An Algorithm for Incremental Mode Induction

Nicola Di Mauro, Floriana Esposito, Stefano Ferilli, and Teresa M.A. Basile

Dipartimento di Informatica, Universita di Bari - Italy
{nicodimauro, esposito, ferilli,basile}@di.uniba.it

Abstract. Learning systems have been devised as a way of overcoming the
knowledge acquisition bottleneck in the development of knowledge-based sys-
tems. They often cast learning to a search problem in a space of candidate solu-
tions. Since such a space can grow exponentially, techniques for pruning it are
needed in order to speed up the learning process. One of the biases used by In-
ductive Logic Programming (ILP) systems for this purpose is mode declaration.
This paper presents an algorithm to incrementally learn this type of meta-
knowledge from the available observations, without requiring the final user’s
intervention.

1 Introduction

The knowledge acquisition process is widely known to be a serious bottleneck in the
development of intelligent systems, such as expert systems and decision support sys-
tems. For this reason, great interest has been devoted in the implementation of learn-
ing systems that are able to automatically induce the needed knowledge from obser-
vations. If, on the one hand, efficiency is a critical factor for the success of such sys-
tems, on the other hand reaching high performance is often strongly dependent on
good parameter settings, which in turn require deep technical knowledge and can be
hardly done by the final users. This is why it would be highly desirable to set auto-
matically the parameters of the learning systems.

Inductive Logic Programming (ILP) is an established sub-field of Machine Learn-
ing aimed at inducing first-order clausal theories from examples. This objective can
be cast to a search problem in a hypotheses space, that may lead to serious efficiency
problems when the complexity of the learning task and/or of the description language
used causes an explosion in the size of such a space. For this reason, many ILP sys-
tems are designed to use, if available, various forms of meta-knowledge about the
hypotheses to be learned in order to make the search more efficient.

In a general ILP scenario, given a description language, unary predicates represent
values of the objects properties, while n-ary predicates represent associations among
objects, and hence raise the problem of understanding which of their arguments must
be supplied as input and which ones they return as a result of their computation (mode
of the predicate), according to specific use of the predicates in a given context. Such
issue is well-known, for instance, in Prolog, where the procedural interpretation re

R. Orchard et al. (Eds.): IEA/AIE 2004, LNAI 3029, pp. 512-522, 2004.
© Springer-Verlag Berlin Heidelberg 2004


Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN ----------------------------------------
Dateioptionen:
     Kompatibilität: PDF 1.3
     Für schnelle Web-Anzeige optimieren: Nein
     Piktogramme einbetten: Nein
     Seiten automatisch drehen: Nein
     Seiten von: 1
     Seiten bis: Alle Seiten
     Bund: Links
     Auflösung: [ 2400 2400 ] dpi
     Papierformat: [ 595 842 ] Punkt

KOMPRIMIERUNG ----------------------------------------
Farbbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 300 dpi
     Downsampling für Bilder über: 450 dpi
     Komprimieren: Ja
     Automatische Bestimmung der Komprimierungsart: Ja
     JPEG-Qualität: Maximal
     Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
     Downsampling: Ja
     Berechnungsmethode: Bikubische Neuberechnung
     Downsample-Auflösung: 2400 dpi
     Downsampling für Bilder über: 3600 dpi
     Komprimieren: Ja
     Komprimierungsart: CCITT
     CCITT-Gruppe: 4
     Graustufen glätten: Nein

     Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN ----------------------------------------
     Alle Schriften einbetten: Ja
     Untergruppen aller eingebetteten Schriften: Nein
     Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /SMinionPlus-Regular /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     Nie einbetten: [ ]

FARBE(N) ----------------------------------------
Farbmanagement:
     Farbumrechnungsmethode: Farbe nicht ändern
     Methode: Standard
Geräteabhängige Daten:
     Einstellungen für Überdrucken beibehalten: Ja
     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
     Transferfunktionen: Anwenden
     Rastereinstellungen beibehalten: Ja

ERWEITERT ----------------------------------------
Optionen:
     Prolog/Epilog verwenden: Nein
     PostScript-Datei darf Einstellungen überschreiben: Ja
     Level 2 copypage-Semantik beibehalten: Ja
     Portable Job Ticket in PDF-Datei speichern: Nein
     Illustrator-Überdruckmodus: Ja
     Farbverläufe zu weichen Nuancen konvertieren: Ja
     ASCII-Format: Nein
Document Structuring Conventions (DSC):
     DSC-Kommentare verarbeiten: Ja
     DSC-Warnungen protokollieren: Nein
     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
     EPS-Info von DSC beibehalten: Ja
     OPI-Kommentare beibehalten: Nein
     Dokumentinfo von DSC beibehalten: Ja

ANDERE ----------------------------------------
     Distiller-Kern Version: 5000
     ZIP-Komprimierung verwenden: Ja
     Optimierungen deaktivieren: Nein
     Bildspeicher: 524288 Byte
     Farbbilder glätten: Nein
     Graustufenbilder glätten: Nein
     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
     sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS ----------------------------------------

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
     /ColorSettingsFile ()
     /AntiAliasMonoImages false
     /CannotEmbedFontPolicy /Warning
     /ParseDSCComments true
     /DoThumbnails false
     /CompressPages true
     /CalRGBProfile (sRGB IEC61966-2.1)
     /MaxSubsetPct 100
     /EncodeColorImages true
     /GrayImageFilter /DCTEncode
     /Optimize false
     /ParseDSCCommentsForDocInfo true
     /EmitDSCWarnings false
     /CalGrayProfile ()
     /NeverEmbed [ ]
     /GrayImageDownsampleThreshold 1.5
     /UsePrologue false
     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /AutoFilterColorImages true
     /sRGBProfile (sRGB IEC61966-2.1)
     /ColorImageDepth -1
     /PreserveOverprintSettings true
     /AutoRotatePages /None
     /UCRandBGInfo /Preserve
     /EmbedAllFonts true
     /CompatibilityLevel 1.3
     /StartPage 1
     /AntiAliasColorImages false
     /CreateJobTicket false
     /ConvertImagesToIndexed true
     /ColorImageDownsampleType /Bicubic
     /ColorImageDownsampleThreshold 1.5
     /MonoImageDownsampleType /Bicubic
     /DetectBlends true
     /GrayImageDownsampleType /Bicubic
     /PreserveEPSInfo true
     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>
     /PreserveCopyPage true
     /EncodeMonoImages true
     /ColorConversionStrategy /LeaveColorUnchanged
     /PreserveOPIComments false
     /AntiAliasGrayImages false
     /GrayImageDepth -1
     /ColorImageResolution 300
     /EndPage -1
     /AutoPositionEPSFiles true
     /MonoImageDepth -1
     /TransferFunctionInfo /Apply
     /EncodeGrayImages true
     /DownsampleGrayImages true
     /DownsampleMonoImages true
     /DownsampleColorImages true
     /MonoImageDownsampleThreshold 1.5
     /MonoImageDict << /K -1 >>
     /Binding /Left
     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
     /MonoImageResolution 2400
     /AutoFilterGrayImages true
     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /SMinionPlus-Regular /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]
     /ImageMemory 524288
     /SubsetFonts false
     /DefaultRenderingIntent /Default
     /OPM 1
     /MonoImageFilter /CCITTFaxEncode
     /GrayImageResolution 300
     /ColorImageFilter /DCTEncode
     /PreserveHalftoneInfo true
     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>
     /ASCII85EncodePages false
     /LockDistillerParams false
>> setdistillerparams
<<
     /PageSize [ 595.276 841.890 ]
     /HWResolution [ 2400 2400 ]
>> setpagedevice


An Algorithm for Incremental Mode Induction 513

quires predicates’ arguments to be used properly. This holds not only for predicates
having a unique use, but also for reversible predicates, in which different combina-
tions of input and output arguments are possible. However, in Prolog the possible
uses of built-in and library predicates are pre-defined, or known to the programmer in
the case of user-defined ones. The situation is different in first-order machine learn-
ing, where the available information (examples, observations, background knowl-
edge, etc.) could be provided by sources that are extraneous to the experimenter, and
thus the mode of the predicates in the description language could be unknown.

A mode declaration [2] is a specification of the predicate modes. It plays a central
role in the efficiency improvement of some systems (e.g., Progol [12], GOLEM [10],
FOIL [11]), and it is required, in particular, by systems designed to learn recursive
definitions (such as TIM [14] and MRI [13]). This paper presents an algorithm that
induces mode declarations from examples of the concept to be learned. Its main nov-
elty lays in its incremental behaviour, useful when the knowledge is not completely
available at the beginning of the learning process: in fact, it works without requiring a
previous theory for the target concept. It can be embedded in a natural way in ILP
systems as a pre-processor.

In Section 2 some significant previous works on Automatic Mode Inference in an
ILP problem are presented. Section 3 introduces the basic concepts needed to under-
stand the proposed approach and presents the new algorithm. In Section 4 the main
characteristics and the behavior of the algorithm are presented by means of examples.
Finally, Section 5 draws some conclusions.

2 Related Work

Formally, a mode of an n-ary predicate symbol is an n-tuple that represents a possible
instantiation of arguments of that predicate symbol in terms of some domain. Each
element of such a domain corresponds to a degree of instantiation of an argument of
the predicate symbol. In this work we set such a domain to {+,—}, where ‘+’ means
that the argument must be instantiated, and ‘-’ expresses the fact that the argument is
returned after the predicate computation.

Generally speaking, in a logic program there is not the concept of “input” and
“output” variable: each variable might in principle be used either as an input or as an
output argument, and programs might be executed in either a “forward” or a “back-
ward” direction. Nevertheless, the need of mode declarations may arise in Logic Pro-
gramming for different reasons. For instance, knowledge about which arguments in a
predicate must be specified and which ones are returned after computation can help
programmers in verifying program correctness. Moreover, compilers can profitably
use it for optimization purposes (e.g., using efficient special-purpose unification rou-
tines instead of the general unification algorithm): indeed, it is often the case that, in a
particular program, a predicate is executed in one direction only, i.e. it is always
called with a particular set of its variables that are bounded (the “input” variables) and
the remaining set unbounded (the “output” variables).



514 N. Di Mauro et al.

Traditionally, the task of supplying this kind of information has been in charge of
the programmer. In such a case, however, problems might arise due to the errors
made by the programmer in declaring modes that can lead to very strange program
behavior, whose cause can be hard to find. A possible solution may be letting the
compiler infer the modes, using them either to optimize a program without mode
declarations, or to verify the declarations made by the programmer, in a similar fash-
ion to type-checkers used in other languages to verify type declarations. The issue of
automatic mode inference for these purposes has been considered in [3], [4], [5], [6]
and [7]. All these works deal with a Prolog program (i.e., a set of definite Horn
clauses) together with a negative clause (called query), where the mode of a predicate
in the program indicates how its arguments will be instantiated when that predicate is
called. Thus, the modes of a program represent statements about all computations that
are possible from it [8].

Another use of mode declarations, as introduced in Section 1, comes from the ILP
where the modes are exploited to build systems that are able to explore the space of
hypotheses more efficiently. An algorithm to extract modes from data was presented
in [1] and implemented in LIME [15]. In LIME the search space is restricted to de-
terminate clauses; in the absence of any information, each time a literal is added to a
clause the system must assume that unbounded variables will be uniquely bounded.
As this process is essentially the same each time it is carried out, considerable im-
provement in performance can be achieved if mode information is available. LIME
extracts such information from the data, this way being able to skip clauses that are
not determinate. It considers predicates one at a time and assumes that any possible
mode declaration for that predicate has functional dependency. Then this assumption
is checked against the data: if it is false (i.e., the data show a counterexample), then
the algorithm discards that possible functional dependency. Another system that faced
these issues is MOBAL [9].

Example 1. Consider predicates append(11,12,13) (“13 is the list obtained ap-
pending the list 12 to the list 11”) and decomp (1, e,r) (“1 is the list with head e
and tail r”). Mode declarations {append(+,+,-),append(+,-,+),append (-
,+,+),decomp (+,-,-),decomp(-,+,+)} are not consistent with ap-
pend (X1,Xz,X3) ¢« decomp (X1,Xz,X3), and hence the search space can be pruned
by eliminating such a clause.

3 MILE: Mode-Declarations Incremental Learner from Examples

In this section, after giving some preliminary definitions and a general idea of the
proposed technique for inducing mode declarations from a set of examples for some
concept (predicate), we present the detailed algorithm.

Examples are ground Horn clauses and the hypotheses space consists of function
free clauses, i.e. terms in the head of the target clauses and terms in the literals of the
body can be either variables or constants. This simplifies the structure of each clause



An Algorithm for Incremental Mode Induction 515

without affecting expressiveness [16]. Each clause consists of a head literal followed
by a list of body literals. Each literal in the body of a clause must use at least one term
(variable or constant) that has been introduced by a previous literal in the body.
Hence, the list of literals in the body can be ordered according to the following defi-
nition.

Definition 1. (Layers of a clause) Given a linked clause h < b,b,,....b : the set of 1-
layer literals consists of all b,'s, 1 <i <n, such that b, shares some argument with h.
The arguments of the literal h are called 1-layer activated terms, the set of k-layer
literals consists of all b,'s such that b, is not a t-layer literal for 1 <t < k and it shares
some of its arguments with the set of (k—I)-layer activated terms. The set of k-layer
activated terms (also known as variable depth [12]) is the union of all k-layer literals’
terms that are not (k—1)-layer activated terms. This notion induces an equivalence
relation on the set of literals in a given clause.

Example 2. The literals in the body of the following Horn clause:
h(X) :- p(X,Y),p(X,2),p(X,W),0(Y,Z2),q(Z,T),s(T),L(W).

can be ordered in layers (equivalence classes). The set of I-layer activated terms is
{X}, that contains the only argument that is present in the head of the clause; p (X, Y),
p(X,2), p(X,w) are the I-layer literals, since they contain the variable X as argu-
ment. Hence, the set of 2-layer activated terms is {Y,Z,w}. Then, o(Y,Z), q(Z,T),
1(w) are the 2-layer literals and {T} is the set of 3-layer activated terms. Finally,
s (T) is the only 3-layer literal.

According to the identified layers, the above clause can be rewritten as follows:

h(x) :- [ [ p(X,Y), p(X,2), p(X,W) 1, % X
[ o(Y,2), g(z,T), 1(W) 1, Y Z W
[ s(T) 1 1. g T

After introducing how to represent a clause by means of layers, we can give the
general idea behind MILE. Such an algorithm can be used as a preprocessor of the
examples given as input to an ILP system. It is incremental but obviously it can be
exploited also by batch systems.

Given a Horn clause:

1. select a possible mode declaration' for the literal in its head and consider the
corresponding input arguments as /-layer activated terms;
2. for k =1 repeat the following:
1.1. collect the set of k-layer literals
1.2. consider as input arguments those that correspond to k-layer activated
terms and as output arguments the remaining ones.

It is important to note that, at any step (corresponding to a layer), if an output term

is introduced by more than one literal (i.e., there are many k-layer literals with the

! Given a literal p(x,x,, ... ,x ), there are 2"-1 possible mode declarations, excluding the mode
that considers all arguments as output ones (we assume that there must be always at least one
input argument according to which computing the others). For instance, predicate p/3 has
2-1)=7 possible modes, specifically: (+,+,+),(+,+,—),(+,—,+),(—+,+),(+,——),(—+,7),(——+).



516 N. Di Mauro et al.

Algorithm 1. MD(Bound, Lits,Modes):NewModes

/* Bound: set of terms; Lits: list of literals;
Modes: set of set of mode declarations: Modes = {m,, ...,m,} where m; is a set of modes*/

if Lits #[]
Bound' < O; Lits' < Lits
forall b;e Lits that shares some of its arguments with Bound do
if b; is not a linked-layer literal then
M; is the mode of b, obtained by setting its arguments that are in Bound as
input (+) and the others as output (-)
if consistent(M; Modes) then
Remove b; from Lits' and add to Bound' the output terms of b;
else remove inconsistency from Modes
else Link < list of all literals linked-layer to b;
forall b; € Link do
M; is the mode of b; obtained by setting its arguments that are k-layer
activated terms as input (+) and the others as output (-)
if consistent(M; Modes) then
Remove b; from Lits" and add to Bound' the output terms of b;
else remove inconsistency from Modes and exit
if Modes = &
NewModes < MD(Bound',Lits' Modes)
else fail
else NewModes < Modes
return(NewModes)

same term marked as “output” by step 1.2), it is not possible to decide which of them
actually introduces it. For example, if p (X,Y) and g(X,Y) are two k-layer literals
and X is a k-layer activated term, then it is necessary to assess if Y is produced by p or
by g. In these cases, the algorithm maintains all the possible alternatives, waiting for
the next steps and/or examples to (hopefully) disambiguate the correct one.

Example 3. Given the following clause:
h(a,b) :- p(a,b), p(b,c), o(a,b,c).

and hypothesizing mode (+,—) for the head literal, there are two I-layer literals,
p(a,b) and o(a,b, c), that have the same term b as a possible output. In this case,
the available information was not sufficient to identify a single mode for predicates
p/2 and o/3 given the mode (+,—) for the predicate h/2. Indeed, the list of modes
induced by MILE for the above clause is

md([[ h(-,+), [ [p(+,+),0(-,+,-)111,
[ h(+,-), [ [p(+,+),0(+,-,-)]1, [p(+,-),0(+,+,+)]111,
[ h(+,+), [ [p(+,+),0(+,+,-)1111).



An Algorithm for Incremental Mode Induction 517

Algorithm 2. MILE(E)

M=
forall e € E do
(h/n) < predicate in the head of e
forall possible modes M, of the predicate 4/n do
Bound « input terms of 4
Lits < the body of e
if m(M,,,, MD(Bound, Lits, £J)) is consistent with M
update M accordingly
else
fail

Note that a mode is related to the concept described by the predicate it belongs to
(i.e., to its context?). The term disambiguation refers to the assumption that there is a
unique mode for each predicate in a given context (i.e., each predicate is used always
with the same meaning — it is a function). Thus, the algorithm is able to learn many
modes for the same predicate, even if just one for each fixed context.

Definition 2. (linked-layer literal) A k-layer literal p is called linked-layer literal if
there exists a k-layer literal q that shares some argument with p and such arguments
are not k-layer activated terms; in this case, we also say that p is linked-layer to q.

Algorithm 1 describes how MILE learns mode declarations for the predicates in
the body of an example ‘A :- Body’. Let us consider the list Lits=(l,...,l ) of such
body literals, the set Bound of 1-layer activated terms (input arguments of /), and an
initial set of mode declarations Modes (=& at beginning for a new example). For each
literal /, € Lits that shares some arguments with the set Bound: a) if [ is not a linked-
layer literal then its mode considers as input terms all those that are in Bound, and as
output the others; b) if /, is a linked-layer literal, then all the literals that are linked-
layer to it are collected, and all possible modes for them are considered (see Example
3). Each new mode is added to the set Modes, and all elements of Modes that are
inconsistent® with it are eliminated.

If many examples are available, they can be used to further refine the identified set
of modes, as described in Algorithm 2. At any moment, MILE maintains a set M of
all consistent modes learned thus far for all concepts and predicates encountered in
the processed examples. For each new incoming example, MILE applies Algorithm 1
to find all possible modes for its predicates, and then combines the outcome with M

2 Specifically, the context of a predicate in the body of an example is the head of that example.

3 A mode declaration M, is inconsistent respect to a mode M, iff M, # M, (i.e., M, has in-
put/output terms different from M,). The internal representation of Modes in Algorithm 1 is a
set M={m,...,m } where each m, is the list of modes for the literals in the body of an example.
A mode m, for a predicate p is inconsistent with respect to the set M, if there is a list of modes
m,e M such that m, contains a mode m,, for the predicate p inconsistent with respect to m .



518 N. Di Mauro et al.

in order to exclude inconsistent ones. Modes in M are grouped by concept, and repre-
sented as couples of the form “m(h,b)” where h is a concept along with one possible
mode for its arguments (e.g., p(+,—)) and b is the list of all corresponding modes for
the other predicates.

Note that, the restriction of having a single mode for each context can be relaxed in
the algorithm, by just dropping the consistency test. This is useful when a predicate is
used with different meanings. However, such cases may give rise to issues that need
further discussion (outside the scope of this paper). Consider for instance the follow-

ing predicate for reversing a list:
reverse([3,1,2],[2,1,3]1).

represented by the example:
rev(a,b):- decomp(a,3,c),decomp(c,1,d),decomp(d,2,e),nil(e),
decomp (b, 2, f) ,decomp(f,1,g),decomp(g,3,e).

where a represents the list [3,1,2] and b the list [2,1,3]. The following modes are
obtained by applying the algorithm:

{rev(+,-),decomp(+,-,-),decomp(-,+,-),decomp (-, +,+),
decomp (+, -, +) ,nil(+)}

The strange mode is decomp (-, +, -) expressing that it is possible to obtain the tail
of a generic list with a given head. The problem is due to one predicate (decomp/3)
being used both to decompose (meaning represented by the mode decomp (+,-,-))
and to recompose (expressed by the mode decomp (-,+,+)) a list. One solution
would be to exploit different predicate names for different uses. However, a more
clever solution is based on the consideration that this mode is obtained from literal
decomp (g, 3, e), which is applicable if and only if the third argument is a constant e
such that nil (e) is true (i.e., the empty list).

4 Examples

In the outlined mode declarations learning task, it is possible to encounter problems
due to the ambiguity of a predicate mode. In some cases, this ambiguity can be re-
solved by subsequent observations (if any) provided to the algorithm. In other cases,
the ambiguity cannot be avoided since it depends on the context in which the predi-
cate is used. The presented algorithm is able to recognize such cases and to manage
them correctly. This section shows, by means of some examples, the capabilities of
the algorithm in such different situations.
The internal representation of M is a structure of the following form:

md([ [cm_ 1, [mp_11, mp_12, ... 1 1,
[cm_2, [mp_21, mp_22, ... 1 1,
[cm_n, [mp_nl, mp_n2, ... 1 1 ).

where md represents M, cm; represents a possible concept with one of its possible
modes, and the mp_1i7's represent a possible list of modes for body predicates in the
context of cm_1i.

The first example shows as the incremental feature of the algorithm turns out to be
important in some contexts.



An Algorithm for Incremental Mode Induction 519

Example 4. Given the example:
h(a):-p(a,b),p(a,c),t(a,b),t(a,c),l(c).

MILE induces the following list of modes for the literals h/1, p/2, t/2 and 1/1:
md([[h(+), [[1(+),t(+,+),p(+, )], [1(+),t(+,-),p(+,+)]1111).
According to the algorithm presented in Section 3, the argument a in the head

leads to the following 1-layer literals: p(a,b), p(a,c), t(a,b), t(a,c). The first

argument (a) of the predicates p/2 and t/2 is certainly an “input argument”, but
there is an indeterminism on the second argument, because both literals of p/2 and
literals of t/2 produce simultaneously the same set of constants {b, c}. Since it is
impossible to determine which of these two predicates actually gives as output the
terms {b, c}, the system keeps both possibilities, hoping that a new incoming exam-
ple resolves this ambiguity. Indeed, supposing that the next example provided to the

system is
h(a) :- p(a,b),p(a,c),t(a,b),1l(c).
MILE is able to induce the following list of modes for this example
md ([[h(+), [[1(+),t(+,+),p(+,-)1111)
that causes the following updated version of the global one (in which ambiguity is
removed):
md ([[h(+), [[1(+),t(+,+),p(+,-)1111)

Hence, after examining just two examples, MILE learned the correct mode decla-
rations for the predicates h/1, 1/1, t/2 and p/2. All new incoming examples must
satisfy these declarations, or else an error will be notified. Indeed, the semantics that
can be associated to these predicates is that p/2 introduces new objects in the de-
scription, while t/2 checks a relation between two known objects and, finally, 1/1
represents a property of the objects. Hence, supposing that the system is provided

with the new example
h(a):-p(a,c),t(a,b),1(b).

it notes that the semantics (i.e., the mode declaration) of its predicates is different
from that learned so far: the predicate t/2 now introduces objects in the description.
Then, the algorithm notify at the user that his descriptions associate different (or in-
consistent) semantics to predicates. Note that this behavior can be avoided relaxing
the consistency check.

The following example aims at showing a case in which the algorithm learns many
mode declarations for one concept.

Example 5. Given the following example regarding the domain of family relation-

ships
father(a,b) :- parent(a,b), male(a).
MILE is able to induce the following list of modes for the concept father/2:
md([ [ father(-,+), [ [male(+),parent(-,+)] 11,
[ father(+,-), [ [male(+),parent(+,-)]1 11,
[ father(+,+), [ [male(+),parent(+,+)] 111)

Due to a poor example description (only two literals in the body of the example),
all the possible modes for the predicate father/2 are correct (no inconsistency are
derived). More in general, it is impossible to associate the correct semantics to the



520 N. Di Mauro et al.

predicates father/2 and parent/2. Supposing that MILE is provided with this

second example, whose description is more detailed than the first one:
father (a,b) : -parent (a,b) ,male(a) ,parent (b,c), female(c) .

Now, the algorithm is able to understand that the only correct mode for the predicate
father/2 is (+,-):

md ([ [father(+,-), [[female(+) ,male(+) ,parent(+,-)]1111)
Indeed, since female(c) is only used to test a property, the only predicate that
can provide ‘c’ is parent (b, c). Thus, parent/2 must have mode (+,-), and

hence this leads to mode (+, -) for the predicate father/2.

Finally, the following example presents an important characteristic of the algo-
rithm: its capability to learn many mode declarations for the same predicate when it is
involved in different contexts.

Example 6. Supposing the following examples are provided to the algorithm:
father(a,b) :-
parent (a,b) ,male(a),parent (b, c), female(c) .
tree(t) :-
node (t,a) ,node(t,b) ,node(t,c),parent(a,b),parent(a,c).

The user exploited the same predicate parent/2 to describe both the family rela-
tionship concept father/2 and the data structure concept tree/1. In this case, it is
important to distinguish the two uses by linking the mode to its context. MILE in-

duced the following list of modes:
md([[tree(+), [ [node(+,-),parent(+,+)] 11,
[father(+,-), [ [female(+),male(+),parent(+,-)1111)

The algorithm distinguished different semantics for the same predicate: in the con-
cept (context) tree/1 the predicate parent/2 is used to check a property of the
objects (nodes) introduced by the predicate node/2; while in the concept (context)
father/2 the predicate parent/2 gives the second argument as output, thus allow-
ing to ‘retrieve’ children of a given person.

The algorithm MILE is integrated as preprocessor in a system for the incremental
learning of first-order logic theories from examples, called INTHELEX, that is in-
cluded in the architecture of the EU project COLLATE®, in order to learn rules for
automated classification and understanding of paper documents [17]. A deeper analy-
sis about the best way to exploit/integrate the meta-knowledge of mode declaration in
the revision phases of INTHELEX is currently ongoing, in order to assess the gain
obtained in terms of computational complexity.

4IST-1999-20882 project COLLATE: Collaboratory for Annotation, Indexing and Retrieval of
Digitized Historical Archive Material (URL: http://www.collate.de).



An Algorithm for Incremental Mode Induction 521

5 Conclusions

One of the biases used by Inductive Logic Programming (ILP) systems for reducing
the space of candidate solutions in knowledge acquisition and concept formation is
mode declaration. An algorithm to incrementally learn mode declarations for predi-
cates from examples, called MILE has been presented. Since such information can be
useful for restricting the search space of ILP systems, implementations of the pro-
posed algorithm could be profitably used as a preprocessor of input examples in ILP
systems in order to provide them with this meta knowledge. At present, the algorithm
is implemented in Prolog language. Important features of MILE are its ability to man-
age and resolve (whenever possible) ambiguity, and to capture different semantics for
each predicate in relation with its use in different contexts. We plan to extend the
algorithm in order to deal with predicates used with different meanings in the same
context.

References

1. Eric McCreath and Arun Sharma. Extraction of Meta-Knowledge to Restrict the Hypothes
Space for ILP Systems. Eight Australian Joint Conference on Artificial Intelligence,pp.75-
-82, Xin Yao, 1995

2. D.H.D. Warren. Implementing Prolog — Compiling Predicate Logic Programs. Research
Reports 39 and 40, Dept. of Artificial Intelligence, University of Edinburgh, 1977.

3. C.S. Mellish. The Automatic Generation of Mode Declarations for Prolog Programs. DAI
Research Paper 163, Dept. of Artificial Intelligence, University of Edinburgh, Aug. 1981.

4. C.S. Mellish. Some Global Optimizations for a Prolog Compiler. J. Logic Programming
2, 1 (Apr. 1985), pp.43-66.

5. U.S. Reddy. Transformation of Logic Programs into Functional Programs. In Proc. 1984
Int.Symposium on Logic Programming, IEEE Computer Society, Atlantic City, New Jer-
sey, Feb. 1984, pp.187-196.

6. M. Bruynooghe, B. Demoen, A. Callebaut and G. Janssens. Abstract Interpretation: To-
wards the Global Optimization of Prolog Programs. In Proc. Fourth IEEE Symposium on
Logic Programming, San Francisco, CA, Sep. 1987.

7. H. Manilla and E. Ukkonen. Flow Analysis of Prolog Programs. In Proc. Fourth IEEE
Symposium on Logic Programming, San Francisco, CA, Sep. 1987.

8. S.K. Debray and D.S. Warren. Automatic Mode Inference for Logic Programs. Journal of
Logic Programming, vol.5, n.3, pp.207-229, 1988.

9. K. Morik, S. Wrobel, J. Kietz, and W. Emde. Knowledge Acquisition and Machine
Learning: Theory Methods and Applications. Academic Press, 1993.

10. S. Muggleton and C. Feng. Efficient Induction of Logic Programs. In Proceedings of the
First Conference on Algorithmic Learning Theory, Tokyo, pp.368-381. Ohmsa Publish-
ers, 1990.

11. R.M. Cameron-Jones and J.R. Quinlan. Efficient top-down induction of logic programs.
SIGART Bulletin, 5(1):33-42, 1994.

12. S. Muggleton, Inverse Entailment and Progol. New Generation Computing, Special issue
on Inductive Logic Programming, 13 (3-4), Ohmsha, pp.245-286, 1995.



522 N. Di Mauro et al.

13. M. Furusawa, N. Inuzuka, H. Seki and H. Itoh. Bottom-up induction of logic programs
with more than one recursive clause. In Proceedings of IJCAI97 workshop Frontiers of
ILP, Nagoya, 1997.

14. P. Idestam-Almquist. Efficient induction of recursive definitions by structural analysis of
saturations. In L. De Raedt (Ed.), Advances in Inductive Logic Programming, pp.192-205.
10S Press, 1996.

15. E. McCreath and A. Sharma. LIME: A System for Learning Relations. Algorithmic
Learning Theory, pp.336-374, 1998.

16. C. Rouveirol. Extensions of Inversion of Resolution Applied to Theory Completion.
Inductive Logic Programming, pp.64--90, S. Muggleton, Academic Press, 1992.

17. F. Esposito, S. Ferilli, N. Fanizzi, T.M.A. Basile and N. Di Mauro. Incremental
Multistrategy Learning for Document Processing. Applied Artificial Intelligence Journal,
17:859-883, Taylor & Francis, London, 2003.



	1 Introduction
	2 Related Work
	3 MILE: Mode-Declarations Incremental Learner from Examples
	4 Examples
	5 Conclusions

