtracking Strategy

The goal of a machine learning system is to simulate the human learning process,
hence it is necessary to understand how to replicate in an automatic way some
human behaviors. We think that there is a strict relation between incremental
learning and the human learning process, since human learners receive informa-
tion in an incremental fashion, as confirmed in learning naive physics experi-
ments [8]. Our approach to mitigate order effects in incremental learning can
be explained by making a parallel with the identification of the exit path in a
maze. In a maze, arriving to a choice point, a decision about which direction to
follow has to be taken. If a dead end is reached then it is necessary to go back
to the last decision point and choose another direction. This process is repeated
until the way out is found. In other words, the system must be provided with
the ability to hypothesize the existence of another path, better than the current
one, that leads to the correct solution.

From the machine learning point of view, when a learner is not able to revise
the theory to fit new incoming observations, due to specific constraints it must
fulfill, it should assume that probably it had previously chosen a wrong path. In
particular, an incremental learning system explores the hypotheses space with
an hill-climbing approach, and this kind of myopia could be avoided providing
the learner with a mechanism for backtracking over previous hypotheses. In
order to do this, it is necessary to define some criteria, or constraints, indicating
when the system must backtrack, such as completeness, consistency, and theory
minimality. Thus, when the learner achieves a point in which it is not able to
revise the current theory with respect to a new incoming instance, fulfilling the
completeness and consistency criteria, then it could try to revise a previous one.

Furthermore, in order to backtrack on a previous theory, the system must
remember at what moments it revised the theory and how it was revised. In
particular, during the learning process, if at time t the system revised the theory
T in T ′, then it should memorize that “T ′ was obtained from T at time t”. In
order to perform this task, the learner memorizes a list of revisions, where each
element Rt indicates that at the time t there was a revision of the theory due to
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incorrectness with respect to an example et. Furthermore, each element in this
list contains the previous theory, the instance that fired the revision, and the
new revised theory. Note that it is not necessary to memorize the whole theories
in each element, but only the specific modification made to the theory. In an ILP
setting, this means that not all the clauses composing the theory are memorized
but just the revised clause(s). It is important to note that this does not mean
rembering/memorizing all the possible refinements for a revision point, but only
that at the specific time t the theory T was revised in T ′ in order to fit the
example et. This list represents a chronological trace of the knowledge changes
and it is a powerful information for a theory revision system.

After having introduced the main idea of the backtracking approach to avoid
order effects, and how to make it effective by memorizing a chronology of the
knowledge revisions, let us now show how the learner should reason. As already
pointed out, the backtracking process is activated at time t if any constraint
is violated. The learner hypothesizes that “the current theory was obtained by
choosing a wrong path”. In order to check if this hypothesis is correct the learner
restores a previous theory (say the one at time t−k), by using the list of revisions,
and performs another revision. At this point there are two alternatives: 1) re-
processing all the instances arrived from time t − k + 1 up to the time t; or,
2) choosing a revision that does not violate the constraints on the instances
arrived from time t − k + 1 up to time t. Since the first alternative violates the
assumption of incremental learning, the system tries to find a revision that fits
all the examples seen up to the moment of the backtracking step.

At least three different situations can arise dealing with incremental concept
learning in ILP. The first corresponds to the case in which the concept to be
learnt is represented by a definition made up of only one clause. The second
situation concerns the concepts with more than one clause in their definition.
Finally, the third case corresponds to multi-conceptual learning. In this paper
we give a general strategy for order effect in incremental learning, and a possible
implementation dealing with the first situation above reported. Furthermore, we
provide an analysis of the problems that arise when we consider the order effect
in the second situation.

3.1 One Target Concept Made Up of a Single Clause

When the system has to learn a target concept C whose definition is made up of
only one clause, we can make some assumptions about its behavior. Specifically,
when the current theory (clause) is incomplete (resp. inconsistent) with respect
to a new incoming positive (resp. negative) example, and it is not possible to
revise it, then we are sure that it is always possible to backtrack and find a new
theory (clause) complete and consistent with respect to all known examples.

3.2 One Target Concept Made Up of More Than One Clause

When the target concept is defined by two or more clauses the problem of order
effects becomes more difficult to handle. Given the concept C to be learnt made
up of the clauses C1, C2, . . . , Cn, and a set of examples {e11, . . . , e1m1 , e21, . . . ,
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e2m2 , . . . , en1, . . . , enmn} such that Ci explains all eik’s (1 ≤ i ≤ n∧1 ≤ k ≤ mi),
and Ci does not explain any ejh (j �= i ∧ 1 ≤ h ≤ mj). Obviously, if the learner
takes as input the examples in this ordering then it should be able to learn
the concept C expressed exactly as the disjunction of the clauses C1, C2, . . . , Cn.
Suppose that we have another random ordering of the examples, and that at
time t the system learned a theory made up of only one clause C′. Furthermore,
suppose that at time t + 1 the system takes as input a new positive example e
not covered by the theory and it is not able to generalize the clause C′ to fit e.
Hence, it is necessary to add to the theory a new clause covering the example e to
make the theory complete. The problem in this situation is that the clause C′ is
a generalization of a set of examples that are not all, in principle, in charge of the
same clause Ci. For instance, suppose that the example e belongs to the concept
“black” and that the clause C′ generalizes 3 examples for the concept “black”
and 2 examples for the concept “white”. The system is not able to generalize
the clause C′ with respect to the example e because C′ is forced to cover also
some examples for the concept “white”.

A possible solution is to go back on a previous revision point by choosing
another clause (revision) and to re-consider (i.e., use to revise it, if needed)
all the examples acquired after this revision point. Another solution could be
to define a similarity measure to extract from the set of examples covered by
the clause C′ a subset E of examples closer to the example e and generalize
them into a new clause. In this way the clause C′ is no longer forced to cover
the examples of the set E, and a future generalization of C′ could be possible.
This second solution can be viewed as an incremental clustering in first-order
logic. But all these solutions contrast with the main idea that a learning system
is not required to learn exactly the correct definition. Indeed, the goal is to
achieve a good approximation of the target concept evaluated, for instance, by
the completeness and consistency errors on new unseen examples. Let us now
analyze whether the backtracking strategy is a good solution to mitigate the
order effects at least on the base cases and then to extend it to more complicated
problems.

4 Implementation in INTHELEX

INTHELEX (INcremental THeory Learner from EXamples) is a fully incremental,
multi-conceptual learning system for the induction of hierarchical theories from
examples [9]. In particular, full incrementality avoids the need of a previous
theory to be available, so that learning can start from an empty theory and
from the first example; multi-conceptual means that it can learn simultaneosly
various concepts, possibly related to each other. Moreover, it is a closed loop
system, hence the learned theory is checked to be valid on any new example
available, and in case of failure a revision process is activated upon it, in order to
restore the completeness and consistency properties. INTHELEX learns theories,
expressed as sets of DatalogOI clauses, from positive and negative examples.
DatalogOI is a logic language, based on the notion of Object Identity (“Within
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a clause, terms denoted with different symbols must be distinct”), that has the
same expressive power as Datalog [10].

In a logical framework for the inductive synthesis of Datalog theories, a fun-
damental problem is the definition of ideal refinement operators. Unfortunately,
when full Horn clause logic is chosen as representation language and either θ-
subsumption or implication is adopted as generalization model, there exist no
ideal refinement operators [11]. On the contrary, they exist under the weaker,
but more mechanizable and manageable ordering induced by θOI-subsumption,
as proved in [12]. Note that, like θOI-subsumption, θOI-subsumption induces a
quasi-ordering upon the space of Datalog clauses, but this space is not a lattice
when ordered by θOI-subsumption, while it is when ordered by θ-subsumption.

INTHELEX adopts a full memory storage strategy, i.e., it memorizes all the
examples. When our knowledge is inconsistent with new observations, we may
ignore the inconsistency, hoping that it is insignificant or accidental, and retain
our knowledge unaltered, or we may use the evolutionary approach1, defined
in [13], by making incremental modifications to the appropriate part of our
knowledge. The strength of an incremental full memory method lies in its ability
to use all the original facts for guiding the process of modifying and generalizing
knowledge structures, and selecting alternative solutions, and to guarantee the
completeness and consistency of the modified knowledge with all the examples.
This is not in contrast with Definition 1, since original examples are only used
to guarantee the completeness and consistency requirements of ILP systems.

INTHELEX incorporates two inductive refinement operators, one for gener-
alizing hypotheses that reject positive examples, and the other for specializing
hypotheses that explain negative examples. When a new incoming positive exam-
ple is not covered, a generalization of the theory is needed. The system chooses
a clause defining the wrong concept to be generalized and tries to compute the
least general generalization under object identity (lggOI) of this clause and the
example. If one of the computed generalizations is consistent with all the past
negative examples, then it replaces the chosen clause in the theory, or else a new
clause (if it exists) is chosen to compute the lggOI. If no clause can be general-
ized, the system checks if the example itself, with the constants properly turned
into variables, is consistent with the past negative examples. Such a clause is
added to the theory, or else the example itself is added as an exception to the
theory. When a negative example is covered, a specialization of the theory must
be performed. Among the program clauses occurring in the SLD-derivation of
the example, INTHELEX tries to specialize one at the lowest possible level, in
order to refine the concepts that are used in the definitions of other concepts,
by adding to it one or more positive literals, which can discriminate all the past
positive examples from the current negative one. In case of failure, it tries to
add the negation of a literal, which discriminates the negative example from
all the past positive ones, to the first clause of the SLD-derivation (related to
the concept of which the example is an istance). If none of the clauses obtained

1 That is opposite opposite to the revolutionary approach to throw away this piece of
knowledge altogether and develop another one from scratch.
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makes the theory consistent, then INTHELEX adds the negative example to the
theory as an exception.

Naturally, like other incremental machine learning systems, INTHELEX is
order sensitive. As already pointed out, the hypothesis space ordered by the
θOI-subsumption relation is not a lattice as for θ-subsumption, and hence, for
any two clauses many mutually uncomparable minimal refinements might exist.
When the system tries to generalize a clause, if it has more than one path to
choose it cannot decide in advance which is the correct one, because it does
not know future examples. For the specialization INTHELEX uses a non-minimal
specialization operator by appending additional premises to the clause. Also in
this case, if the system has many ways to specialize the clause it cannot choose
the correct one.

INTHELEXback, the improvement of INTHELEX that reduces the order effects,
embeds a backtracking strategy into the two inductive refinement operators. The
constraint imposed by INTHELEXback during learning is to have a minimal the-
ory, and the violation of this constraint starts the backtracking revision process.
In particular, as reported in Algorithm 1, when the generalization operator fails
in finding a lggOI of a clause, it tries to revise a previous theory. If this second
step fails, the system continues in the usual way by adding a new clause to the
theory. On the other hand, the specialization operator tries to revise a previous
theory only if it is not able to specialize, by adding positive literals, the clause
that covers the negative example. The choice to revise a previous theory after
step ‘a1’ is justified by the theory minimality constraints; conversely, in the other
case, after step ‘a2’, we preferred to have a theory obtained without negative
literals since once added they cannot be ever removed.

Algorithm 1 INTHELEXback algorithm
Given: a theory T and a source of examples
acquire the next example e
if e is positive and not covered by T then

a1) try to find the lggOI of a clause in T ; otherwise, b1) try to revise a previous
theory ; otherwise, c1) try to add a new clause to T ; otherwise, d1) add a positive
exception to T

if e is negative and covered by T then
a2) try to specialize a clause of T by adding positive literal(s); otherwise, b2) try
to revise a previous version of T ; otherwise, c2) try to specialize a clause of T by
adding negative literal(s); otherwise, d2) add a negative exception to T

In order to be able to restore a previous version of the theory to be revised,
INTHELEXback memorizes all the theory revisions. Futhermore, it memorizes also
the type of the revision and at what time it happened. Given a set of concepts
C1, C2, . . . Cn to be learnt, INTHELEXback maintains a stack of revisions for each
clause of each concept Ci. In particular, when the system performs a theory re-
vision, this revision is “pushed” in the correspondig stack of the revised clause.
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In this way, the system is able to perform backtracking on previous versions of a
single clause. The following is the detailed description of a generic element in the
stack: (Type, OldClause, NewClause, ExampleID), where Type can be: 1) “adding
a new clause”, 2) “lgg of a clause”, 3) “adding a positive exception”, 4) “spe-
cialization with positive literal(s)”, 5) “specialization with negative literal”, or
6) “adding negative exception”; OldClause is the clause revised while NewClause
is the new clause obtained by generalization or specialization; finally, ExampleID
represents the number of the example that caused the revision (i.e., the time at
which the revision happened).

For a new incoming example, if the system decides to backtrack on a previous
theory, then it chooses a clause C belonging to the concept to be revised. While
there are items in the revisions’ stack SC of C, the system “pops” a revision
R = (TR, OCR, NCR, EIDR) from SC and restores the previous theory by just
replacing the clause NCR with OCR in the theory. According to the type TR of
the revision R, the system performs one of the following tasks:

a) if TR was a lgg then it tries to find another lgg of the clause OCR that is
consistent with all negative examples older than the example EIDR, and
consistent and complete with all examples newer than EIDR;

b) if TR was a specialization by adding literals then it tries to find another
specialization of the clause OCR that is complete with respect to all positive
examples older than the example EIDR, and consistent and complete with
all examples newer than EIDR;

c) if TR was addition of an exception then the system does not perform any
task and “pops” another revision;

d) when TR was addition of a new clause this means that it is not possible to
revise a previous version of this clause, and hence the backtracking revision
process on this clause fails.

When a backtracking process fails on a clause, and there are no other clauses for
that concept to be revised, then INTHELEXback is forced to violate the constraint
of theory minimality by adding a new clause or an exception.

5 Experiments

The relevance of the new proposed strategy was evaluated by comparing the
learning behaviour of INTHELEXback to that of INTHELEX, in which it was
embedded. In the particular context of this work, experiments are based on a
purposely designed artificial dataset. The main reason for excluding real-world
datasets is that we want to evaluate the effectiveness of the proposed strategy in
avoiding ordering-effect, rather than the goodness of the learning system itself.
Furthermore, the results obtained by INTHELEXback depend on the performance
of INTHELEX and hence we may expect that possible improvements obtained
on artificial datasets, could be confirmed on real-world problems too. Last but
not least, we needed a dataset for a concept whose definiton was made of only
one clause, since there is not still a well defined approach to solve the case of a
concept expressed by many clauses.
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5.1 The Problem Domain

In order to investigate the ability of INTHELEXback in learning the correct target
concept without being order sensitive, the following learning problems P1 and
P2 were defined. Both regard a target concept represented by a clause made up
of 3 variables and 4 predicate symbols:

C : h(A) ← p1(A, D, C), p2(A, B, C), p3(A, D, B), p4(A, B, C).
Note that variable A is used just for linkedness purposes, since the theories
learned by INTHELEX are made up of linked clauses only, thus all predicates
can be considered as binary. Then, for each problem, 100 positive and 100 neg-
ative examples were generated at random. Specifically, each example contains 4
literals for each predicate symbol p1, p2, p3, p4, whose arguments are selected,
uniformly and without replacement (so that the same literal cannot occur twice),
from the set of all possible pairs of 4 constants for problem P1, and 6 constants
for problem P2. Each example was considered as positive if it is covered by
clause C, negative otherwise. Specifically, the probability that a generated ex-
ample is positive is equal to 497/597 = 0.83 for problem P1, while it is equal
to 100/1070 = 0.09 for problem P2. Thus, for problem P1 it was necessary to
generate 497 positive examples in order to generate 100 negative ones, while for
problem P2 970 negative examples had to be generated to reach 100 positive
examples. Hence, in P2 we expect a number of specializations higher than in P1.

INTHELEXback has been evaluated along the same parameters as INTHELEX
i.e. complexity (how many clauses the theory contains) and correcteness (whether
the theory contains the correct target clause) of the learned theory, and cost
(time complexity and number of theory revisions) spent to learn it. To highlight
the order sensitivity of INTHELEX and the improvements of the new approach,
independent orderings of the examples were generated from the training set.

5.2 Experimental Results

In the first experiment INTHELEX was run on 100 different orderings of the
training set. Table 1 reports the averaged results. For each problem, P1 and P2,
the row labeled Correct refers to the cases in which INTHELEX learnt a theory
containing the target clause, the row labeled Wrong reports the cases in which
it was not able to learn a correct theory, while the row labeled All represents all
cases. For problem P2 only “All” is reported, since in only one case INTHELEX
was unable to learn a correct theory. The columns indicate, respectively: the
runtime (expressed in milliseconds), the number of clauses composing the the-
ory, the number of lggOI performed, the number of specializations (positive +
negative), and the number of exceptions (positive + negative), all averaged on
the number of orderings, reported in the last column. Whenever the learned
theory contains other clauses in addition to the correct one, this means that the
correct clause was learnt at the end of learning process. In this case, a ‘cleaning’
process that eliminates all the clauses subsumed by the correct one can be used.

For problem P1, INTHELEX is able to find the correct solution in 55 cases
out of 100. The high values in the row “Wrong” indicate the difficulty of the
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Table 1. INTHELEX performance

Problem Time Clauses Lgg Specializat. Excepti. Run
(All) 44160.5 4.93 16.95 4.39 + 1.54 0 + 19.01 100

P1 (Correct) 23961.64 4.07 14.78 4.4 + 1.33 0 + 9.47 55
(Wrong) 68848 5.98 19.6 4.38 + 1.8 0 + 30.67 45

P2 (All) 19128.9 5.98 11.54 5.37 + 6.14 0 + 2.39 100

Table 2. INTHELEXback performance

Time Clauses Lgg Pos.Spec. Backtracking Push Pop
P1 13376.3 1 6.47 0.29 2.29 7.76 4.04
P2 2718.8 1 4.25 0.44 1.87 5.69 2.95

system to learn when the ordering of examples is bad. Table 2 witnesses the per-
formance improvement obtained by using the modified system INTHELEXback on
the same set of orderings. Results reveal that it always learns the correct clause
spending on average less time than INTHELEX. The fourth column indicates the
number of backtrackings needed by the system during the learning process, that
corresponds to the number of mistakes it made. Specifically, the number of revi-
sions corresponds to the number of “push” operations. Conversely, the number
of “pop” operations corresponds to the wrong refinements that were withdrawn
by the system for each backtracking. It is interesting to note that the number
of withdrawn refinements is on average 1.76 (= 4.04/2.29) on a total of about 7
(6.47+0.29) refinements performed in problem P1 (1.58 (= 2.95/1.87) on about
5 (4.25 + 0.44) refinements for problem P2, respectively), indicating that back-
tracking does not retract too many choices, which is important since going too
deep into the refinements stack could cause an increase in computational time.

Running INTHELEXback on the 100 orderings we found that it always learns
the correct target concept for problem P1 (respectively P2) after 20.11 (respec-
tively 13.61) examples on average, with minimum of 8 (respectively 6) and a
maximum of 37 (respectively 37). These results show the capability of the sys-
tem to converge rapidly to the target concept. Note that using higher values
of the parameters (number of constants, variables, predicates and literals) to
generate the examples, than in this experimental setting, has not proved to af-
fect effectiveness of the system, but only its efficiency (more time, revisions and
backtraking). For instance, increasing the number of constants and/or literals
changes the probability that the clause C covers the examples, while increasing
the number of variables and/or predicates causes a growing of the search space.
What one expects is a greater effort in finding the correct concept, and not that
in these conditions the system does not find it.

6 Conclusions and Future Works

This paper presented a backtracking strategy for mitigating order effects in in-
cremental learning, that was implemented in INTHELEXback, a modification of
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the first-order learning system INTHELEXĖxperimental results on a purposely
designed dataset show that the system, modified with the new approach, achieves
better performance with respect to the basic version in all metris. Future work
will concern an investigation on how to manage the case of learning a concept
whose definition is made up of more than one clause, and the more difficult case
of a multiple concept learning task.
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4. Cornuéjols, A.: Getting order independence in incremental learning. In Brazdil,

P., ed.: Proceedings of ECML93. Volume 667 of LNAI., Springer (1993) 196–212
5. Talavera, L., Roure, J.: A buffering strategy to avoid ordering effects in clustering.

In: Proceedings of ECML98. (1998) 316–321
6. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Ma-

chine Learning 2 (1987) 139–172
7. Utgoff, P.E.: Incremental induction of decision trees. Machine Learning 4 (1989)

161–186
8. Esposito, F., Semeraro, G., Fanizzi, N., Ferilli, S.: Conceptual change in learning

naive physics: The computational model as a theory revision process. In Lamma,
E., Mello, P., eds.: Advances in Artificial Intelligence (AI*IA99). LNAI, Springer
(1999) 214–225

9. Esposito, F., Ferilli, S., Fanizzi, N., Basile, T., Di Mauro, N.: Incremental multi-
strategy learning for document processing. Applied Artificial Intelligence Journal
17 (2003) 859–883

10. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., S.Ferilli: A logic framework
for the incremental inductive synthesis of datalog theories. In Fuchs, N., ed.:
Proceedings of LOPSRT97. Volume 1463 of LNCS., Springer (1998) 300–321

11. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming.
Volume 1228 of LNAI. Springer (1997)

12. Esposito, F., Laterza, A., Malerba, D., Semeraro, G.: Locally finite, proper and
complete operators for refining datalog programs. In Rás, Z., Michalewicz, M.,
eds.: Proceedings of ISMIS96. Volume 1079 of LNAI., Springer (1996) 468–478

13. Michalski, R.S.: Knowledge repair mechanisms: Evolution vs. revolution. In: Pro-
ceedings of ICML85, Skytop, PA (1985) 116–119


	Introduction
	Related Works
	The Backtracking Strategy
	One Target Concept Made Up of a Single Clause
	One Target Concept Made Up of More Than One Clause

	Implementation in INTHELEX
	Experiments
	The Problem Domain
	Experimental Results

	Conclusions and Future Works


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


